EECE-4710 “loT and TinyML"

Image Classification with
Convolutional Neural
Networks (CNN)

Cris Ababei

H%m MARQUETTE

UNIVERSITY

BE THE DIFFERENCE.

Introducing Convolutions
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Standard Convolution (1 Channel)

Standard Convolution (3 Channel—e.g., RGB)




Standard Convolution (3 Channel—e.g., RGB)

® Input Feature Map

O 8X8X3

O Width X Height X Channels
® Kernel (7 Filter)

O 3X3X3
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CURRENT_PIXEL_VALUE = 192

NEW_PIXEL_VALUE = (-1 * @) + (9 * 64) + (-2 * 128) +
(.5 * 48) + (4 * 192) + (-1.5 * 144) +
(1.5 * 42) + (2 * 226) + (-3 * 168)
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https://setosa.io/ev/image-kernels/
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Filters extract
features like
hands

HUMAN

HORSE

or ears

= HORSE

Filters can then be
combined with labels
to make a prediction

of the image contents...
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The Machine Learning Paradigm

Make a Guess! =) Measure your Optimize your
accuracy Guess

| -

Repeat

Randomly initialize
filters. Apply them
to images, and
make a guess
which ones match
labels to images
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The Machine Learning Paradigm

Make a Guess! =) Measure your Optimize your

accuracy Guess

Repeat

Check to see how
many of your filters
work to match
images to labels
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The Machine Learning Paradigm

Optimize your
Guess

Make a Guess! —) bR N

accuracy

e —

Repeat

Use the data from
the previous steps
to tune your set of
filters...
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The Machine Learning Paradigm

— Measure your Optimize your
accuracy Guess

Make a Guess!

Repeat

...and repeat
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Image Classification With

Convolutions
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The Convolution Operation

“The fundamental difference between a densely connected layer and a convolution layer is this:
Dense layers learn global patterns in their input feature space (for example, for an MINIST digit,
patterns involving all pixels), whereas Convolution layers learn local patterns—in the case of
images, patterns found in small 2D windows of the inputs In the previous example, these
windows were all 3 x 3.”

“They can learn spatial
hierarchies of patterns.
A first convolution layer
will learn small local
patterns such as edges,
a second convolution
layer will learn larger
patterns made of the
features of the first
layers, and so on.”

"Deep Learning with Python" by Frangois Chollet
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Image Classification with CNN
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Cifar-10
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https://www.tensorflow.org/datasets/catalog/cifar10
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So far,
We saw how to build Neural Networks (Dense NN and Convolutional NN) that classify images of digits
(MNIST).
Now,
We will instead, recognize the 10 classes of CIFAR (‘airplane’, 'automobile', 'bird’, 'cat’, 'deer’, 'dog’,
'frog', 'horse', 'ship' and 'truck’).
There are some key differences between these image datasets that we need to take into account:
® While MNIST has 28x28 monochrome images (1 color channel), CIFAR is 32x32 color images (3
color channels).
® Besides, VINIST images are simple, containing just the object centered in the image, with no
background. Conversely, CIFAR ones are not centered and can have the object with a background,
such as airplanes that might have a cloudy sky behind them!
Those differences are the main reason to use a Convolutional NN
(CNN) instead of a Dense NN!
26
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https://www.tensorflow.org/datasets/catalog/cifar10
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Image Classification using CNNs

CNN_Cifar_10.ipynb
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Credits

A previous edition of this course was developed in collaboration with Dr. Susan C.
Schneider of Marquette University.

We are very grateful and thank all the following professors, researchers, and practitioners
for jump-starting courses on TinyML and for sharing their teaching materials:

Prof. Marcelo Rovai - TinyML - Machine Learning for Embedding Devices, UNIFEI
O https://github.com/Mjrovai/UNIFEI-IESTIO1-TinyML-2022.1
Prof. Vijay Janapa Reddi - CS249r: Tiny Machine Learning, Applied Machine Learning on Embedded loT
Devices, Harvard
O https://sites.google.com/g.harvard.edu/tinyml/home
Prof. Rahul Mangharam — ESE3600: Tiny Machine Learning, Univ. of Pennsylvania
O https://tinyml.seas.upenn.edu/#
Prof. Brian Plancher - Harvard CS249r: Tiny Machine Learning (TinyML), Barnard College, Columbia

University
O https://a2r-lab.org/courses/cs249r_tinyml/
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® Applications & Deploy textbook: “TinyML" by Pete Warden, Daniel Situnayake
O https://www.oreilly.com/library/view/tinym|/9781492052036/
® Deploy textbook “TinyML Cookbook” by Gian Marco lodice
O https://github.com/PacktPublishing/TinyML-Cookbook
® Jason Brownlee
O https://machinelearningmastery.com/
® TinyMLedu
O  https://tinyml.seas.harvard.edu/
® Professional Certificate in Tiny Machine Learning (TinyML) — edX/Harvard
O https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning
® |Introduction to Embedded Machine Learning - Coursera/Edge Impulse
O https://www.coursera.org/learn/introduction-to-embedded-machine-learning
® Computer Vision with Embedded Machine Learning - Coursera/Edge Impulse
O https://www.coursera.org/learn/computer-vision-with-embedded-machine-learning jo
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