

Internet of Things (IoT) Threat of Opportunity?

Recall: What is IoT?

Internet of Things (IoT): is the network of physical objects or "things" devices, vehicles, buildings and other items embedded with electronics, software, sensors, and network connectivity—that enables these objects to collect and exchange data.

Threat vs. Opportunity?

- If misunderstood and misconfigured, IoT poses risk to our data, privacy, and safety
- If understood and secured, IoT will enhance communications, lifestyle, and delivery of services

IoT Security (1) Network Level

- Overarching challenge for security in IoT is that as large numbers of diverse IoT devices continue to connect to the network, a dramatic expansion of the attack surface is happening in parallel
- Ultimately the entire network security posture is diminished to the level of integrity and protection offered to the least secure device

21

Challenges that are unique to IoT security

- Inventory not having clear visibility and context for what IoT devices are in the network and how to securely manage new devices.
- Diversity the sheer diversity of IoT devices in terms of their limitless forms and functions.
- Threats lack of well-embedded security into IoT device operating systems that are hard or impossible to patch.
- Data volume overseeing vast amounts of data generated from both managed and unmanaged IoT devices.
- Ownership new risks associated with the management of IoT devices by disparate teams within the organization.
- Operations the unification crisis wherein IoT devices are critical to core operations yet difficult for IT to integrate into the core security posture.

Source: https://www.paloaltonetworks.com/cyberpedia/what-is-iot-security

Which IoT Devices Have the Highest Share of Security Issues?

	Malware – 33%	
•	Worm	
	 A worm virus refers to a malicious program that replicates itself, automatically spreading through a network. In this definition of computer worms, the worm virus exploits vulnerabilities in your security software to steal sensitive information, install backdoors that can be used to access the system, corrupt files, and do other kinds of harm. 	
•	Ransomware	
	 Ransomware is a type of malware designed to extort money from its victims, who are blocked or prevented from accessing data on their systems. 	
	 Ransomware is a type of malware from cryptovirology that threatens to publish the victim's personal data or permanently block access to it unless a ransom is paid off. 	
•	Backdoor Trojan	
	 Backdoor Trojans are malicious software programs that provide unauthorized access to a computer in order to launch a remote attack. Remote attackers can use a hacked machine to send commands or gain complete control. 	
•	Botnet	
	 A botnet attack is any attack leveraging a botnet—a group of bots and devices linked together to perform the same task—for distribution and scaling. Botnet attacks are used by cybercriminals to carry out intense scraping, DDoS (distributed denial of service), and other large-scale cybercrime. 	

What Are the Best Practices for IoT Security? Lifecycle approach encompasses five critical stages of IoT security Understand IoT Assets (Assess IoT Risks 2 00 **IoT Security** LifeCycle Detect & Respond to Unknown Threats Apply Risk Reduction Policies 3 ? 0 :--4 **Prevent Known Threats** 28 Source: https://www.paloaltonetworks.com/cyberpedia/what-is-iot-security

Incorporate IoT security into standard practice, process and procedure

- 1. Identify all managed and unmanaged devices.
- 2. Accurately assess and identify vulnerabilities and risks associated with all devices.
- Automate Zero Trust policies and enforcement of those policies. Zero Trust is a strategic approach to cybersecurity that secures an organization by eliminating implicit trust and continuously validating every stage of a digital interaction. It is rooted in the principle of "never trust, always verify,".
- 4. Take swift action on preventing known threats.
- 5. Rapidly detect and respond to unknown threats.

Source: https://www.paloaltonetworks.com/zero-trust

29

How to Secure IoT Devices in the Enterprise

- 1. Employ Device Discovery for Complete Visibility
- 2. Apply Network Segmentation for Stronger Defense
- 3. Adopt Secure Password Practices
- 4. Continue to Patch and Update Firmware When Available
- 5. Actively Monitor IoT Devices at All Times

Source: https://www.paloaltonetworks.com/cyberpedia/how-to-secure-iot-devices-in-the-enterprise

30

Simple Power Analysis (SPA) SPA: Simple Power Analysis attacks (II) SPA: Simple Power Analysis attacks (I) Anything but simple (except in examples ^(C)) Patterns (over many-cycle sequences) show, e.g.: Symmetric crypto algorithms · Visual inspection of a few traces, worst/best case: single • Number of rounds (resp. key length), loops shot [KJJ99] Memory accesses (sometimes higher power consumption) Asymmetric crypto algorithms · Often exploits direct key dependencies o Input/output not need to be known, but useful for verification Key length · Implementation details (e.g. RSA with CRT) ٢. Require: expertise, experience, detailed knowledge about Key (if careless implementation, e.g. RSA/ECC) target device and implementation Examples in following slides; patterns, amplitude, timing 41

SPA: Simple Power Analysis attacks (V)

• Amplitude of a certain cycle can show:

Exact operand values (extreme case)

 Often: Hamming weight or Hamming distance of operand(s)

o Operation being executed in software scenarios

 Reverse-engineering of implementation details, and e.g. proprietary algorithms

SPA: Simple Power Analysis attacks (VI)

- Example: Load from Memory instruction (LD)
- Power consumption depends on HW of the read value

43

- Suppose we have a 'dictionary' that translates power consumption values into HW
- Example: SPA attack on the AES key schedule [M02] • Extract HWs of round keys, generate list of suitable round keys
 - o Requires 1 plaintext/ciphertext pair to check remaining candidate keys

Countermeasures (I)

- You cannot prevent the adversary from trying to mount an attack
- <u>Active</u>:

47

- \circ You can try to make it more difficult
 - "Hide" sensitive parts of the chip: Epoxy, metal layers, glue logic, etc.
- $\,\circ\,$ You can try to detect an attack and raise an alarm
 - Security sensors: power, clock, light, temperature, wire mesh
 - Perform error check before outputting the result: add redundancy
- \circ Reaction to alarm: depends on security policy
 - Stop computing, reset, erase memory, self-destruct: Security vs usability

Countermeasures (II)

Passive:

 Try to eliminate side-channels, reduce information leakage, turn leaked information useless

- Execution time independent of secret values
- · Sequence of operations independent of secret values
- Hiding countermeasures
 - Time domain: dummy operations, shuffling, ...
 - Amplitude domain (SNR): background noise, , secure logic styles,...
- Masking countermeasures to prevent known inputs
 Boolean masks, secret sharing schemes, ...
- Design algorithms using gray-box model:
 Leakage-resilient cryptography

Credits

- https://www.crowdstrike.com/cybersecurity-101/remote-code-execution-rce/
- https://heimdalsecurity.com/blog/scanning-attack-what-it-is-and-how-to-protect-your-organization-against-it/
- https://owasp.org/www-community/attacks/Command_Injection
- https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
- https://www.fortinet.com/resources/cyberglossary/buffer-overflow
- https://owasp.org/www-community/attacks/SQL_Injection
- https://portswigger.net/web-security/sql-injection
- https://usa.kaspersky.com/resource-center/definitions/zero-day-exploit
- https://www.sunnyvalley.io/docs/network-security-tutorials/what-is-zero-day-attack
- https://www.proofpoint.com/us/threat-reference/ransomware
- https://en.wikipedia.org/wiki/Ransomware
- https://www.fortinet.com/resources/cyberglossary/worm-virus
- https://www.malwarebytes.com/computer-worm
- https://www.tutorialspoint.com/what-are-backdoor-trojans
- <u>https://gridinsoft.com/backdoor</u>
- https://www.paloaltonetworks.com/cyberpedia/what-is-botnet
- https://usa.kaspersky.com/resource-center/threats/botnet-attacks

• ...