EE 459/500 — HDL Based Digital
Design with Programmable Logic

Lecture 19
Pipeline Design

References:

Chapter 11 of M. Morris Mano and Charles Kime, Logic and
Computer Design Fundamentals, Pearson Prentice Hall, 4
Edition, 2008.

Overview

= Pipelining concept

= Pipelined design of Simple Computer
¢ Basic 5-stage pipe
® Speedup of pipelined vs non-pipelined implementations

® Pipeline hazards
® Structural, data, control

= Parallel digital systems

Pipelining a digital system

= Key idea: break big computation into pieces

1ns

= Separate each piece with a pipeline register

AHHHEEHE

200ps | 200ps | 200ps | 200ps | 200ps
I

Pipeline
Register

Pipelining a digital system

= Why do this? Because it's faster for repeated
computations

Non-pipelined:
1 operation finishes
every 1ns

1ns
Pipelined:
1 operation finishes
every 200ps

200ps 200ps 200ps 200ps 200ps

Pipelining

= Pipelining increases throughput, but not total
computation time of a task
® Answer available every 200ps, BUT
® A single computation still takes 1ns

= Limitations:
® Computations must be divisible into stage size
® Pipeline registers add overhead

Pipelining

= Pipelining transformation leads to a
reduction in the critical path, which can be
exploited to increase the clock speed or to
reduce power consumption at same speed.

= |n parallel processing, multiple outputs are
computed in parallel in a clock period.
Therefore, the effective clock speed is
increased by the level of parallelism.

Example: 3-tap FIR digital filter

Example 1: Consider a 3-tap FIR filter: y(n)=ax(n)+bx(n-1)+cx(n-2)

X(n) X(n-1) x(n-2)

1,, : multiplica tion —time

T,: Addition —time

U U
— The critical path (or the minimum time required for processing a new

sample) is limited by | multiply and 2 add times. Thus, the “sample period”
(or the “sample frequency”) is given by:

T >T, + 2T,

sample
1

<
f sample T + 2 T

M A

Example: 3-tap FIR digital filter

+ The pipelined implementation: By introducing 2 additional latches in
Example 1, the critical path is reduced from Ty+2Ta to Tu+Ta.The schedule of
events for this pipelined system is shown in the following table. You can see
that, at any time, 2 consecutive outputs are computed in an interleaved manner.

Clock | Input Node 1 Node 2 Node 3 | Output

0 x(0) | ax(0)ybx(-1) — —
1 x(1) | ax(1Hbx(0) ax(0)+bx(-1) cx(-2) y(0)
2 x(2) ax(2)+bx(1) ax(1 H+bx(0) cx(-1) y(l)
3 x(3) | ax(3)p+bx(2) ax(2)+bx(1) cx(0) v(2)

The Laundry Analogy

= Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold

= Washer takes 30 minutes

= Dryer takes 30 minutes

= “Folder” takes 30 minutes

= “Stasher” takes 30 minutes
to put clothes into drawers

SPQYQ X0 O

If we do laundry sequentially...

6 PM 7 8 9
|

10 1 12 1

2AM

| | | | | | | | | | | | | |
30 130 130 |3o 130 130 130 130 130 130 130 130 130 130 130 30

SH A e,A

5 §5 N

& A

E /o

VA

, =

= Time Required: 8 hours for 4 loads

To Pipeline, We Overlap Tasks

6 PM 7 8 9 10 1 12 1 2AM
|
=== || Ti
; 30 '30 '30 130 30 30 30~ me
a
S
k
0]
r
d
e
r
= Time Required: 3.5 Hours for 4 Loads
11
To Pipeline, We Overlap Tasks
6 PM 7 8 9 10 11 12 1 2 AM
|
I o o = e e Time
T 30 30 30 _EO_TO_WW
a * Pipelining doesn’t help latency of
s & single task, it helps throughput of
k entire workload
o) ' A * Pipeline rate limited by slowest
r pipeline stage
d * Multiple tasks operating
e 2 e simultaneously
d 3 5 E’ + Potential speedup = Number pipe
stages

» Unbalanced lengths of pipe stages
reduces speedup

+ Time to “fill” pipeline and time to
“drain” it reduces speedup

Example: basic single-cycle processor

IF: Instruction fetch | ID: Instruction decode/n !

register file read

EX: Execute/l
address calculation

MEM: Memory access : WB: Write back

Addressl

Memory

Write]

Add
4>
(o}
W B) Rea|
;@ ec Address register 1 gata 1
L, | Rea
1 register 2
Instruction Registers
Write 0 Rea]
Instruction! register data 2
memery .
| Writen
data
Sign)

data

>

What do we need to add to actually split the daltapath into stages?

