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ABSTRACT

The increasing number and variety of IoT (Internet of Things)
devices produce a huge amount of diverse data upon which
applications are built. Depending on the specific use case,
the sampling rate of IoT sensors may be high, thus leading
the devices to fast energy and storage depletion. One option
to address these issues is to perform data reduction at the
source nodes so as to decrease both energy consumption and
used storage. Most of current available solutions perform
data reduction only at a single tier of the [oT architecture
(e.g., at gateways), or simply operate a-posteriori once the
data transmission has already taken place (i.e., at the cloud
data center). This paper proposes a multi-tier data reduction
mechanism deployed at both gateways and the edge tier. At
the gateways, we apply the PIP (Perceptually Important Point)
method to represent the features of a time series by using
a finite amount of data. We extend such an algorithm by
introducing several techniques, namely interval restriction,
dynamic caching and weighted sequence selection. At the
edge tier, we propose a data fusion method based on an optimal
set selection. Such a method employs a simple strategy to
fuse the data in the same time domain for a specific location.
Finally, we evaluate the performance of the proposed filtering
and the fusion technique. The obtained results demonstrate
the efficiency of the proposed mechanism in terms of time and
accuracy.
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INTRODUCTION

IoT (Internet of Things) devices such as sensors, wearables,
smart objects, and wireless cameras are being deployed in a
wide variety of areas, ranging from building and home automa-
tion, to smart cities, automotive and health care [11]. These
devices enable the creation of commercial and industrial ap-
plications that demand high-speed processing of a substantial
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amount of data. Indeed, the burden put in the network band-
width, energy consumption, local storage and data processing
is considerable. Such an issue has given rise to different ar-
chitectural and computing models including edge, fog and
cloud [5] to process heterogeneous and bandwidth-intensive
input data ranging from simple scalar readings (e.g., tempera-
ture and humidity) to multimedia content [8].

In particular, high energy consumption and limited storage
space at the source devices call for data reduction before trans-
mission. Such issues become crucial as the amount of data at
the IoT devices increases. In fact, up to 80% of the total energy
expenditure in an 10T sensor network is due to the wireless
data transmission [2]. Therefore, reducing the amount of data
prior to transmission is of essential importance. Data reduc-
tion at the source not only leads in to energy saving. In fact,
transmitting compressed and (or) filtered data also reduces
the stress on the network bandwidth, which results in a more
efficient usage of the available resources [1].

Simple yet fundamental data aggregation techniques leverage
the correlation among the data generated by different sensor
nodes. Such a correlation is a) spatial: sensor nodes observe
the same phenomena in a limited geographical area, causing
the sensory data from various sensors to have high similarity
b) temporal: the readings of the event or phenomenon slowly
change over time, therefore adjacent time series of the data
present slight variations from each other, and ¢) semantic,
where the data generated by different sources belongs to the
same connotation or domain. Existing data reduction tech-
niques reduce the amount of data either by leveraging the
spatial-temporal redundancy [3, 18], hence selecting only
a subset of sensor nodes to be active at once; automatically
adjusting the sampling rate of the sensor to the network con-
ditions [15]; or by (equally or randomly) compressing the
sensory data [17, 16, 19]. Previous research focused on ag-
gregation, routing and efficient data representation; however,
such solutions are limited as they operate at a single level of
the network architecture in most cases.

In this paper, we propose a multi-tier data reduction mecha-
nism that operates at two levels, namely, at the gateway and
at the edge tier of the network. At the gateway tier we apply
the PIP (Perceptually Important Point) method [7] to repre-
sent the features of a time series by using a finite amount of
data. We extend such an algorithm by introducing several
techniques, namely interval restriction, dynamic caching and
weighted sequence selection. At the edge tier, we propose a
data fusion method based on an optimal set selection. Such a
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method deploys a simple strategy to fuse the data in the same
time domain for a specific location. Finally, we evaluate the
performance of the proposed filtering and fusion techniques
by simulations with real-world data sets. The obtained results
show the efficiency of the proposed mechanism.

