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ML Applications, ML Lifecycle, ML Workflow,
TensorFlow Lite (TFL) & TFL Micro,

TFL Micro HelloWorld Example

Cris Ababei
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EECE-4710  “IoT and TinyML”

Tiny ML Applications
Examples (Classification, Regression)
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Applications of TinyML
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For examples see:
https://github.com/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/1_Fundamentals/Class_01/IESTI01_TinyML_class_1.pdf 
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https://github.com/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/1_Fundamentals/Class_01/IESTI01_TinyML_class_1.pdf
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Industrial – Anomaly Detection

IESTI01 2021.2 - Final Group Project: Bearing Failure Detection

Using the Internet of Things for Agricultural Monitoring
Using accelerometer sensors to monitor activity levels in dairy cows.

https://sites.google.com/site/cwamainadekut/research

Agriculture - Cow Monitoring

Kenia
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https://github.com/Mjrovai/UNIFEI-IESTI01-TinyML-2021.2/blob/main/00_Curse_Folder/Group%20Project/final_reports/3-Sistema%20de%20identificac%CC%A7a%CC%83o%20de%20falhas%20em%20rolamentos.pdf
https://sites.google.com/site/cwamainadekut/research
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Atrial Fibrillation Detection on ECG using TinyML 
Silva et al. UNIFEI 2021

Health - Human Sensing  

Guilherme Silva
Engenheiro - UNIFEI

https://github.com/Mjrovai/wingbeat-mosquito-tinyml
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https://github.com/Gui7621/TFG-AFIB_and_SR_detection_using_ML_in_embedded_systems
https://youtu.be/y5gMA3tBZmY
http://www.youtube.com/watch?v=-tGC0vNDAvQ
https://github.com/Mjrovai/wingbeat-mosquito-tinyml
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Mechanical Stresses in Transport

Roll

Yaw

Pitch

Terrestrial 

Maritime Rail 
Fork-Lift 

Idle 

ICTP SciTyniML 21 - Hands on Embedded ML - Motion/Anomaly Detection and Scientific Applications

Coffee Disease Classification

https://www.hackster.io/Yukio/coffee-disease-classification-with-ml-b0a3fc

João Vitor Yukio Bordin Yamashita
Graduando em Engenharia Eletrônica pela UNIFEI
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https://youtu.be/bk3A27jl2JU
https://www.hackster.io/Yukio/coffee-disease-classification-with-ml-b0a3fc
http://www.youtube.com/watch?v=ijzxXCdCid0
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TinyML Made Easy: Exploring Regression - White Wine Quality

Estimate Weight From a Photo 
Using Visual Regression in Edge 

Impulse

Regression on TinyML

ML Lifecycle

12

11

12

https://www.hackster.io/mjrobot/tinyml-made-easy-exploring-regression-white-wine-quality-9a7197
https://www.edgeimpulse.com/blog/estimate-weight-from-a-photo-using-visual-regression-in-edge-impulse
https://www.edgeimpulse.com/blog/estimate-weight-from-a-photo-using-visual-regression-in-edge-impulse
https://www.edgeimpulse.com/blog/estimate-weight-from-a-photo-using-visual-regression-in-edge-impulse


7

13

14



8

* “State of the Art”

*
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Life-cycle of ML

ML Workflow
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Data Engineering Model Engineering Model Deployment Product Analytics 

TensorFlow Lite (TFL)
Inference on the Edge
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More info: An introduction to weight pruning by Tivadar Danka 

Pruning

Quantization is an optimization that works by 
reducing the precision of the numbers used to 
represent a model's parameters, which by default are 
32-bit floating point numbers. This results in a:

✔ smaller model size, 
✔better portability (*) and 
✔ faster computation

Quantization

(*) A lot of MCUs do not handle Float-Point operations

27
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https://towardsdatascience.com/can-you-remove-99-of-a-neural-network-without-losing-accuracy-915b1fab873b
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Floating-point 

