EECE-4710 “loT and TinyML”

Machine Learning Metrics

Cris Ababei

H%m MARQUETTE

UNIVERSITY

BE THE DIFFERENCE.

Loss, Optimizer

2 @ Regression
Loss -> MSE or MAE

Optimizer -> SGD or Adam

Binary Classification
B 4

Loss -> Binary Crossentropy
Optimizer -> SGD or Adam

ot

(28,28)

0: Cat
0 @ » 1: Dog

Sigmoid

(784)

Multi-class Classification
B

Loss -> Categorical Crossentropy*
L7 A\
L N

Optimizer -> SGD or Adam

0
XX S 7 O
Yol gl S : 0
NG INGSAE £ -
725\ SN S
0\“\ A 7 AN A 1
1% "\\\ ?#?f@%\ /ii\ :

* or “Sparse Categorical Crossentropy” if labelis 1, 2, 3, ...

Train, Validate, Test

The network ‘sees’ everything. Has no context
for measuring how well it does with data it has
never previously been exposed to.

Underfitting Desired

® °
e °* o ®
LI ¢
-2 []
[]
° ([
)

Validation Data Test Data

The network ‘sees’ a subset of your data. You
can use an unseen subset to measure its
accuracy while training (validation), and then
another subset to measure its accuracy after
it's finished training (test).

Used to evaluate the
current training epoch

Used to evaluate the final
model after training

Accuracy: 0.942 |

Validation Data Test Data

|Accuracy: 0.930 | | Accuracy: 0.925 I

Digits Classification: Validation and Test, Learning
Rate

o,
TF_MNIST _Classification_v2.ipynb
«

1 data = tf.keras.datasets.mnist
2

3 (tt_images, tt labels), (test images, test labels) = data.load dataf()
1 print(tt images.shape)
2 print(tt labels.shape)
(60000, 28, 28)
(60000,)
1 print(test images.shape
2 print(test labels.shape

(10000, 28, 28)
(10000,)

1 val images = tt images[:10000]
2 val labels tt labels[:10000]

Split tt data in:
1 train images tt images[10000:] ® train (50,000) and,

2 train labels tt labels[10000:]

® validation (10,000)

1 print(train_ images.shape)
2 print(train labels.shape)

(50000, 28, 28)
(50000,)
1 print(val images.shape)

2 print(val_labels.shape)

(10000, 28, 28)
(10000,)

history = model.fit (

train images,

train labels,

epochs=20,

validation data=(val images, val labels)

)

You could leave the training data with all samples, and alternatively use:
validation_split=0.1 instead of validation_data=(val_images, val_labels).

In this case, TF will split the validation data on its own.

plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history[‘'val_accuracy'], label='val accuracy')
plt.title('Model Accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(loc="upper left')

plt.show()

Model Accuracy

—— If validation accuracy seems
sy NS “unstable”, it could be that
Learning Rate is high (try to
reduce it).

=
[¥s]

aCcuracy

=
[¥+]
]

100 125 150 175
epoch

.plot(history.history['accuracy'], label='accuracy')
.plot(history.history['val_accuracy'], label='val accuracy')
.title('Model Accuracy')

.ylabel('accuracy')

.xlabel('epoch')
.legend(loc="upper left')
.show()

o Model Accuracy If validation accuracy goes
T down (or becomes stable),
% even if train accuracy goes
osa]| S up, it means that probably
5 the model is overfitting.
B 092
In this case the training
0.90 1 .
- o001 process should terminate —
e=0.
os8 and should not continue
0.0 25 5.0 75 10.0 125 150 175 o
epoch with more epochs.

15

Validation Data Test Data
Accuracy: 0.976 Accuracy: 0.963 Accuracy: 0.957
A :
Q
.
28px
L
e J
- ¥
784 [f 0
. T
o /b1
28px : / ’ tg
@
¢
1

16

In Summary, Remember:
* Training Data
* Used to train model parameters
e Validation Data
* Used to determine what model hyperparameters to
adjust (and re-train)
* Test Data
e Used to compute model final performance metrics

17

Model Performance Metrics

h Class = [1]
actual=101,1,1,1,1,1,1,1,0,0, 0, 0]

prediction=[0,0,1,1,1,1,1,1,0,0,0, 1]
\JCIass =[0]

Data

Inferences

(Actual) (Prediction)

19

Model Performance: Confusion Matrix

predicted condition

12 pictures, 8 of Cat [1] Dog [0]

cats and 4 of dogs

Cat [1] True Positive (TP) False Negative (F)
(type Il error)
true 6 2
condition
False Positive (FP) .
Dog [0] (e lerron True Negative (TN)

20

Model Performance: Confusion Matrix

predicted condition

total population prediction positive prediction negative
(P+N) (PP)
condition - False Negative (FN)
N True Positive (TP)
positive (type Il error)
true (P)
condition
condition False Positive (FP)
. True Negative (TN)
negative (Type | error)

(N)

[Source: https://en.wikipedia.org/wiki/Confusion _matrix]

21
Type | error (false positive) Type Il error (false negative)
You’ré not pregnhant
22

11

https://en.wikipedia.org/wiki/Confusion_matrix

Precision
VS.

