
1

EE 459/500 – HDL Based Digital

Design with Programmable Logic

Lecture 19

Pipeline Design

References:

Chapter 11 of M. Morris Mano and Charles Kime, Logic and

Computer Design Fundamentals, Pearson Prentice Hall, 4th

Edition, 2008.

 2

Overview

 Pipelining concept

 Pipelined design of Simple Computer

• Basic 5-stage pipe

• Speedup of pipelined vs non-pipelined implementations

• Pipeline hazards

• Structural, data, control

 Parallel digital systems

2

 3

Pipelining a digital system

 Key idea: break big computation into pieces

 Separate each piece with a pipeline register

1ns

200ps 200ps 200ps 200ps 200ps

Pipeline

Register

 4

Pipelining a digital system

 Why do this? Because it's faster for repeated

computations

1ns

Non-pipelined:

1 operation finishes

every 1ns

200ps 200ps 200ps 200ps 200ps

Pipelined:

1 operation finishes

every 200ps

3

 Pipelining increases throughput, but not total

computation time of a task

• Answer available every 200ps, BUT

• A single computation still takes 1ns

 Limitations:

• Computations must be divisible into stage size

• Pipeline registers add overhead

 5

Pipelining

 6

Pipelining

 Pipelining transformation leads to a

reduction in the critical path, which can be

exploited to increase the clock speed or to

reduce power consumption at same speed.

 In parallel processing, multiple outputs are

computed in parallel in a clock period.

Therefore, the effective clock speed is

increased by the level of parallelism.

4

 7

Example: 3-tap FIR digital filter

 8

Example: 3-tap FIR digital filter

5

 9

The Laundry Analogy

 Ann, Brian, Cathy, Dave

each have one load of clothes

to wash, dry, and fold

 Washer takes 30 minutes

 Dryer takes 30 minutes

 “Folder” takes 30 minutes

 “Stasher” takes 30 minutes

to put clothes into drawers

A B C D

 10

If we do laundry sequentially...

30

T
a
s
k

O
r
d
e
r

Time

A

30 30 30 30

B

30 30 30

C

30 30 30 30

D

30 30 30 30

6 PM 7 8 9 10 11 12 1 2 AM

 Time Required: 8 hours for 4 loads

6

 11

12 2 AM 6 PM 7 8 9 10 11 1

Time
30

A

C

D

B

30 30 30 30 30 30
T
a
s
k

O
r
d
e
r

To Pipeline, We Overlap Tasks

 Time Required: 3.5 Hours for 4 Loads

 12

12 2 AM 6 PM 7 8 9 10 11 1

Time
30

A

C

D

B

30 30 30 30 30 30
T
a
s
k

O
r
d
e
r

To Pipeline, We Overlap Tasks

• Pipelining doesn’t help latency of
single task, it helps throughput of
entire workload

• Pipeline rate limited by slowest
pipeline stage

• Multiple tasks operating
simultaneously

• Potential speedup = Number pipe
stages

• Unbalanced lengths of pipe stages
reduces speedup

• Time to “fill” pipeline and time to
“drain” it reduces speedup

7

 13

Example: basic single-cycle processor

What do we need to add to actually split the datapath into stages?

 14

Example: basic pipelined processor

8

 15

Example: The Basic Pipeline For MIPS

Reg

A
L

U

DMem Ifetch Reg

Reg

A
L

U

DMem Ifetch Reg

Reg

A
L

U

DMem Ifetch Reg

Reg

A
L

U

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

I

n

s

t

r.