Baseline

Post-training 

Quantization (PTQ)

Accuracy 

Drop

MobileNet v1 1.0 224 71.03% 69.57% ▾1.46%

MobileNet v2 1.0 224 70.77% 70.20% ▾0.57%

Resnet v1 50 76.30% 75.95% ▾0.35%

More info: How to accelerate and compress neural networks with quantization
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https://towardsdatascience.com/how-to-accelerate-and-compress-neural-networks-with-quantization-edfbbabb6af7
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Optimization and Quantization
Minimizing compression loss
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TensorFlow Workflow

Model.h5
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TF Model 

Size: 2.1Mb

Size: .63Mb

TFLite Model 

Converting TF Model to TFLite Model

Size: 2.1Mb

Size: .63Mb

TF Model 

TFLite Model 

Converting From a Saved Model  
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Size: .18Mb

Cifar_10.h5 Cifar_10.tflite Cifar_quant_10.tflite
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To convert the TensorFlow Lite quantized model into a C source file that can be 
loaded by TensorFlow Lite for Microcontrollers on MCUs - use Linux xxd tool to 
convert the .tflite file into a .cc file.

Generate a TF Lite for Micro Model

…

…
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Image Classification (Inference) Using TF-Lite
(Reloaded) Code Time!

CNN_Cifar_10_TFLite.ipynb
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TFLite Micro: “Hello World”
Code Time!

train_TFL_Micro_hello_world_model.ipynb

● A previous edition of this course was developed in collaboration with Dr. Susan C. Schneider of 

Marquette University.

● We are very grateful and thank all the following professors, researchers, and practitioners for 

jump-starting courses on TinyML and for sharing their teaching materials:

Credits
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● Prof. Marcelo Rovai - TinyML - Machine Learning for Embedding Devices, UNIFEI

○ https://github.com/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1 

● Prof. Vijay Janapa Reddi - CS249r: Tiny Machine Learning, Applied Machine Learning on Embedded IoT Devices, 

Harvard 

○ https://sites.google.com/g.harvard.edu/tinyml/home

● Prof. Rahul Mangharam – ESE3600: Tiny Machine Learning, Univ. of Pennsylvania

○ https://tinyml.seas.upenn.edu/# 

● Prof. Brian Plancher - Harvard CS249r: Tiny Machine Learning (TinyML), Barnard College, Columbia University

○ https://a2r-lab.org/courses/cs249r_tinyml/
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https://github.com/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1
https://sites.google.com/g.harvard.edu/tinyml/home
https://tinyml.seas.upenn.edu/
https://a2r-lab.org/courses/cs249r_tinyml/
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● Additional references from where information and other teaching materials were gathered 

include:

References 
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● Applications & Deploy textbook: “TinyML” by Pete Warden, Daniel Situnayake

○ https://www.oreilly.com/library/view/tinyml/9781492052036/ 

● Deploy textbook “TinyML Cookbook” by Gian Marco Iodice 

○ https://github.com/PacktPublishing/TinyML-Cookbook 

● Jason Brownlee

○ https://machinelearningmastery.com/ 

● TinyMLedu

○ https://tinyml.seas.harvard.edu/ 

● Professional Certificate in Tiny Machine Learning (TinyML) – edX/Harvard

○ https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning 

● Introduction to Embedded Machine Learning - Coursera/Edge Impulse

○ https://www.coursera.org/learn/introduction-to-embedded-machine-learning 

● Computer Vision with Embedded Machine Learning - Coursera/Edge Impulse

○ https://www.coursera.org/learn/computer-vision-with-embedded-machine-learning 
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https://www.oreilly.com/library/view/tinyml/9781492052036/
https://github.com/PacktPublishing/TinyML-Cookbook
https://machinelearningmastery.com/
https://tinyml.seas.harvard.edu/
https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning
https://www.coursera.org/learn/introduction-to-embedded-machine-learning
https://www.coursera.org/learn/computer-vision-with-embedded-machine-learning
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