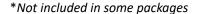
EECE-4710 "IoT and TinyML"

TinyML Kit Overview: Arduino Nano 33 BLE Sense

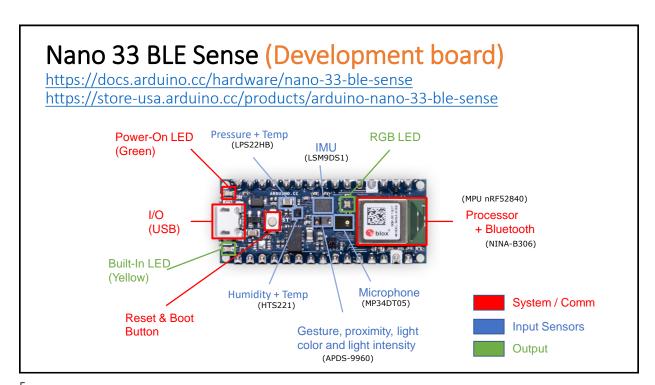
Cristinel Ababei

1

TinyML Kit Overview Arduino


Arduino Nano 33 BLE Sense

MCU


- Nordic nRF52840 (ARM Cortex-M4 w/FPU)
- 3.3V, 64MHz, 1MB flash, 256 kB RAM

• Sensors on board

- Microphone, IMU (9 axis), color, light, proximity, barometric, temperature, humidity*, gesture, and light intensity.
- BLE module covered by ArduinoBLE library
- RGB LED

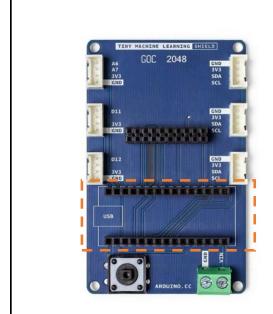
2

OV7675 Camera Module

- **0.3 MP** CMOS image sensor
- active array size: 640×480
- output formats: YUV422, Raw RGB, ITU656, RGB565
- input clock frequency: 1.5 ~ 27 MHz
- maximum image transfer rate: VGA 30fps, QVGA 60fps, QQVGA 240pfs
- pixel size: 2.5 μm x 2.5 μm
- image area: 1640 μm x 1220 μm

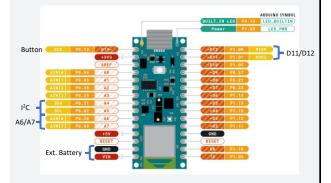
https://www.arducam.com/products/camera-breakout-board/0-3mp-ov7675/https://github.com/ArduCAM/ArduCAM_USB_Camera_Shieldhttps://github.com/ArduCAM/Arduino

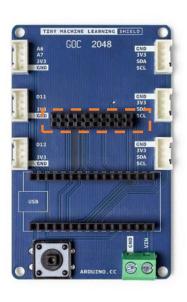
Tiny Machine Learning Shield


Purpose

A daughter PCB designed to **breakout the I/O** from the Nano 33 BLE sense to permit easy, reliable **communication with** other local, **off-board elements**

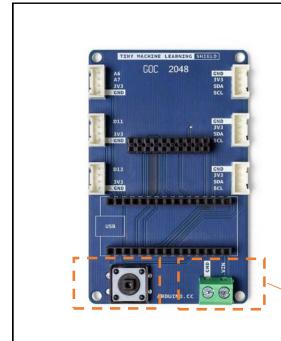
Specifications


- Grove connectors (3.3V I2C and simple digital / analog see pinouts)
- 2x10 pin array for OV7675 camera module
- Voltage input terminal block, accepts 4.5 to 21V (down regulated to 3.3V on Nano 33)

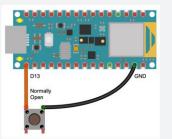

7

TinyML Shield

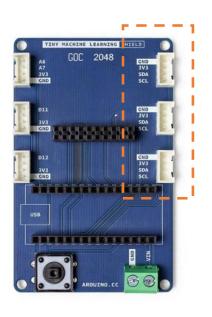
Two rows of 1x15 headers that you can slot the Nano 33 BLE sense into


