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EE 459/500 – HDL Based Digital 

Design with Programmable Logic 

  

Lecture 19  

Pipeline Design 

References:  

Chapter 11 of M. Morris Mano and Charles Kime, Logic and 

Computer Design Fundamentals, Pearson Prentice Hall, 4th 

Edition, 2008. 
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Overview  

 Pipelining concept 

 

 Pipelined design of Simple Computer 

• Basic 5-stage pipe 

• Speedup of pipelined vs non-pipelined implementations 

• Pipeline hazards 

• Structural, data, control 

 

 Parallel digital systems 
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Pipelining a digital system 

 Key idea: break big computation into pieces 

 

 

 

 

 Separate each piece with a pipeline register 

1ns 

200ps 200ps 200ps 200ps 200ps 

Pipeline 

Register 
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Pipelining a digital system 

 Why do this?  Because it's faster for repeated 

computations 

1ns 

Non-pipelined: 

1 operation finishes 

every 1ns  

200ps 200ps 200ps 200ps 200ps 

Pipelined: 

1 operation finishes 

every 200ps  
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 Pipelining increases throughput, but not total 

computation time of a task 

• Answer available every 200ps, BUT 

• A single computation still takes 1ns 

 

 Limitations: 

• Computations must be divisible into stage size 

• Pipeline registers add overhead  
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Pipelining 
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Pipelining 

 Pipelining transformation leads to a 

reduction in the critical path, which can be 

exploited to increase the clock speed or to 

reduce power consumption at same speed. 

 

 In parallel processing, multiple outputs are 

computed in parallel in a clock period.  

Therefore, the effective clock speed is 

increased by the level of parallelism. 
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Example: 3-tap FIR digital filter 
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Example: 3-tap FIR digital filter 
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The Laundry Analogy 

 Ann, Brian, Cathy, Dave  

each have one load of clothes  

to wash, dry, and fold 

 Washer takes 30 minutes 

 Dryer takes 30 minutes 

 “Folder” takes 30 minutes 

 “Stasher” takes 30 minutes 

to put clothes into drawers 

A B C D 

                                      10 

If we do laundry sequentially... 
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6 PM 7 8 9 10 11 12 1 2 AM 

 Time Required: 8 hours for 4 loads 
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12 2 AM 6 PM 7 8 9 10 11 1 

Time 
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To Pipeline, We Overlap Tasks 

 Time Required: 3.5 Hours for 4 Loads 
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To Pipeline, We Overlap Tasks 

• Pipelining doesn’t help latency of 
single task, it helps throughput of 
entire workload 

• Pipeline rate limited by slowest 
pipeline stage 

• Multiple tasks operating 
simultaneously 

• Potential speedup = Number pipe 
stages 

• Unbalanced lengths of pipe stages 
reduces speedup 

• Time to “fill” pipeline and time to 
“drain” it reduces speedup 
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Example: basic single-cycle processor 

What do we need to add to actually split the datapath into stages? 
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Example: basic pipelined processor 
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Example: The Basic Pipeline For MIPS 
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Overview  

 Pipelining concept 

 

 Pipelined design of Simple Computer 

• Basic 5-stage pipe 

• Speedup of pipelined vs. non-pipelined implementations 

• Pipeline hazards 

• Structural, data, control 

 

 Parallel digital systems 
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Abstract View of Critical Path 
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Pipelined critical path 

 Critical path is longest path between stage 

registers 
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Steps in Instruction Processing 
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Un-pipelined (Non-overlapped) Implementation 

 Consider loads with DF stage 
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Pipelined Implementation 
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5-stage Pipeline 

 CPU stages 

• IF: Instruction fetch 

• DR: Instruction decode & Register read 

• E: Execute 

• DF: Data fetch (Memory load/store) 

• W: Write Back Registers 

 Another set of mnemonic names 

• IF, ID, E, MEM, WB 

IF DR E DF W 

IF DR E DF W 

IF DR E DF W 
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Computer Pipelines 

