
1

EE 459/500 – HDL Based Digital

Design with Programmable Logic

Lecture 19

Pipeline Design

References:

Chapter 11 of M. Morris Mano and Charles Kime, Logic and

Computer Design Fundamentals, Pearson Prentice Hall, 4th

Edition, 2008.

 2

Overview

 Pipelining concept

 Pipelined design of Simple Computer

• Basic 5-stage pipe

• Speedup of pipelined vs non-pipelined implementations

• Pipeline hazards

• Structural, data, control

 Parallel digital systems

2

 3

Pipelining a digital system

 Key idea: break big computation into pieces

 Separate each piece with a pipeline register

1ns

200ps 200ps 200ps 200ps 200ps

Pipeline

Register

 4

Pipelining a digital system

 Why do this? Because it's faster for repeated

computations

1ns

Non-pipelined:

1 operation finishes

every 1ns

200ps 200ps 200ps 200ps 200ps

Pipelined:

1 operation finishes

every 200ps

3

 Pipelining increases throughput, but not total

computation time of a task

• Answer available every 200ps, BUT

• A single computation still takes 1ns

 Limitations:

• Computations must be divisible into stage size

• Pipeline registers add overhead

 5

Pipelining

 6

Pipelining

 Pipelining transformation leads to a

reduction in the critical path, which can be

exploited to increase the clock speed or to

reduce power consumption at same speed.

 In parallel processing, multiple outputs are

computed in parallel in a clock period.

Therefore, the effective clock speed is

increased by the level of parallelism.

4

 7

Example: 3-tap FIR digital filter

 8

Example: 3-tap FIR digital filter

5

 9

The Laundry Analogy

 Ann, Brian, Cathy, Dave

each have one load of clothes

to wash, dry, and fold

 Washer takes 30 minutes

 Dryer takes 30 minutes

 “Folder” takes 30 minutes

 “Stasher” takes 30 minutes

to put clothes into drawers

A B C D

 10

If we do laundry sequentially...

30

T
a
s
k

O
r
d
e
r

Time

A

30 30 30 30

B

30 30 30

C

30 30 30 30

D

30 30 30 30

6 PM 7 8 9 10 11 12 1 2 AM

 Time Required: 8 hours for 4 loads

6

 11

12 2 AM 6 PM 7 8 9 10 11 1

Time
30

A

C

D

B

30 30 30 30 30 30
T
a
s
k

O
r
d
e
r

To Pipeline, We Overlap Tasks

 Time Required: 3.5 Hours for 4 Loads

 12

12 2 AM 6 PM 7 8 9 10 11 1

Time
30

A

C

D

B

30 30 30 30 30 30
T
a
s
k

O
r
d
e
r

To Pipeline, We Overlap Tasks

• Pipelining doesn’t help latency of
single task, it helps throughput of
entire workload

• Pipeline rate limited by slowest
pipeline stage

• Multiple tasks operating
simultaneously

• Potential speedup = Number pipe
stages

• Unbalanced lengths of pipe stages
reduces speedup

• Time to “fill” pipeline and time to
“drain” it reduces speedup

7

 13

Example: basic single-cycle processor

What do we need to add to actually split the datapath into stages?

 14

Example: basic pipelined processor

8

 15

Example: The Basic Pipeline For MIPS

Reg

A
L

U

DMem Ifetch Reg

Reg

A
L

U

DMem Ifetch Reg

Reg

A
L

U

DMem Ifetch Reg

Reg

A
L

U

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

I

n

s

t

r.