TinyML Shield

2x10 header that is intended to receive the corresponding pins of the OV7675 camera module

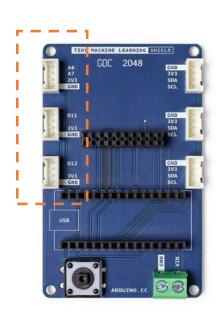

0V7670_VSYNC 8
0V7670_HREF A1
0V7670_PLK A0
0V7670_DL 10
0V7670_D0 10
0V7670_D1 2 0
0V7670_D2 0
0V7670_D3 2
0V7670_D4 3
0V7670_D5 5
0V7670_D6 6
0V7670_D7 4

9



TinyML Shield

A easily programmable button on the left


Screw-in terminal block for external (battery) power (4.5V to 21V)

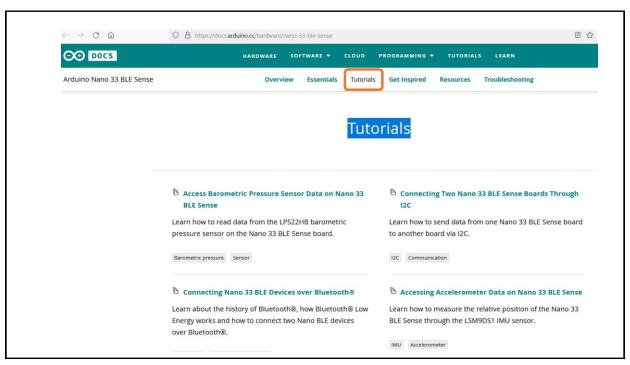
TinyML Shield

Standard Grove connectors, to permit serial communication (I2C = power + data + clock) with modules (both sensors and actuators)

11

TinyML Shield

Grove connectors that break out analog and digital GPIO


Purpose

Facilitate **plug-and-play connections** to off-board modules to extend the possible scope of functionality to new **TinyML** applications

Specifications

- Proprietary connection system from SeeedStudio, similar to JST PH-type connectors
- Large catalog of sensors, actuators available at seeedstudio.com
- Be sure to check the voltage requirements and pinout of any new Grove module for compatibility with this shield before purchasing or connecting said module

13

Credits

- A previous edition of this course was developed in collaboration with Dr. Susan C. Schneider of Marquette University.
- We are very grateful and thank all the following professors, researchers, and practitioners for jump-starting courses on TinyML and for sharing their teaching materials:
- Prof. Marcelo Rovai TinyML Machine Learning for Embedding Devices, UNIFEI
 - https://github.com/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1
- Prof. Vijay Janapa Reddi CS249r: Tiny Machine Learning, Applied Machine Learning on Embedded IoT Devices,
 Harvard
 - https://sites.google.com/g.harvard.edu/tinyml/home
- Prof. Rahul Mangharam ESE3600: Tiny Machine Learning, Univ. of Pennsylvania
 - https://tinyml.seas.upenn.edu/#
- Prof. Brian Plancher Harvard CS249r: Tiny Machine Learning (TinyML), Barnard College, Columbia University
 - https://a2r-lab.org/courses/cs249r_tinyml/

15

References

- Additional references from where information and other teaching materials were gathered include:
- Applications & Deploy textbook: "TinyML" by Pete Warden, Daniel Situnayake
 - https://www.oreilly.com/library/view/tinyml/9781492052036/
- Deploy textbook "TinyML Cookbook" by Gian Marco Iodice
 - O https://github.com/PacktPublishing/TinyML-Cookbook
- Jason Brownlee
 - https://machinelearningmastery.com/
- TinyMLedu
 - https://tinyml.seas.harvard.edu/
- Professional Certificate in Tiny Machine Learning (TinyML) edX/Harvard
 - https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning
- Introduction to Embedded Machine Learning Coursera/Edge Impulse
 - https://www.coursera.org/learn/introduction-to-embedded-machine-learning
- Computer Vision with Embedded Machine Learning Coursera/Edge Impulse
 - https://www.coursera.org/learn/computer-vision-with-embedded-machine-learning

16