O

r

d

e

r

 16

Overview

 Pipelining concept

 Pipelined design of Simple Computer

• Basic 5-stage pipe

• Speedup of pipelined vs. non-pipelined implementations

• Pipeline hazards

• Structural, data, control

 Parallel digital systems

9

 17

Abstract View of Critical Path

 18

Pipelined critical path

 Critical path is longest path between stage

registers

10

 19

Steps in Instruction Processing

 20

Un-pipelined (Non-overlapped) Implementation

 Consider loads with DF stage

11

 21

Pipelined Implementation

 22

5-stage Pipeline

 CPU stages

• IF: Instruction fetch

• DR: Instruction decode & Register read

• E: Execute

• DF: Data fetch (Memory load/store)

• W: Write Back Registers

 Another set of mnemonic names

• IF, ID, E, MEM, WB

IF DR E DF W

IF DR E DF W

IF DR E DF W

12

 23

Computer Pipelines

 Execute billions of instruction, so throughput is
what matters

 Throughput versus latency
• + Throughput increases

• - Latency for a single instruction increases
 May have to wait longer for single instruction to complete

 Allows much faster clock cycle

 RISC pipeline architecture features:
• All instructions same length

• Registers located in same place in instruction format

• Memory operands only in loads and stores

 24

Unpipelined Datapath

13

 25

Pipelined Datapath

MAR

MDR

 26

Overview

 Pipelining concept

 Pipelined design of Simple Computer

• Basic 5-stage pipe

• Speedup of pipelined vs. non-pipelined implementations

• Pipeline hazards

• Structural, data, control

 Parallel digital systems

14

 27

Pipelining Hazards

 Hazards cause the pipe to stall because of

some conflict in the pipe (prevents the next

instruction in pipe from executing in its turn)

 Types of hazards

• Structural: contention for same hardware resource

• Data: dependency on earlier instruction for the

correct sequencing of register reads and writes

• Control: branch/jump instructions stall the pipe

until get correct target address into PC

 28

Structural Hazards

 Resource conflicts in the pipeline

 Examples

• Single memory port shared for instruction and

data access

• Register file without a separate write port

15

 29

Structural Hazards

IF DR E DF W

IF DR E DF W

IF DR E DF W

IF DR E DF W

IF DR E DF W

STALL

load

sub

and

or

 30

Structural Hazards

 IF and DF compete for single memory port

 Ideal Machine
• No stalls, 1 cycle per instruction

 Assume 30% of instructions access data
• With structural hazard, 1.3 cycles per instruction

• Performance has gone down by 30%

 Solutions:
• Pipeline stall (insert bubble)

• Have 2 memory ports for shared instruction-data
cache-memory (expensive)

• Have separate instruction cache-memory and data
cache-memory

16

 31

Three Generic Data Hazards (I) - RAW

 Instr1 followed by Instr2
add r1, r3, r2

add r4, r5, r1

 Instr2 tries to read operand before Instr1writes

it

• Can be due to true “data dependency” (data must

be produced before it can be consumed)

• Or can be due to pipeline staging (data already

produced, but not yet written to general register

file

 32

Data Hazards (II) - WAR

 Instr1 followed by Instr2
ld r1, (r3)+

add r3, r4, r1

 Instr2 tries to write operand before Instr1 reads it

• Instr1 gets wrong operand

• Can’t happen in the 5-stage RISC pipeline we just

covered

 All instruction take 5 stages

 Reads are always in stage 2

 Writes are always in stage 5

17

 33

Data Hazards (III) - WAW

 Instr1 followed by Instr2
mul r1, r0, r2

add r1, r5, r6

 Instr2 tries to write operand before Instr1

writes it

• Leaves wrong result (Instr1, not Instr2)

• Can’t happen in our 5-stage pipeline because

 All instructions take 5 stages

 Writes are always in stage 5

 34

Data Hazards

 Overlapping instructions cause dependencies

on data (RAW)

e.g., MOVA R1, R5

ADD R2, R1, R6

ADD R3, R1, R2

IF DR E DF W

IF DR E DF W

IF DR E DF W

1 2 3 4 5

R1R5

R2R1 + R6

R3R1 + R2

Write R1

Write R2

18

 35

Data Hazards Remedy - SW

 Software delay (compiler or machine

code programming to insert NOPs)

 MOVA R1, R5

 NOP

 NOP

 ADD R2, R1, R6

 NOP

 NOP

 ADD R3, R1, R2

 36

Data Hazards Remedy - HW

 Hardware stalls

 Hardware Data Forwarding
• Add an extra path connecting ALU outputs

to ALU inputs on the next clock

IF DR E DF W

IF DR E DF W

IF

IF DR E DF W

IF DR

MOVA RMOVA R11, , RR55

ADD RADD R22, R, R11, R, R66

IF DR E DF W ADD RADD R22, R, R11, R, R66

Hazard detection

19

 37

Data Forwarding (Reg. Bypassing)

