2022 IEEE International Workshop on Metrology for Automotive (MetroAutomotive) | 978-1-6654-6689-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/MetroAutomotive54295.2022.9855110

A TinyML Soft-Sensor for the Internet of
Intelligent Vehicles

Thommas Flores*T, Marianne Silva*T , Pedro Andrade*', Jorddo Silva*T , Ivanovitch Silva*T,
Emiliano Sisinnif,Paolo Ferrarit and Stefano Rinaldit
* Postgraduate Program in Electrical and Computer Engineering (PPgEEC)
TFederal University of Rio Grande do Norte - Natal, Brazil
iUniversity of Brescia - Brescia, Italy
Emails:*{thommas.flores.101, marianne.silva.086, pedro.meira.055, jordao.cassiano.009, } @ufrn.edu.br,*
ivanovitch.silva@ufrn.br and i{emiliano.sisinni, paolo.ferrari,stefano.rinaldi } @unibs.it

Abstract—The increased number of sensors in modern cars
offers the opportunity to develop algorithms that can monitor
and diagnose vehicle performance more efficiently. We present
the results of applying and deploying a TinyML model into a
typical OBD-II automotive scanner to serve as a soft-sensor and
estimate carbon dioxide emissions. A TinyML workflow based
on TensorFlow, TensorFlow Lite, and Micro was designed to
a 32-bit microcontroller target (Machhina A0™) and consider-
ing different quantization methods and Multi-layer Perceptron
Regressors (MLP). Train, test, and validation were conducted
using real-world data fetched from several Kkinds of vehicles
through an emission measurement system. The results suggest
that the soft-sensor can estimate Carbon Dioxide emissions with
a Mean Absolute Percentage Error (MAPE) of approximately
27% and processing time averages around 37 to 173 microsec-
onds (depending on activation functions adopted) in the target
hardware and using intake manifold absolute pressure, intake
air temperature, and vehicle speed as independent variables. The
results of this study also demonstrated quantization has a major
impact on memory usage. On average, 10 to 17 times less memory
is required to achieve the same result on MAPE.

Index Terms—Soft-Sensor, MLOps, TinyML, Quantization,
Intelligent Vehicles, Regression, OBD-II.

I. INTRODUCTION

The Internet of Intelligent Vehicles (IolV) is a set of
innovative vehicles connected to the cloud employing vehicle-
to-everything (V2X) communications. IoIV applications will
allow vehicles to become intelligent objects equipped with
sensing platforms, computing facilities, control units, and
storage. Furthermore, these vehicles will be connected to any
entity (other vehicles, roadside stations, charging/gas stations,
cloud servers, among others) via V2X communications [1].
Thus, the oIV will be built as a multi-tier system of different
entities with different roles that can take both client and server
positions in taking or providing extensive data services. In
this way, IoIV can lead to numerous new applications in
various domains such as assisted or autonomous driving and
platooning; it is also possible to secure information sharing
and learning or traffic control and optimization [2].

Intelligent On-Board Units (OBUs), such as those with
advanced driver assistance systems (ADAS), are focusing on
the Internet of Vehicles (IoV) space. For example, the OnStar
system used by General Motors provides safety information
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services such as a rescue system, remote fault, and global
positioning system. The G-BOOK adopted by Toyota Corpo-
ration of Japan uses wireless network technologies such as
the Vehicle Information Communication System (VICS) to
establish communication links between vehicles and central
stations [3]. In addition, Ford and Microsoft have jointly
developed a SYNC system for navigation, data transmission,
and voice calls using a user’s cell phone [4].

There are two different types of sensors that are used for
automotive applications. Embedded sensors are also called
dedicated or discrete sensors. Those devices that do not have
onboard units contain in their design a set of sensors connected
to an Electronic Control Unit (ECU) [5]. The ECU informa-
tion is acquired through the Data Link Connector (DLC), a
diagnostic connection port for motorcycles, cars, and trucks.
The device connecting to this port is the On-Board Diagnostic
(OBD-1I), which is used to acquire vehicle parameters such as
speed, engine and water temperature, battery charge rate, and
error codes for fault detection [6], [7].