O

r

d

e

r

 16

Overview

 Pipelining concept

 Pipelined design of Simple Computer

• Basic 5-stage pipe

• Speedup of pipelined vs. non-pipelined implementations

• Pipeline hazards

• Structural, data, control

 Parallel digital systems

9

 17

Abstract View of Critical Path

 18

Pipelined critical path

 Critical path is longest path between stage

registers

10

 19

Steps in Instruction Processing

 20

Un-pipelined (Non-overlapped) Implementation

 Consider loads with DF stage

11

 21

Pipelined Implementation

 22

5-stage Pipeline

 CPU stages

• IF: Instruction fetch

• DR: Instruction decode & Register read

• E: Execute

• DF: Data fetch (Memory load/store)

• W: Write Back Registers

 Another set of mnemonic names

• IF, ID, E, MEM, WB

IF DR E DF W

IF DR E DF W

IF DR E DF W

12

 23

Computer Pipelines

 Execute billions of instruction, so throughput is
what matters

 Throughput versus latency
• + Throughput increases

• - Latency for a single instruction increases
 May have to wait longer for single instruction to complete

 Allows much faster clock cycle

 RISC pipeline architecture features:
• All instructions same length

• Registers located in same place in instruction format

• Memory operands only in loads and stores

 24

Unpipelined Datapath

13

 25

Pipelined Datapath

MAR

MDR

 26

Overview

 Pipelining concept

 Pipelined design of Simple Computer

• Basic 5-stage pipe

• Speedup of pipelined vs. non-pipelined implementations

• Pipeline hazards

• Structural, data, control

 Parallel digital systems

14

 27

Pipelining Hazards

 Hazards cause the pipe to stall because of

some conflict in the pipe (prevents the next

instruction in pipe from executing in its turn)

 Types of hazards

• Structural: contention for same hardware resource

• Data: dependency on earlier instruction for the

correct sequencing of register reads and writes

• Control: branch/jump instructions stall the pipe

until get correct target address into PC

 28

Structural Hazards

 Resource conflicts in the pipeline

 Examples

• Single memory port shared for instruction and

data access

• Register file without a separate write port

15

 29

Structural Hazards

IF DR E DF W

IF DR E DF W

IF DR E DF W

IF DR E DF W

IF DR E DF W

STALL

load

sub

and

or

 30

Structural Hazards

 IF and DF compete for single memory port

 Ideal Machine
• No stalls, 1 cycle per instruction

 Assume 30% of instructions access data
• With structural hazard, 1.3 cycles per instruction

• Performance has gone down by 30%

 Solutions:
• Pipeline stall (insert bubble)

• Have 2 memory ports for shared instruction-data
cache-memory (expensive)

• Have separate instruction cache-memory and data
cache-memory

16

 31

Three Generic Data Hazards (I) - RAW

 Instr1 followed by Instr2
add r1, r3, r2

add r4, r5, r1

 Instr2 tries to read operand before Instr1writes

it

• Can be due to true “data dependency” (data must

be produced before it can be consumed)

• Or can be due to pipeline staging (data already

produced, but not yet written to general register

file

 32

Data Hazards (II) - WAR

 Instr1 followed by Instr2
ld r1, (r3)+

add r3, r4, r1

 Instr2 tries to write operand before Instr1 reads it

• Instr1 gets wrong operand

• Can’t happen in the 5-stage RISC pipeline we just

covered

 All instruction take 5 stages

 Reads are always in stage 2

 Writes are always in stage 5

17

 33

Data Hazards (III) - WAW

 Instr1 followed by Instr2
mul r1, r0, r2

add r1, r5, r6

 Instr2 tries to write operand before Instr1

writes it

• Leaves wrong result (Instr1, not Instr2)

• Can’t happen in our 5-stage pipeline because

 All instructions take 5 stages

 Writes are always in stage 5

 34

Data Hazards

 Overlapping instructions cause dependencies

on data (RAW)

e.g., MOVA R1, R5

ADD R2, R1, R6

ADD R3, R1, R2

IF DR E DF W

IF DR E DF W

IF DR E DF W

1 2 3 4 5

R1R5

R2R1 + R6

R3R1 + R2

Write R1

Write R2

18

 35

Data Hazards Remedy - SW

 Software delay (compiler or machine

code programming to insert NOPs)

 MOVA R1, R5

 NOP

 NOP

 ADD R2, R1, R6

 NOP

 NOP

 ADD R3, R1, R2

 36

Data Hazards Remedy - HW

 Hardware stalls

 Hardware Data Forwarding
• Add an extra path connecting ALU outputs

to ALU inputs on the next clock

IF DR E DF W

IF DR E DF W

IF

IF DR E DF W

IF DR

MOVA RMOVA R11, , RR55

ADD RADD R22, R, R11, R, R66

IF DR E DF W ADD RADD R22, R, R11, R, R66

Hazard detection

19

 37

Data Forwarding (Reg. Bypassing)