 Execute billions of instruction, so throughput is 
what matters 

 Throughput versus latency 
• + Throughput increases 

• -  Latency for a single instruction increases  
 May have to wait longer for single instruction to complete 

 Allows much faster clock cycle 

 RISC pipeline architecture features: 
• All instructions same length 

• Registers located in same place in instruction format 

• Memory operands only in loads and stores 
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Unpipelined Datapath 
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Pipelined Datapath 

MAR 

MDR 
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Pipelining Hazards 

 Hazards cause the pipe to stall because of 

some conflict in the pipe (prevents the next 

instruction in pipe from executing in its turn) 

 

 Types of hazards 

• Structural: contention for same hardware resource 

• Data: dependency on earlier instruction for the 

correct sequencing of register reads and writes 

• Control: branch/jump instructions stall the pipe 

until get correct target address into PC 
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Structural Hazards 

 Resource conflicts in the pipeline 

 

 Examples 

• Single memory port shared for instruction and 

data access 

• Register file without a separate write port 
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Structural Hazards 

IF DR E DF W 

IF DR E DF W 

IF DR E DF W 

IF DR E DF W 

IF DR E DF W 

STALL 

load 

sub 

and 

or 
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Structural Hazards 

 IF and DF compete for single memory port 

 Ideal Machine 
• No stalls, 1 cycle per instruction 

 Assume 30% of instructions access data 
• With structural hazard, 1.3 cycles per instruction 

• Performance has gone down by 30% 

 Solutions: 
• Pipeline stall (insert bubble) 

• Have 2 memory ports for shared instruction-data 
cache-memory (expensive) 

• Have separate instruction cache-memory and data 
cache-memory 
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Three Generic Data Hazards (I) - RAW 

 Instr1 followed by Instr2 
add r1, r3, r2 

add r4, r5, r1 

 

 Instr2 tries to read operand before Instr1writes 

it 

• Can be due to true “data dependency” (data must 

be produced before it can be consumed) 

• Or can be due to pipeline staging (data already 

produced, but not yet written to general register 

file 
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Data Hazards (II) - WAR 

 Instr1 followed by Instr2 
ld  r1, (r3)+ 

add r3, r4, r1 

 

 Instr2 tries to write operand before Instr1 reads it 

• Instr1 gets wrong operand 

• Can’t happen in the 5-stage RISC pipeline we just 

covered 

 All instruction take 5 stages 

 Reads are always in stage 2 

 Writes are always in stage 5 
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Data Hazards (III) - WAW 

 Instr1 followed by Instr2 
mul r1, r0, r2 

add r1, r5, r6 

 

 Instr2 tries to write operand before Instr1 

writes it 

• Leaves wrong result (Instr1, not Instr2) 

• Can’t happen in our 5-stage pipeline because 

 All instructions take 5 stages 

 Writes are always in stage 5  

 

                                      34 

Data Hazards 

 Overlapping instructions cause dependencies 

on data (RAW) 

e.g.,    MOVA R1, R5 

ADD R2, R1, R6 

ADD R3, R1, R2 

 

IF DR E DF W 

IF DR E DF W 

IF DR E DF W 

1 2 3 4 5 

R1R5 

R2R1 + R6 

R3R1 + R2 

Write R1 

Write R2 
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Data Hazards Remedy - SW 

 Software delay (compiler or machine 

code programming to insert NOPs) 

  MOVA R1, R5 

  NOP 

  NOP 

  ADD R2, R1, R6 

  NOP 

  NOP 

  ADD R3, R1, R2 
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Data Hazards Remedy - HW 

 Hardware stalls 

 

 

 

 Hardware Data Forwarding 
• Add an extra path connecting ALU outputs 

to ALU inputs on the next clock 

IF DR E DF W 

IF DR E DF W 

IF     

IF DR E DF W 

IF DR    

MOVA RMOVA R11, , RR55  

ADD RADD R22, R, R11, R, R66  

IF DR E DF W ADD RADD R22, R, R11, R, R66  

Hazard detection 
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Data Forwarding (Reg. Bypassing)  
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Pipelined Datapath – with data forwarding 
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Control Hazards 