 38

Pipelined Datapath – with data forwarding

20

 39

Control Hazards

 For branch or jump instruction, the correct

instruction to execute is not known in time (at

the start of the IF stage of the instruction after

the Branch)

• Condition not yet determined (for conditional

branch instruction)

• Target instruction address not yet calculated

 40

Control Hazards

 Conflicts that arise from changes in the Program Counter

• Branch instructions

 IF of 2 instructions following branch happens before you know
whether or not to branch and where to branch

 ISA may allow code to run useful instructions

 Can use branch prediction to improve performance

IF DR E DF WB 1 BZ R1, 18

2 MOV R2, R3

3 MOV R1, R2

20 MOV R5, R6

IF DR E DF WB

IF DR E DF WB

IF DR E DF WB

R1=0 evaluated,

and PC set to 20

Instruction fetched

from target address

21

 41

Control Hazard Solutions

 Solution 1: stall

 The instructions after the branch are stalled, until the

branch condition is checked and target address is

generated

 42

Sol 2:

 Perform target address calculation earlier in DR

stage

22

 43

Sol. 3a

 Assume branch not taken, fixup if taken

 44

Sol.3b

 Assume branch taken, fixup if not taken

23

 45

Sol.4

 Delayed branch (ISA change)

 47

Solutions to Control Hazards

 Micro-architecture solution

• Stall the pipes

• Calculate target address and condition earlier in pipeline (DR)

• Assume branch always goes untaken (taken) and fix up pipe

if it is actually taken (untaken)

 ISA solution

• Have delay branches

 Branch target takes place after n (delay) instructions

 For n penalty cycles, must have (n-1) stages between IF and the

stage where target and condition are determined

• Have instruction which separate target address calculation

and condition generation from actual branching, so these can

be executed earlier (e.g., IA-64)

 Branch prediction

24

 48

Handling Hazards - Summary

 Avoid some hazards “by design”
• Eliminate DF-IF structural hazard by having

separate I-cache and D-cache

• Eliminate WAR by always fetching operands
earlier in pipe (DR)

• Eliminate WAW by doing all Ws in order (last
stage, static) – not always the best micro-
architecture decisions though!

• Delayed branch in ISA to reduce control hazard
penalty

 Detect and resolve remaining ones
• Stall or forward (if possible)

 49

Pipelining Cautions

 Superpipelining can cause long latencies

• A large number of pipeline stages

• High frequency (GHz)

 Clock limited by slowest stage in the pipe

 Long pipes can also cause more stalls

 Dependencies can be tolerated as long as

there is work to overlap the dependency

25

 50

Overview

 Pipelining concept

 Pipelined design of Simple Computer

• Basic 5-stage pipe

• Speedup of pipelined vs. non-pipelined implementations

• Pipeline hazards

• Structural, data, control

 Parallel digital systems

 51

Parallelism in CPUs

 Instruction Level Parallelism

• Superscalar

 Multiple functional units in a CPU support multiple

instructions fetch and issue simultaneously

• VLIW: single instruction, but multiple executions

26

 52

Pipelined CPUs

mult r1, r2, r3

add r4, r5, r6

IF ID E MEM WB

IF E MEM WB STALL ID

E E

STALL

3 cycle multiply execute stage

 53

Superscalar CPUs

mult r1, r2, r3

add r4, r5, r6

IF ID E MEM WB

IF E MEM WB ID

E E

3 cycle multiply execute stage, with multiple ALUs

27

 54

4-Way Superscalar

 Today’s microprocessors are typically 4-way

superscalar

 55

VLIW CPUs

mult r1, r2, r3; add r4, r5, r6

IF ID E MEM WB

E MEM WB

E E

VLIW: very large instruction word

Single instruction fetched, multiple operations executed at the

same time

28

 56

4-way VLIW

Summary

 Pipelining is essential

 Parallel computing is the future

 57

