EE 459/500 – HDL Based Digital Design with Programmable Logic

Lecture 19 Pipeline Design

References:

Chapter 11 of M. Morris Mano and Charles Kime, Logic and Computer Design Fundamentals, Pearson Prentice Hall, 4th Edition, 2008.

Pipelining

- Pipelining transformation leads to a reduction in the critical path, which can be exploited to increase the clock speed or to reduce power consumption at same speed.
- In parallel processing, multiple outputs are computed in parallel in a clock period. Therefore, the effective clock speed is increased by the level of parallelism.

Example: 3-tap FIR digital filter

• The pipelined implementation: By introducing 2 additional latches in Example 1, the critical path is reduced from T_M+2T_A to T_M+T_A. The schedule of events for this pipelined system is shown in the following table. You can see that, at any time, 2 consecutive outputs are computed in an interleaved manner.

Clock	Input	Node 1	Node 2	Node 3	Output
0	x(0)	ax(0)+bx(-1)	_	—	—
1	x(1)	ax(1)+bx(0)	ax(0)+bx(-1)	cx(-2)	y(0)
2	x(2)	ax(2)+bx(1)	ax(1)+bx(0)	cx(-1)	y(1)
3	x(3)	ax(3)+bx(2)	ax(2)+bx(1)	cx(0)	y(2)
a -	•×		D D C.	►×3	n)

Pipelined Implementation

Assu	me branch taken, fixup if not taken
Add	IF DR E DF W
Beq	IF <mark>DR</mark> E DF W
targe	t - IF DR E DF W if taken
targe	t+1 IF DR E DF W
Ndd	
Add	
веq	
and	- IF DR E DF W 11 not taken

Sol.4

```
    Delayed branch (ISA change)
    Add |IF|DR|E |DF|W |
    Beq |IF|DR|E |DF|W |
```

```
(delay slot) |IF|DR|E |DF|W |
fallthru or target |IF|DR|E |DF|W |
```

ISA specifies that the branch, if taken, only takes place after a delay of x instructions. (Above, x=1)

Branch adder in DR stage to calculate PC+displ, or PC+4+displ (depending on ISA definition)

Cycle 1 2 3 4 5 6 7 IF DR E DF W IF IF IF DR E DF W IF IF </th