The rest of the paper is organized as follows. We first overview
the state-of-the-art of existing data reduction mechanisms. We
then describe our proposed filtering technique that extends
the original PIP method. We continue by explaining the data
fusion method employed at the edge tier. Next, we present
an evaluation of the proposed multi-tier solution. Finally, we
conclude the paper with a summary, along with remarks on the
efficiency and applicability of our data reduction mechanism.

RELATED WORK

Below we review three main categories of methods to conduct
data reduction during the data collection and transmission
process.

Data Sampling

Data sampling either reduces the amount of sensory data to
be further processed, paying special attention to extract the
most representative points of the data set, or choosing a subset
of sensors that contribute with sensory data among all the
IoT sensors. The work in [23] proposes an adaptive sampling
approach, where only few sensor nodes are first activated to
sample. Such mechanism leverages spatial correlation. The
higher the correlation (i.e., the close the IoT sensors to each
other), the fewer the number of active sensors that sample
data. Such data is then sent to a data fusion center which
derives valuable information regarding the environment and
the phenomenon under observation, activating more nodes if
needed. The data fusion center allocates network resources
accordingly. By contrast, [15] adapts the sampling rate of the
sensors to the communication resources while minimizing the
active sensors that stream data to a remote entity (i.e., server).
Moreover, in [16] compression is applied to the already sensed
data, whereas [17] proposes a compressed sensing framework,
where compressed sensing is applied prior to data acquisition.
In [19] instead, compressed sensing is applied to the data on-
the-fly, under the assumption of opportunistic routing. Finally,
[4] designs an approximate aggregation algorithm that adapts
sampling to target precision requirements.

Data Aggregation

Data aggregation consists of considering diverse sources of
data and gather them together to build an accurate represen-
tation of the phenomena under observation. These sources
differentiate in that each of them is responsible of a specific
sensing task. In IoT and WSN, data aggregation techniques
include operations such as solving the maximum, minimum,
sum, average, median, and the count. Aggregation methods
can be divided into centralized and distributed methods. Cen-
tralized methods require continuous communication among
network entities, hence, the communication overhead incurs
in additional costs; consequently, such methods are not suit-
able for sensor networks. Therefore, distributed methods such
as clustering, multipath and aggregate trees are commonly
employed [10]. The work in [3] performs data aggregation
with the purpose of minimizing messaging costs among the

sensor nodes. The nodes from which the data is aggregated is
proportional to the given size of the network. Similarly, [18]
divides the sensor network into non-overlapping regions, then
samples and aggregates data from each of such regions. More-
over, the work in [16] summarizes several methods of data
compression, which consists of transmitting data as little as
possible by aggregating. Such methods are often valid for
specific lookup applications, hence not applicable to those that
rely on fast- and ever-changing sensory data.

Most data aggregation methods are based on trees or other
fixed data structures. In fact, the research in [14] proposes
a spanning tree-based data aggregation mechanism in large
scale networks. Each leaf in the tree is responsible of sensing
data from a given location. Data aggregation starts from the
leaves and propagates until the root (i.e., data collection en-
tity). However, other data aggregation methods that rely on no
specific data structures are proposed [9].

Multi-task Data Sharing

Multi-task sharing of the network leads to efficient use of the
available bandwidth, however it introduces more computation
and communication costs. Such a technique aims at collecting
as little data as possible satisfying all tasks’ needs.

IoT network architectures usually have a sensor-gateway-
router-cloud structure [20]. Indeed, we refer to such an archi-
tecture to tailor the proposed mechanism for data reduction,
aiming at reducing the amount of transmitted data (hence
transmission power) at a lower time cost. The authors in [21]
propose a technique for fast compression of time series data
and indexing of the compressed series. The compression mech-
anism identifies important points of a series, discarding the
remaining ones. This technique has a good performance and
can also be applied to resource-concerned applications. In
this paper, we improve the solution in [21] by proposing a
framework for real-time data filtering over two tiers, namely,
the gateway and the edge tier.