Accuracy

High Precision, High Accuracy Low Precision, High Accuracy

In a set of measurements:

* Accuracy - closeness of the
measurements to a specific value.

* Precision - closeness of the
measurements to each other.

High Precision, Low Accuracy Low Precision, Low Accuracy

23
Accuracy, Precision and Recall
Accuracy =TP+TN = TP+ TN = 6+3 =9 = 075
(P + N) (TP+TN+FP+FN) (6+3 + 1 +2) 12
Precision = TP = 6 = 6 = 0286 Total Positive_
— Total Predict Positive
(TP + FP) (6+1)
Recall = TP = 6 = 6 = 0.75 Total Positive
(or Sensitivity) (TP + FN) (6 + 2) 8 Total Actual Positive
24

12

relevant elements

F I -S c o re false negatives true negatives
(o]

F1 = 2x (Precision * Recall)
(Precision + Recall)
F1 = 2x (0.86*0.75) = 2x0.65 = 0.80

(0. 86 + O, 75) 1 . 6 1 selected elements

How many selected How many relevant
tems are relevar tems are selected?

F1-Score is a way of combining
precision and recall of the model

Precision =

Recall = ——

[Source: https://en.wikipedia.org/wiki/F-score#Formulation]

25
1 from sklearn.metrics import classification_report
1 actual = [1, 1, 1, 1, 1, 1, 1, 1, @, @, @, 0]
2 prediction = [0, @, 1, 1, 1, 1, 1, 1, @, @, @, 1]
1 target_names = ['Dogs', 'Cats']
1 print(classification_report(actual, prediction, target_names=target_names))
precision recall fl-score support
Dogs 0.60 0.75 0.67 4
Cats 0.86 8
accuracy 0.75 12
macro avg 0.73 0.75 0.73 12
weighted avg 0.77 8.75 0.76 12
26

13

https://en.wikipedia.org/wiki/F-score#Formulation

Classification Report: Confusion Matrix

Classification_Report.ipynb

Credits

A previous edition of this course was developed in collaboration with Dr. Susan C. Schneider of
Marquette University.
We are very grateful and thank all the following professors, researchers, and practitioners for

jump-starting courses on TinyML and for sharing their teaching materials:

Prof. Marcelo Rovai - TinyML - Machine Learning for Embedding Devices, UNIFEI
O https://github.com/Mjrovai/UNIFEI-IESTIO1-TinyML-2022.1

Prof. Vijay Janapa Reddi - C5249r: Tiny Machine Learning, Applied Machine Learning on Embedded loT Devices,
Harvard

O https://sites.google.com/g.harvard.edu/tinyml|/home

Prof. Rahul Mangharam — ESE3600: Tiny Machine Learning, Univ. of Pennsylvania

O https://tinyml.seas.upenn.edu/#

Prof. Brian Plancher - Harvard CS249r: Tiny Machine Learning (TinyML), Barnard College, Columbia University
O https://a2r-lab.org/courses/cs249r_tinyml/

28

14

https://github.com/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1
https://sites.google.com/g.harvard.edu/tinyml/home
https://tinyml.seas.upenn.edu/
https://a2r-lab.org/courses/cs249r_tinyml/

References

® Additional references from where information and other teaching materials were gathered

include:

Applications & Deploy textbook: “TinyML” by Pete Warden, Daniel Situnayake
O https://www.oreilly.com/library/view/tinym|/9781492052036/

Deploy textbook “TinyML Cookbook” by Gian Marco lodice

O https://github.com/PacktPublishing/TinyML-Cookbook

Jason Brownlee
O https://machinelearningmastery.com/
TinyMLedu
O https://tinyml.seas.harvard.edu/
Professional Certificate in Tiny Machine Learning (TinyML) — edX/Harvard

O https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning

Introduction to Embedded Machine Learning - Coursera/Edge Impulse
O https://www.coursera.org/learn/introduction-to-embedded-machine-learning

Computer Vision with Embedded Machine Learning - Coursera/Edge Impulse
O https://www.coursera.org/learn/computer-vision-with-embedded-machine-learning

29

15

https://www.oreilly.com/library/view/tinyml/9781492052036/
https://github.com/PacktPublishing/TinyML-Cookbook
https://machinelearningmastery.com/
https://tinyml.seas.harvard.edu/
https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning
https://www.coursera.org/learn/introduction-to-embedded-machine-learning
https://www.coursera.org/learn/computer-vision-with-embedded-machine-learning

	Slide 1: Machine Learning Metrics
	Slide 2: Loss, Optimizer Quick Recap
	Slide 3: Regression
	Slide 4: Binary Classification
	Slide 5: Multi-class Classification
	Slide 6: Train, Validate, Test Importance of Data
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Digits Classification: Validation and Test, Learning Rate Code Time!
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: In Summary, Remember:
	Slide 18: Model Performance Metrics Classification
	Slide 19
	Slide 20: Model Performance: Confusion Matrix
	Slide 21: Model Performance: Confusion Matrix
	Slide 22
	Slide 23: Precision vs. Accuracy
	Slide 24: Accuracy, Precision and Recall
	Slide 25: F1-Score
	Slide 26
	Slide 27: Classification Report: Confusion Matrix Code Time!
	Slide 28: Credits
	Slide 29: References

