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EE 459/500 – HDL Based Digital 

Design with Programmable Logic 

  

Lecture 19  

Pipeline Design 

References:  

Chapter 11 of M. Morris Mano and Charles Kime, Logic and 

Computer Design Fundamentals, Pearson Prentice Hall, 4th 

Edition, 2008. 
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Overview  

 Pipelining concept 

 

 Pipelined design of Simple Computer 

• Basic 5-stage pipe 

• Speedup of pipelined vs non-pipelined implementations 

• Pipeline hazards 

• Structural, data, control 

 

 Parallel digital systems 
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Pipelining a digital system 

 Key idea: break big computation into pieces 

 

 

 

 

 Separate each piece with a pipeline register 

1ns 

200ps 200ps 200ps 200ps 200ps 

Pipeline 

Register 
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Pipelining a digital system 

 Why do this?  Because it's faster for repeated 

computations 

1ns 

Non-pipelined: 

1 operation finishes 

every 1ns  

200ps 200ps 200ps 200ps 200ps 

Pipelined: 

1 operation finishes 

every 200ps  
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 Pipelining increases throughput, but not total 

computation time of a task 

• Answer available every 200ps, BUT 

• A single computation still takes 1ns 

 

 Limitations: 

• Computations must be divisible into stage size 

• Pipeline registers add overhead  
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Pipelining 
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Pipelining 

 Pipelining transformation leads to a 

reduction in the critical path, which can be 

exploited to increase the clock speed or to 

reduce power consumption at same speed. 

 

 In parallel processing, multiple outputs are 

computed in parallel in a clock period.  

Therefore, the effective clock speed is 

increased by the level of parallelism. 
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Example: 3-tap FIR digital filter 
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Example: 3-tap FIR digital filter 
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The Laundry Analogy 

 Ann, Brian, Cathy, Dave  

each have one load of clothes  

to wash, dry, and fold 

 Washer takes 30 minutes 

 Dryer takes 30 minutes 

 “Folder” takes 30 minutes 

 “Stasher” takes 30 minutes 

to put clothes into drawers 

A B C D 

                                      10 

If we do laundry sequentially... 
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 Time Required: 8 hours for 4 loads 
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12 2 AM 6 PM 7 8 9 10 11 1 
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To Pipeline, We Overlap Tasks 

 Time Required: 3.5 Hours for 4 Loads 
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To Pipeline, We Overlap Tasks 

• Pipelining doesn’t help latency of 
single task, it helps throughput of 
entire workload 

• Pipeline rate limited by slowest 
pipeline stage 

• Multiple tasks operating 
simultaneously 

• Potential speedup = Number pipe 
stages 

• Unbalanced lengths of pipe stages 
reduces speedup 

• Time to “fill” pipeline and time to 
“drain” it reduces speedup 
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Example: basic single-cycle processor 

What do we need to add to actually split the datapath into stages? 
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Example: basic pipelined processor 
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Example: The Basic Pipeline For MIPS 
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Overview  

 Pipelining concept 

 

 Pipelined design of Simple Computer 

• Basic 5-stage pipe 

• Speedup of pipelined vs. non-pipelined implementations 

• Pipeline hazards 

• Structural, data, control 

 

 Parallel digital systems 
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Abstract View of Critical Path 
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Pipelined critical path 

 Critical path is longest path between stage 

registers 
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Steps in Instruction Processing 
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Un-pipelined (Non-overlapped) Implementation 

 Consider loads with DF stage 
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Pipelined Implementation 
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5-stage Pipeline 

 CPU stages 

• IF: Instruction fetch 

• DR: Instruction decode & Register read 

• E: Execute 

• DF: Data fetch (Memory load/store) 

• W: Write Back Registers 

 Another set of mnemonic names 

• IF, ID, E, MEM, WB 

IF DR E DF W 

IF DR E DF W 

IF DR E DF W 
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Computer Pipelines 

 Execute billions of instruction, so throughput is 
what matters 

 Throughput versus latency 
• + Throughput increases 

• -  Latency for a single instruction increases  
 May have to wait longer for single instruction to complete 