THE GATEWAY TIER: DATA FILTERING

Data filtering is based upon data pattern extraction from a huge
amount of data, thus limiting the amount of data transferred
in the network to the relevant applications. For instance, the
work in [7] proposes a flexible algorithm to represent a time
series by leveraging data similarities. Time series are made
up of infinite number of data points. Patterns on a time series
are represented by a subset of points that constitute the entire
time series [12]. However, not all the points contain valuable
information, hence, a small set of points can shape the basic
pattern of the time series. Such points are necessary for pat-
tern recognition and could be extracted as PIPs (perceptually
important points). The work in [22] details the mechanism
of human recognition of patterns as a process requiring con-
tinuous perceptual analysis. When we observe something,
we concentrate on increasingly detailed characteristics of the
objects. The algorithm of finding PIPs based on the human
method of pattern recognition can be deployed to identify key
points in time series data. In fact, given a time series data, the
corresponding PIPs are constructed as below:



1. The first and the last item of the time series are decided as
the first two PIPs.

2. The third PIP is the item with the highest distance to the
line that connects the first two points.

3. The item with the highest distance to the line that connects
its two adjacent PIPs will be the fourth PIP, and so forth.

4. If the order of the current item in the PIPs sequence is be-
yond a certain threshold, then it is reserved and forwarded.

Indeed, the original algorithm in [22] focuses on static time
series. The series of the real-time data delivery in IoT net-
works is not fixed as new and continuous sensory data from
the sensor nodes flow into the gateway nodes. When the new
data comes, it should be decided at once whether to keep or
discard it. To address such an issue, [20] proposes a streamifi-
cation solution by introducing a cache and a cache projection.
The cache is projected in to the cache projection with one of
the three strategies: a) appending a copy of the current item
(clone), b) appending a duplicate of the entire cache (twin),
and c¢) appending an item with an average value (avg).

However, in our experiments with actual temperature and hu-
midity data from Intel Lab Data', we find that in the filtering
process there exist randomness which leads to some key data
to be discarded because of ignoring some important data fea-
tures. To overcome such a drawback, we improve the original
algorithm in many aspects by introducing interval restriction,
dynamic cache and weighted sequence selection.

Interval Restriction and Dynamic Cache

The importance T of a point falls in the range [0, 1] and it
reflects the order of a point in the PIPs sequence as described
above. Generally, the incoming data in a time series is re-
ceived in approximate time intervals. When the time interval
exceeds a certain threshold, the data is considered as a point of
importance 7' = 1. The importance of a point not only relates
to the distance between such a point and its adjacent ones, but
also strongly relates to the time interval with the previously
considered point. In fact, such a strategy benefits from the
fact that it can cancel the time-consuming iteration process to
calculate the point importance 7.

In order to streamify the algorithm to decide the incoming data
in real time, a data cache is introduced to save the present data
which is already received. Therefore, the new data is stored
in to the cache, waiting for the importance to be calculated.
Hereby, we define a cache C: {c;,c2, - ,cw} of fixed-size
W. Assuming a filtering ratio r and a time window of size W,
only rW data can be sent to the next level of the network while
the remaining data is discarded. We express the importance T

as:
1
.y
1=

where i is the data index in the ordered cache.

At >t ‘max
otherwise

ey

Once the importance of the data reaches a given value, the
cache will be cleared out and continues to buffer new incoming
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data. As a rule of thumb, cache clearing is triggered when the
time interval reaches the threshold #y.x. Such an operation is
necessary because the real-time capability would be seriously
affected if the cache always keeps increasing. In fact, after a
long enough time interval, the sensor nodes would experience
a network service pause or halt. Such nodes in the network can
be considered to have transitioned into a new state, where the
new generated data is classified in a new cluster. We express
the cache size C as:

0 At = tmax
C= .
CU{P.} otherwise

where P, is the k — th data received.