 For branch or jump instruction, the correct 

instruction to execute is not known in time (at 

the start of the IF stage of the instruction after 

the Branch) 

• Condition not yet determined (for conditional 

branch instruction)  

• Target instruction address not yet calculated 
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Control Hazards 

 Conflicts that arise from changes in the Program Counter 

• Branch instructions 

 

 

 

 

 

 

 

 

 

 IF of 2 instructions following branch happens before you know 
whether or not to branch and where to branch 

 ISA may allow code to run useful instructions 

 Can use branch prediction to improve performance 

IF DR E DF WB 1 BZ R1, 18 

2 MOV R2, R3 

3 MOV R1, R2 

20 MOV R5, R6 

IF DR E DF WB 

IF DR E DF WB 

IF DR E DF WB 

R1=0 evaluated, 

and PC set to 20 

Instruction fetched 

from target address 



21 

                                      41 

Control Hazard Solutions  

 Solution 1: stall  

 The instructions after the branch are stalled, until the 

branch condition is checked and target address is 

generated 
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Sol 2:  

 Perform target address calculation earlier in DR 

stage 
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Sol. 3a  

 Assume branch not taken, fixup if taken 
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Sol.3b 

 Assume branch taken, fixup if not taken  
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Sol.4  

 Delayed branch (ISA change) 
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Solutions to Control Hazards 

 Micro-architecture solution 

• Stall the pipes 

• Calculate target address and condition earlier in pipeline (DR) 

• Assume branch always goes untaken (taken) and fix up pipe 

if it is actually taken (untaken) 

 ISA solution 

• Have delay branches 

 Branch target takes place after n (delay) instructions 

 For n penalty cycles, must have (n-1) stages between IF and the 

stage where target and condition are determined 

• Have instruction which separate target address calculation 

and condition generation from actual branching, so these can 

be executed earlier (e.g., IA-64) 

 Branch prediction  
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Handling Hazards - Summary 

 Avoid some hazards “by design” 
• Eliminate DF-IF structural hazard by having 

separate I-cache and D-cache 

• Eliminate WAR by always fetching operands 
earlier in pipe (DR) 

• Eliminate WAW by doing all Ws in order (last 
stage, static) – not always the best micro-
architecture decisions though! 

• Delayed branch in ISA to reduce control hazard 
penalty 

 Detect and resolve remaining ones 
• Stall or forward (if possible) 
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Pipelining Cautions 

 Superpipelining can cause long latencies 

• A large number of pipeline stages 

• High frequency (GHz)  

 Clock limited by slowest stage in the pipe 

 Long pipes can also cause more stalls 

 Dependencies can be tolerated as long as 

there is work to overlap the dependency 
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Parallelism in CPUs 

 Instruction Level Parallelism 

• Superscalar 

 Multiple functional units in a CPU support multiple 

instructions fetch and issue simultaneously 

 

• VLIW: single instruction, but multiple executions 
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Pipelined CPUs 

mult r1, r2, r3 

add r4, r5, r6 

IF ID E MEM WB 

IF E MEM WB STALL ID 

E E 

STALL 

3 cycle multiply execute stage 
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Superscalar CPUs 

mult r1, r2, r3 

add r4, r5, r6 

IF ID E MEM WB 

IF E MEM WB ID 

E E 

3 cycle multiply execute stage, with multiple ALUs 
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4-Way Superscalar 

 Today’s microprocessors are typically 4-way 

superscalar 
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VLIW CPUs 

mult r1, r2, r3; add r4, r5, r6 

IF ID E MEM WB 

E MEM WB 

E E 

VLIW: very large instruction word 

Single instruction fetched, multiple operations executed at the 

same time 
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4-way VLIW 

Summary 

 Pipelining is essential 

 Parallel computing is the future 
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