 Allows much faster clock cycle 

 RISC pipeline architecture features: 
• All instructions same length 

• Registers located in same place in instruction format 

• Memory operands only in loads and stores 
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Unpipelined Datapath 
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Pipelined Datapath 

MAR 

MDR 
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Overview  

 Pipelining concept 

 

 Pipelined design of Simple Computer 

• Basic 5-stage pipe 

• Speedup of pipelined vs. non-pipelined implementations 

• Pipeline hazards 

• Structural, data, control 

 

 Parallel digital systems 
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Pipelining Hazards 

 Hazards cause the pipe to stall because of 

some conflict in the pipe (prevents the next 

instruction in pipe from executing in its turn) 

 

 Types of hazards 

• Structural: contention for same hardware resource 

• Data: dependency on earlier instruction for the 

correct sequencing of register reads and writes 

• Control: branch/jump instructions stall the pipe 

until get correct target address into PC 
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Structural Hazards 

 Resource conflicts in the pipeline 

 

 Examples 

• Single memory port shared for instruction and 

data access 

• Register file without a separate write port 
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Structural Hazards 

IF DR E DF W 

IF DR E DF W 

IF DR E DF W 

IF DR E DF W 

IF DR E DF W 

STALL 

load 

sub 

and 

or 
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Structural Hazards 

 IF and DF compete for single memory port 

 Ideal Machine 
• No stalls, 1 cycle per instruction 

 Assume 30% of instructions access data 
• With structural hazard, 1.3 cycles per instruction 

• Performance has gone down by 30% 

 Solutions: 
• Pipeline stall (insert bubble) 

• Have 2 memory ports for shared instruction-data 
cache-memory (expensive) 

• Have separate instruction cache-memory and data 
cache-memory 
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Three Generic Data Hazards (I) - RAW 

 Instr1 followed by Instr2 
add r1, r3, r2 

add r4, r5, r1 

 

 Instr2 tries to read operand before Instr1writes 

it 

• Can be due to true “data dependency” (data must 

be produced before it can be consumed) 

• Or can be due to pipeline staging (data already 

produced, but not yet written to general register 

file 
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Data Hazards (II) - WAR 

 Instr1 followed by Instr2 
ld  r1, (r3)+ 

add r3, r4, r1 

 

 Instr2 tries to write operand before Instr1 reads it 

• Instr1 gets wrong operand 

• Can’t happen in the 5-stage RISC pipeline we just 

covered 

 All instruction take 5 stages 

 Reads are always in stage 2 

 Writes are always in stage 5 
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Data Hazards (III) - WAW 

 Instr1 followed by Instr2 
mul r1, r0, r2 

add r1, r5, r6 

 

 Instr2 tries to write operand before Instr1 

writes it 

• Leaves wrong result (Instr1, not Instr2) 

• Can’t happen in our 5-stage pipeline because 

 All instructions take 5 stages 

 Writes are always in stage 5  
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Data Hazards 

 Overlapping instructions cause dependencies 

on data (RAW) 

e.g.,    MOVA R1, R5 

ADD R2, R1, R6 

ADD R3, R1, R2 

 

IF DR E DF W 

IF DR E DF W 

IF DR E DF W 

1 2 3 4 5 

R1R5 

R2R1 + R6 

R3R1 + R2 

Write R1 

Write R2 
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Data Hazards Remedy - SW 

 Software delay (compiler or machine 

code programming to insert NOPs) 

  MOVA R1, R5 

  NOP 

  NOP 

  ADD R2, R1, R6 

  NOP 

  NOP 

  ADD R3, R1, R2 
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Data Hazards Remedy - HW 

 Hardware stalls 

 

 

 

 Hardware Data Forwarding 
• Add an extra path connecting ALU outputs 

to ALU inputs on the next clock 

IF DR E DF W 

IF DR E DF W 

IF     

IF DR E DF W 

IF DR    

MOVA RMOVA R11, , RR55  

ADD RADD R22, R, R11, R, R66  

IF DR E DF W ADD RADD R22, R, R11, R, R66  

Hazard detection 
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Data Forwarding (Reg. Bypassing)  
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Pipelined Datapath – with data forwarding 
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Control Hazards 