I
I
I
I
I
1
I
I
I
1
S

Example: basic pipelined processor

“xe2°

IFID

Add

ID/EX

Read
register 1 Read
data 1

Read
register 2
Registers

Instruction

memory Read
Write daa2

register

Write

data

Sign
pie= | axtend

32

Add Add|
shitt resul
left 2

EX/MEM MEM/WB

Example: The Basic Pipeline For MIPS

ECycle ECyele 2 Cycle 3 Cycle JCycle 5 Cycle 6Cycle 7

z

|
: =
Overview

= Pipelining concept

» Pipelined design of Simple Computer
¢ Basic 5-stage pipe
® Speedup of pipelined vs. non-pipelined implementations

® Pipeline hazards
® Structural, data, control

= Parallel digital systems

Abstract View of Critical Path

° Register file and ideal memory:
+ The CLK input is a factor ONLY during write operation
* During read operation, behave as combinational logic:
- Address valid => Output valid after “access time.”
Critical Path (Load Operation) =
PC*s Clk-to-QQ +
Instruction Memory’s Access Time +

Register File's Access Time +
ALU to Perform a 32-bit Add +

Ideal
Instruction

Memory
Trmim Data Memory Access Time +
) 16 Setup Time for Register File Write +
In.~.l|'lhl|- m 1 Clock Skew
Address
— Ay " Data
Row V N e Address
32 3%t e Data
Registers B] Data Memory
Y T o i)
i L,;’
¥ -
Clk Ik
» | 1 i Clk
o . h 4

Pipelined critical path

= Critical path is longest path between stage
registers

Ideal
Instruction
Memory

Irim
16 |
]

Instruction

Address
ddre Data
Address
: .- it Data
Registers Data Memory
I Ll)
Clk i

Steps in Instruction Processing

Add R1,R2.R3

Load instruction

Tnstruction Fetch. IF Instruction Fetch, IF

Decode, D Decode, D
Read Regs, R Read Regs, R

Execute, E Execute, E
Write Reg, W Data Fetch, DF

}

Write Reg, W

Un-pipelined (Non-overlapped) Implementation

= Consider loads with DF stage

Cl C2 C3 C4 C5 Co6 C7 C8 C9 C10
I IF DR E DF W

12 IF DR E DF W

20

10

Pipelined Implementation

Cl C2 C3 C4 C5 Co6 C7 C8 €9 C10
I IF DR E DF W

12 IF DR E DF W

I3 IF DR E DF W

14 IF DR E DF W

I5 IF DR E DF W

I6 IF DR E DF W

21

5-stage Pipeline

= CPU stages
® IF: Instruction fetch
® DR: Instruction decode & Register read
¢ E: Execute
¢ DF: Data fetch (Memory load/store)
® W: Write Back Registers
= Another set of mnemonic names
® IF, ID, E, MEM, WB

22

11

Computer Pipelines

Execute billions of instruction, so throughput is
what matters

Throughput versus latency

® + Throughput increases

® - Latency for a single instruction increases
= May have to wait longer for single instruction to complete

Allows much faster clock cycle

RISC pipeline architecture features:

¢ All instructions same length
® Registers located in same place in instruction format
¢ Memory operands only in loads and stores

23

Unpipelined Datapath

GR

- \lm‘; 7 /;157
| [—

v

Data Cache

24

12

Pipelined Datapath

!
GR ——]

. DR/E ')
piperegs ALU / / SHIF]/

E/DF pipereg
—
Ist-level
Data Cache data cache
on chip

!
| i

25

Overview

= Pipelining concept

= Pipelined design of Simple Computer
¢ Basic 5-stage pipe
® Speedup of pipelined vs. non-pipelined implementations

¢ Pipeline hazards
® Structural, data, control

= Parallel digital systems

26

13

Pipelining Hazards

= Hazards cause the pipe to stall because of
some conflict in the pipe (prevents the next
instruction in pipe from executing in its turn)

= Types of hazards
® Structural: contention for same hardware resource

¢ Data: dependency on earlier instruction for the
correct sequencing of register reads and writes

¢ Control: branch/jump instructions stall the pipe
until get correct target address into PC

27

Structural Hazards

= Resource conflicts in the pipeline

= Examples

¢ Single memory port shared for instruction and
data access

® Register file without a separate write port

28

14

Structural Hazards

Structural Hazards

IF and DF compete for single memory port
Ideal Machine

® No stalls, 1 cycle per instruction
Assume 30% of instructions access data

® With structural hazard, 1.3 cycles per instruction
® Performance has gone down by 30%
= Solutions:
® Pipeline stall (insert bubble)