 38

Pipelined Datapath – with data forwarding

20

 39

Control Hazards

 For branch or jump instruction, the correct

instruction to execute is not known in time (at

the start of the IF stage of the instruction after

the Branch)

• Condition not yet determined (for conditional

branch instruction)

• Target instruction address not yet calculated

 40

Control Hazards

 Conflicts that arise from changes in the Program Counter

• Branch instructions

 IF of 2 instructions following branch happens before you know
whether or not to branch and where to branch

 ISA may allow code to run useful instructions

 Can use branch prediction to improve performance

IF DR E DF WB 1 BZ R1, 18

2 MOV R2, R3

3 MOV R1, R2

20 MOV R5, R6

IF DR E DF WB

IF DR E DF WB

IF DR E DF WB

R1=0 evaluated,

and PC set to 20

Instruction fetched

from target address

21

 41

Control Hazard Solutions

 Solution 1: stall

 The instructions after the branch are stalled, until the

branch condition is checked and target address is

generated

 42

Sol 2:

 Perform target address calculation earlier in DR

stage

22

 43

Sol. 3a

 Assume branch not taken, fixup if taken

 44

Sol.3b

 Assume branch taken, fixup if not taken

23

 45

Sol.4

 Delayed branch (ISA change)

 47

Solutions to Control Hazards

 Micro-architecture solution

• Stall the pipes

• Calculate target address and condition earlier in pipeline (DR)

• Assume branch always goes untaken (taken) and fix up pipe

if it is actually taken (untaken)

 ISA solution

• Have delay branches

 Branch target takes place after n (delay) instructions

 For n penalty cycles, must have (n-1) stages between IF and the

stage where target and condition are determined

• Have instruction which separate target address calculation

and condition generation from actual branching, so these can

be executed earlier (e.g., IA-64)

 Branch prediction

24

 48

Handling Hazards - Summary

 Avoid some hazards “by design”
• Eliminate DF-IF structural hazard by having

separate I-cache and D-cache

• Eliminate WAR by always fetching operands
earlier in pipe (DR)

• Eliminate WAW by doing all Ws in order (last
stage, static) – not always the best micro-
architecture decisions though!

• Delayed branch in ISA to reduce control hazard
penalty

 Detect and resolve remaining ones
• Stall or forward (if possible)

 49

Pipelining Cautions

 Superpipelining can cause long latencies

• A large number of pipeline stages

• High frequency (GHz)

 Clock limited by slowest stage in the pipe

 Long pipes can also cause more stalls

 Dependencies can be tolerated as long as

there is work to overlap the dependency

25

 50

Overview

 Pipelining concept

 Pipelined design of Simple Computer

• Basic 5-stage pipe

• Speedup of pipelined vs. non-pipelined implementations

• Pipeline hazards

• Structural, data, control

 Parallel digital systems

 51

Parallelism in CPUs

 Instruction Level Parallelism

• Superscalar

 Multiple functional units in a CPU support multiple

instructions fetch and issue simultaneously

• VLIW: single instruction, but multiple executions

26

 52

Pipelined CPUs

mult r1, r2, r3

add r4, r5, r6

IF ID E MEM WB

IF E MEM WB STALL ID

E E

STALL

3 cycle multiply execute stage

 53

Superscalar CPUs

mult r1, r2, r3

add r4, r5, r6

IF ID E MEM WB

IF E MEM WB ID

E E

3 cycle multiply execute stage, with multiple ALUs

27

 54

4-Way Superscalar

 Today’s microprocessors are typically 4-way

superscalar

 55

VLIW CPUs

mult r1, r2, r3; add r4, r5, r6

IF ID E MEM WB

E MEM WB

E E

VLIW: very large instruction word

Single instruction fetched, multiple operations executed at the

same time

28

 56

4-way VLIW

Summary

 Pipelining is essential

 Parallel computing is the future

 57