 For branch or jump instruction, the correct 

instruction to execute is not known in time (at 

the start of the IF stage of the instruction after 

the Branch) 

• Condition not yet determined (for conditional 

branch instruction)  

• Target instruction address not yet calculated 
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Control Hazards 

 Conflicts that arise from changes in the Program Counter 

• Branch instructions 

 

 

 

 

 

 

 

 

 

 IF of 2 instructions following branch happens before you know 
whether or not to branch and where to branch 

 ISA may allow code to run useful instructions 

 Can use branch prediction to improve performance 

IF DR E DF WB 1 BZ R1, 18 

2 MOV R2, R3 

3 MOV R1, R2 

20 MOV R5, R6 

IF DR E DF WB 

IF DR E DF WB 

IF DR E DF WB 

R1=0 evaluated, 

and PC set to 20 

Instruction fetched 

from target address 
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Control Hazard Solutions  

 Solution 1: stall  

 The instructions after the branch are stalled, until the 

branch condition is checked and target address is 

generated 
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Sol 2:  

 Perform target address calculation earlier in DR 

stage 
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Sol. 3a  

 Assume branch not taken, fixup if taken 
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Sol.3b 

 Assume branch taken, fixup if not taken  
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Sol.4  

 Delayed branch (ISA change) 
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Solutions to Control Hazards 

 Micro-architecture solution 

• Stall the pipes 

• Calculate target address and condition earlier in pipeline (DR) 

• Assume branch always goes untaken (taken) and fix up pipe 

if it is actually taken (untaken) 

 ISA solution 

• Have delay branches 

 Branch target takes place after n (delay) instructions 

 For n penalty cycles, must have (n-1) stages between IF and the 

stage where target and condition are determined 

• Have instruction which separate target address calculation 

and condition generation from actual branching, so these can 

be executed earlier (e.g., IA-64) 

 Branch prediction  
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Handling Hazards - Summary 

 Avoid some hazards “by design” 
• Eliminate DF-IF structural hazard by having 

separate I-cache and D-cache 

• Eliminate WAR by always fetching operands 
earlier in pipe (DR) 

• Eliminate WAW by doing all Ws in order (last 
stage, static) – not always the best micro-
architecture decisions though! 

• Delayed branch in ISA to reduce control hazard 
penalty 

 Detect and resolve remaining ones 
• Stall or forward (if possible) 
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Pipelining Cautions 

 Superpipelining can cause long latencies 

• A large number of pipeline stages 

• High frequency (GHz)  

 Clock limited by slowest stage in the pipe 

 Long pipes can also cause more stalls 

 Dependencies can be tolerated as long as 

there is work to overlap the dependency 
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Overview  

 Pipelining concept 

 

 Pipelined design of Simple Computer 

• Basic 5-stage pipe 

• Speedup of pipelined vs. non-pipelined implementations 

• Pipeline hazards 

• Structural, data, control 

 

 Parallel digital systems 
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Parallelism in CPUs 

 Instruction Level Parallelism 

• Superscalar 

 Multiple functional units in a CPU support multiple 

instructions fetch and issue simultaneously 

 

• VLIW: single instruction, but multiple executions 
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Pipelined CPUs 

mult r1, r2, r3 

add r4, r5, r6 

IF ID E MEM WB 

IF E MEM WB STALL ID 

E E 

STALL 

3 cycle multiply execute stage 
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Superscalar CPUs 

mult r1, r2, r3 

add r4, r5, r6 

IF ID E MEM WB 

IF E MEM WB ID 

E E 

3 cycle multiply execute stage, with multiple ALUs 
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4-Way Superscalar 

 Today’s microprocessors are typically 4-way 

superscalar 
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VLIW CPUs 

mult r1, r2, r3; add r4, r5, r6 

IF ID E MEM WB 

E MEM WB 

E E 

VLIW: very large instruction word 

Single instruction fetched, multiple operations executed at the 

same time 
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4-way VLIW 

Summary 

 Pipelining is essential 

 Parallel computing is the future 
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