® Have 2 memory ports for shared instruction-data
cache-memory (expensive)

® Have separate instruction cache-memory and data
cache-memory

15

Three Generic Data Hazards () - RAW

= Instr, followed by Instr,
add rl, r3, r2

add r4, r5, rl

= Instr, tries to read operand before Instr,writes
it

¢ Can be due to true “data dependency” (data must
be produced before it can be consumed)

® Or can be due to pipeline staging (data already
produced, but not yet written to general register
file

31

Data Hazards (ll) - WAR

= Instr, followed by Instr,
1d rl, (xr3)+

add r3, r4, ril

= Instr, tries to write operand before Instr, reads it
¢ Instr, gets wrong operand

¢ Can’t happen in the 5-stage RISC pipeline we just
covered
= All instruction take 5 stages
= Reads are always in stage 2
= Writes are always in stage 5

32

16

Data Hazards (lll) - WAW

= Instr, followed by Instr,

mul rl, r0, r2

add rl, r5, r6

= Instr, tries to write operand before Instr,
writes it
® Leaves wrong result (Instry, not Instr,)

¢ Can’t happen in our 5-stage pipeline because
= All instructions take 5 stages
= Writes are always in stage 5

33

Data Hazards

= Overlapping instructions cause dependencies
on data (RAW)
e.g., MOVART,R5

ADD R2, R1, R6 _
ADD R3, R1, R2 Write R,

1 2 3 4

Write R,

R{€Rs
R,€R;+ Rg

R;¢R, +R,

34

17

Data Hazards Remedy - SW

= Software delay (compiler or machine
code programming to insert NOPs)

MOVA R1, R5

NOP

NOP

ADD R2, R1, R6

NOP

NOP

ADD R3, R1, R2

35

Data Hazards Remedy - HW

Hazard detection

= Hardware stalls

MOVAR;, Rs

ADD R2, R1, R6

ADDR2, R1, R6

= Hardware Data Forwarding

® Add an extra path connecting ALU outputs
to ALU inputs on the next clock

B

36

18

Data Forwarding (Reg. Bypassing)

add rl,r2,r3 |IF|DR|E [DFNi |

E-E byp
sub r4,rl,r3 |IF|DR|E |DF|W |
DF-E byp
and r6,rl,r7 |IF|DR1E |DF|W |
*
or r8,rl,r9 |IF|DR|E |DF|W |
xor rl0,rl,rll |IF|DR|E |DF|W |

* Write regs 1n 1st. half of cycle, Read regs in 2nd. half

37

Pipelined Datapath — with data forwarding

il
—_E|H
GR IO 7T [] |
—h
ALU SHIFT
DF-E | [EE
| |bypass
bypass)
| | E/DF pipereg |
Ist-level
Data Cache data cache
on chip
—

38

19

Control Hazards

= For branch or jump instruction, the correct
instruction to execute is not known in time (at
the start of the IF stage of the instruction after
the Branch)

¢ Condition not yet determined (for conditional
branch instruction)

® Target instruction address not yet calculated

Control Hazards

= Conflicts that arise from changes in the Program Counter

® Branch instructions R1=0 evaluated,
and PC set to 20
1BZR,, 18

3MOV R, R,

20 MOV Rg, Rg
Instruction fetched

from target address
= |F of 2 instructions following branch happens before you know
whether or not to branch and where to branch
= |SA may allow code to run useful instructions
= Can use branch prediction to improve performance

20

Control Hazard Solutions

= Solution 1: stall

= The instructions after the branch are stalled, until the
branch condition is checked and target address is
generated

Add |IF|DR|E |DF|W |

Beq |IF|DR|E |DF|W |

and |- |- |IF|DR|E |DF|W |
Xor |- |- |IF|DR|E |DF|W |

2 (stall) penalty cycles,

41

Sol 2:

= Perform target address calculation earlier in DR
stage

Add |IF|DR|E |DF|W |

Beq | IF|DR|E |DF|W |

and |- |IF|DR|E |DF|W |
Xor |- |IF|DR|E |DF|W |

Reduced penalty cyeles from 2 to 1,

Need a separate branch adder in the DR stage to calculate
PC+displacement

42

21

Sol. 3a

= Assume branch not taken, fixup if taken

i

Add |IF|DR|E |DF|W |

Beq |IF|DR|E |DF|W |

and | IF|DR|E |DF|W |

Xor |IF|DR|E |DF|W | ifnottaken
Add |IF|DR|E |DF|W |

Beq |IF|DR|E |DF|W |

and |[TF|- |- |- |- | squash this
target instruction |IF|DR|E |DF|W | if taken

If branch 1s not taken (as predicted), then no penalty
else 1 penalty cycle.
Assumes branch address calculation in the DR stage