@)

The size of the cache is fixed, but the data in the cache changes
over time. Once the cache reaches its predefined maximum
size, the cache will first remove the earliest data and add the
newest one, then deploy the twin projection strategy to update
the cache.

Weighted Sequence Selection

The ordering process allows to get the top three points includ-
ing the two border ones and the one calculated by the two
border ones. For instance, if the top 5 data points are ready,
the next 4 data point {P,|i = 6,7,8,9} can be obtained by the
sequences:

Sis=P,Ps={P} Sy5=P,Ps={P}
S35 ="P5,Ps = {P} Sas=PsPs= {P}

Therefore, given top n data points, the next n — 1 ones are
obtained:

{S17n7527n,...75k’”|1 <k<n} (3)

where Sy , represents the data sequence starting from index k
to n, d is a certain distance between the n —th point to the start
and end point of this sequence, which can be Euclidean dis-
tance (ED), vertical distance (VD, p,(x,,yy)) or perpendicular
distance (PD, py(x4,y4)) (see Figure 1).

P3(X3,y3)

Palxey2)
pi(x1,y1)
Figure 1: Three distance evaluation methods to find PIPs

However, the calculation order of the sequences is strongly
related to the data importance. For instance, different order
of calculation of sequences such as S5 — S35 — S15 —
S45 and S375 —S15 — 5475 — S275 can result in indifferent
importance value of the data. Hereby, we deploy weighted
selecting sequence to normalize the entire process. By adding
the weight wy, to each sequence, Eq. 3 transforms into:

WidS1nsS2s s Skall <k <n} stowp= T2+ T2 (4)



where Ty, is the importance of the k-th data point. The sequence
with a higher weight will be checked much earlier.

THE EDGE TIER: DATA FUSION

The incoming data from the gateways in the first tier is con-
tinuously sent to the routers in the edge tier. In fact, even the
edge tier requires data reduction before such data is sent to the
cloud data center. While the incoming data from the gateways
is filtered, not all the sensory data is. Therefore, before trans-
mitting the data from the routers to the cloud data center, we
can further filter every dataset contributed by each gateway.
Filtering is a lossy operation in terms of information, hence the
filtered data in the gateway tier is already information-missing.
If such operation is performed once more in the edge tier, such
data will lose more valuable information, making it difficult to
recover the original data. Hereby, we deploy the data fusion
method to fuse all the data from gateways, which improves
the data reliability for single data sources, and extends the
observation range in the time and space domain.

During the data fusion operation, data modeling, cooperation
and explanation are all challenging tasks to perform, hence it
is difficult to implement a robust and fast data fusion system.
In the IoT context, we simplify the strategy to execute this
process by joining the data in the same time domain for a spec-
ified space location. Applying the data fusion in the data level
removes redundant information and fills up the complementary
information.

A key condition is set for the edge sensors to monitor an
identical physical phenomenon (e.g., temperature or humidity).
Consequently, incoming data from multiple gateways from
the same source location can be fused at the data level but not
feature or decision level. Assume that at time #, the gateways
filter the data coming from n different source gateways G =
G1,Ga,...,G,. The independent observation values for the
same physical parameter are given by:

Gi(t) =X +vi(t) i=1.2,....n (5)

where G;(t) is the gateway G;’s filtered data at time ¢, X is
the true value, while v;(¢) is the noise added during the trans-
mission process from gateways to routers. We map all the
observations G;(r) at time ¢ to axes, and the absolute distance
between G;(t) and G;(z) is d;;(t) = ||Gi(t) — G;(1)|. If the
average value of G;(¢) and all the observations is d;(t), and
the average value among all the observations is d(t), then

a1 = Y diy(0) ©)
i=1
d(t) = fd,-(r) )