43

Sol.3b

= Assume branch taken, fixup if not taken

Add |IF|DR|E |DF|W |

Beq |IF|DR|E |DF|W |

target |- |IF|DR|E |DF|W | if taken
target+l |IF|DR|E |DF|W |

Add |IF|DR|E |DF|W |

Beq |IF|DR|E |DF|W |

and |- |IF|DR|E |DF|W | if not taken

Not much benefit, since 1 eyele penalty in either case.
Assumes branch address calculation in the DR stage - also
have to select between fall-thru address or target address.

44

22

Sol.4

= Delayed branch (ISA change)

Add | IF|DR|E |DF|W |

Beq | IF|DR|E |DF|W |

(delay slot) |IF|DR|E |DF|W |
fallthru or target |IF|DR|E |DF|W |

ISA specifies that the branch, 1f taken, only takes place
after a delay of x mnstructions. (Above, x=1)

Branch adder in DR stage to calculate PC+displ. or
PC+4+displ (depending on ISA definition)

45

Solutions to Control Hazards

= Micro-architecture solution
¢ Stall the pipes

® Calculate target address and condition earlier in pipeline (DR)

® Assume branch always goes untaken (taken) and fix up pipe
if it is actually taken (untaken)

= |SA solution
¢ Have delay branches

= Branch target takes place after n (delay) instructions

= For n penalty cycles, must have (n-1) stages between IF and the
stage where target and condition are determined

¢ Have instruction which separate target address calculation

and condition generation from actual branching, so these can
be executed earlier (e.g., |1A-64)

= Branch prediction

47

23

Handling Hazards - Summary

= Avoid some hazards “by design”

¢ Eliminate DF-IF structural hazard by having
separate |-cache and D-cache

¢ Eliminate WAR by always fetching operands
earlier in pipe (DR)
¢ Eliminate WAW by doing all Ws in order (last

stage, static) — not always the best micro-
architecture decisions though!

® Delayed branch in ISA to reduce control hazard
penalty

= Detect and resolve remaining ones
¢ Stall or forward (if possible)

48

Pipelining Cautions

= Superpipelining can cause long latencies
® A large number of pipeline stages

¢ High frequency (GHz)
= Clock limited by slowest stage in the pipe

= Long pipes can also cause more stalls

= Dependencies can be tolerated as long as
there is work to overlap the dependency

49

24

Overview

= Pipelining concept

= Pipelined design of Simple Computer
¢ Basic 5-stage pipe
¢ Speedup of pipelined vs. non-pipelined implementations

¢ Pipeline hazards
® Structural, data, control

= Parallel digital systems

50

Parallelism in CPUs

= |Instruction Level Parallelism

® Superscalar

= Multiple functional units in a CPU support multiple
instructions fetch and issue simultaneously

¢ VLIW: single instruction, but multiple executions

51

25

Pipelined CPUs

mult rl, r2, r3
add r4, r5, ro6

3 cycle multiply execute stage

52

Superscalar CPUs

mult rl, r2, r3
add r4, r5, ro

3 cycle multiply execute stage, with multiple ALUs

53

26

4-Way Superscalar

= Today’s microprocessors are typically 4-way
superscalar

Cycle |1 2 3 4 5 6 7 8
IF |DR |E DF |W
IF |DR |E DF |W
IF |DR |E DF |W
IF |DR | E DF | W
IF DR |E DF | W
IF DR | E DF | W
IF DR | E DF | W
IF DR | E DF | W
IF DR |E DF | W
IF DR |E DF | W
IF DR |E DF | W
IF DR |E DF | W
IF DR | E DF | W
IF DR |E DF | W
IF DR |E DF | W
IF DR |E DF | W

54

VLIW CPUs

mult rl, r2, r3; add r4, r5, ro

VLIW: very large instruction word
Single instruction fetched, multiple operations executed at the
same time

55

27

4-way VLIW

Cyvele |1 2 3 4 5 6 7 8
IF [DR | E DF |W
E W
E W
E W
IF D E DF | W
E W
E W
E W
IF DR | E DF |W
E W
E w
E W
IF DR |E DF | W
E W
E W
E W
56
Summary

= Pipelining is essential
= Parallel computing is the future

57

28