Therefore, the dataset containing all the efficient data points
that fall into the proximity of the true value X is the optimal
dataset [13], when conditions below are satisfied:

d(t) VGi(t)€d (8)
VGi(1) ¢ @ )

According to the above analysis of the optimal fusion dataset
®, if the absolute distance between observations G;(f) and
G (1) is short, then such values are close to each other, hence
the observation data from two gateways can be fused to the
corresponding extent. By definition of fuzzy membership,
we map G;(¢) and G;(r) to a function ¢;; which describes the
fusion degree:

) =exp (5160 -G,0) a0

From Equation 10 we know that ¢;;(¢) is continuous in the
range [0, 1]. If ¢;;(¢) is close to 1, the fusion degree between
Gi(t) and G;(r) is high, and the vice-versa. Finally, the fusion
degree matrix C of the optimal fusion dataset can be written
as:

1 Clz(t) C]m(t)
Cz](l‘) 1 sz(t)
C= : : : (11)
em(t) () ... 1

For each row in the fusion degree matrix C, if the sum of
the elements Y}, ci(¢) is high indicates that the observation
G;(t) of the gateway G; is close to most of the other gate-
ways’ observations and the vice-versa. We define a consistent
fusion degree p;(t) = ¥J_ ¢;;(t)/m to describe the fusion de-
gree G; with most gateways, and define a distribution balance
Ti(t) =1/ X0 (w(t) — cij(t))?/m to describe the stability of
the gateway.

Therefore, the fusion weight of G; at time 7 is:

w,-(t):ui(t)xri(t) (12)

We normalize w;(¢) to get the final fusion estimation:

fziwi(t)si(t) (13)

EVALUATION

The performance evaluation of the data reduction in the gate-
way tier and the data fusion in the edge tier is conducted as
below.

Simulation Setup

We wrote a custom simulator in Python to evaluate our pro-
posed solution. We use datasets from the Intel Lab Data which
provides time-stamped topology information of the weather
such as humidity, temperature, light and voltage values. The



weather information is a typical example of time series data for
IoT applications. We conduct the evaluation experiments with
temperature and humidity data. We select data from multiple
sensors (deployed to sense the same phenomenon) to ensure
data integrity and accuracy. We consider 1000 data samples
per sensor and set the cache size to 200. For each data set
(i.e., temperature and humidity), we simulate the original data
(sensor 1) and other two cases where Gaussian noise with SD
(standard deviation) values of 1 and 1.2 accordingly are added
(sensor 2 and 3). Table 1 summarizes such scenarios.

Parameters

Data Source  Distribution Mean SD  Data samples

Sensor I  Original - - 1000
Sensor 2 Gaussian 0 1 1000
Sensor 3 Gaussian 0 1.2 1000

Table 1: Sensors data simulation

Obtained Results

Filtering Efficiency in the Gateway Tier

Considering the uncertainty of the CPU time, we conduct the
same experiment 3 times and take the average value for com-
parison purposes between Papageorgiou’s method [20] and
our proposed mechanism, as illustrated in Figure 2. We can
see that our proposed method shows fewer time fluctuations,
encountering lower time expenses than the Papageorgiou’s
method. Our method keeps at == 0.018 s for completing a new
coming point decision. Moreover, the initial slope is due to the
dynamic cache storing the first 200 data samples (i.e, the cache
size). Considering our simulation environment, we believe
that there is enough room to improve the efficiency on actual
embedded IoT devices.

Given two time series 7'S; and T'S,
¢! ) (1
TS = [(t{ )7vg ))7(t§ )7v§ ))7
2) (2 2) (2
78 = [ ), (17 5,

)

the similarity & between them is defined based on the Jaccard
similarity coefficient [6] as,

o~ Zioimin(" ) 1
Ly max(vf" )

The importance threshold for the filtering process varies within
the range [0, 1] with a step of 0.02 and the similarity between
the original series and the filtered series is obtained by Equa-
tion 14. As shown in Figure 3, for importance levels (i.e.,
reduction factor) smaller than 0.7, the similarity between fil-
tered and the original series is above 80% and 90% for the
temperature and humidity data sets, accordingly. Such a high
similarity allows the filtered series to cover most of the fea-
tures of the original one. For higher values of importance, the
similarity decays almost linearly and only the data with the
most significant features is kept.

0.05

—— Proposed Method
—— Papageorgiou's Method
0.04 -
z
2 0.034
£
=
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0.01 -
0.00 T T T T T T
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a
w 0.03 4
£
=

0.02

0.01

0.00

1 T T T T T
0 200 400 600 800 1000
Data samples

(b) Humidity data

Figure 2: Performance evaluation in terms of time.

Fusion Accuracy in the Edge Tier

In the edge tier, the proposed fusion algorithm based on the
optimal set is tested and compared with fusion methods that
rely on average operations. We use the mean squared error
(MSE) and recovery accuracy as the evaluation index. MSE
describes the data deviation, where a smaller MSE represents
a higher accuracy. The results of the experiments are shown
in Table 2.

Data Source MSE (Proposed) MSE (Average)
Sensor 1  0.598 1.027
Temperature Sensor 2 0.908 1.312
Sensor 3 0.912 1.409
Sensor 1 3.578 3.901
Humidity =~ Sensor2 2.868 3.215
Sensor 3  3.026 3.298

Table 2: MSE comparison between proposed method
and average method

As shown in Table 2, the data fusion method based on the
optimal set has smaller deviation compared to the original data
and performs better than the usual average fusion method.
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and the filtered series.

Then, we can calculate the recovery accuracy of the fi-
nal fusion results relative to each sensor source. By
Equation 14, we can regard the recovery accuracy
as the similarity between the fusion data series TS, =
[(to,:V0,), (toysV0y), -+ + (t,, Vo, )] and the original data series
TS, = [(trlﬂvrl)»(trzvvfz)v"' 7(trnavrn)]-

We select samples every 20 data samples to compute the recov-
ery accuracy, as shown in Figure 4. The accuracy of the data
is higher than 90%, which shows that the fusion algorithm
is very efficient in the two-tier network structure. However,
we would like to mention that the data from all the sensors
may be filtered at the same time. In such a case, the recov-
ered data is taken as the former non-zero value, which gives
some flat regions as shown in Figure 5. It indicates that the
data have approximate features in these regions, but advanced
interpolation algorithms could be considered to improve that.

Figure 5 shows the high fidelity of the data points that the
proposed algorithms considers clear representatives of the
original ones. In fact, such points closely follow the original
data points, concluding that the overall data features are kept.
Similarly in the edge tier, the incoming data from the gateways
is fused effectively, leading to highly reliable important data
representatives to be transmitted to the next level (e.g., cloud
data center).

CONCLUSION

In this paper we have devised a multi-tier mechanism for
reducing the data generated by IoT sensors. Our proposed
solution operates at two levels in the network architecture,
namely, the gateways and the edge tier. At the gateways, we
leveraged a method based on perceptual characteristics of the
data to select the key data points that are representative for the
entire time series. We have improved the original algorithm
by including additional features, namely, interval restriction,
dynamic caching and weighted sequence selection. Our pro-
posed data filtering algorithm can efficiently process streams
of data, make real-time data filtering possible, and reduce the
cost in terms of time. At the edge tier, we formulated a data
fusion method based on optimal set selection to combine the
data from all the gateways, which improves the data reliability
of single data sources, thus extending the observation range
in the time and space domain. This method relies on a simple
strategy to fuse the data in the same time domain for a specific
location, introducing different weights for each group of data
from gateways. Our experiments have demonstrated that the
proposed algorithm outperforms the state of the art.

As a future work, we seek to apply information-theoretic ap-
proaches such as the information bottleneck theory to analyti-
cally characterize data reduction in selected use cases.
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