Whether native or not, the automotive diagnostic devices
need to be processed in various applications for the infor-
mation to become valuable data for the drivers. In most
applications, however, this step is performed in an external
environment and is currently often in the cloud [8]. Although
many IoT applications use large bandwidth networks, for
example, 5G, this technology in critical systems such as
Advanced Driver Assistance Systems (ADAS) requires that
data be processed in the early stages reducing latency and
association [9].

Within this context and with the advent of the technolog-
ical advancement of microcontrollers systems and the quan-
tization techniques of machine learning (ML) algorithms, a
new paradigm called TinyML emerged. The innovation of
TinyML is the capacity to perform data inference through ML
algorithms in ultra low power devices, typically in the range
of mW, and thus break the traditional limitation of the need
for high computational power and minimal hardware setup
for the implementation of these algorithms [10]. In addition,
performing inference on the device allows for more excellent
responsiveness and privacy while avoiding the energy cost
associated with wireless communication [11].
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This paper proposes methods to use machine-learning algo-
rithms in embedded systems that collect data from vehicles’
onboard diagnostics systems. Furthermore, the proposed meth-
ods use soft sensors to estimate the amount of carbon dioxide
generated during the combustion reaction in the vehicle en-
gine. All these techniques help analyze various vehicle data.

Considering the contributions of the mentioned work, it
is possible to highlight: 1) Development of a workflow and
methodology for the implementation and deployment of a
TinyML model into a typical OBD-II automotive scanner; 2)
A performance evaluation considering different quantization
techniques and multi-layer perceptron regressors to train,
validate, test and deploy TinyML models to a typical OBD-
IT automotive hardware; 3) Design, implement and validate a
soft-sensor regressor to estimate carbon dioxide, deployed in
an accurate OBD-II automotive scanner, using intake manifold
absolute pressure, intake air temperature, and vehicle speed as
independent variables.

The remainder of this paper is organized as follows. Sec-
tion II presents the related works whereas Section III describes
the process of developing a soft sensor to estimate C'O;
emissions. Section IV discusses the results and the main
achievements of the study, and finally, Section V remarks on
conclusions and future studies.

II. RELATED WORKS

After reviewing the literature, several papers were found that
influenced the research carried out and, therefore, contributed
to the development of the proposed solution.

During the past decades, modern vehicles have been
equipped with a system called On-Board Diagnostics (OBD)
that is connected with Engine Control Unit (ECU) [12]. OBD
gathers sensor data and monitors the performance of the emis-
sion control systems or components. When the performance
degrades, this is reported by malfunctions indicators to the
vehicle drivers [13].

Several researchers have given the OBD-II data collected
from cars a machine learning upgrade. The vehicles send the
information via networks and can be interpreted to perform
vehicle maintenance or security tasks. For example, in [14], the
authors create an infrastructure to monitor vehicular pollution
based on real-time crowd sensed data processing. Not only
that, but this mechanism also shares information about CO2
emissions, potentially providing valuable data for city planning
and management.

In [15], the authors applied two types of unsupervised
machine learning methods to classify drivers based on fuel effi-
ciency and driving behavior. They used data from an On-Board
Diagnostics-II (OBD-II) device transmitted via 4G to a cloud
platform. In the first phase, spectral clustering was used to
study the macroscopic relationship between driving behaviors
and fuel consumption. In the second phase, driving behaviors
were integrated with environmental information to generate
a model of the relationship between driving behavior and
corresponding fuel consumption characteristics. The authors

found that their method could effectively identify relationships
between driving behavior and fuel consumption.

Finally, in the work [16], the authors use two methods to
monitor the amount of carbon dioxide emitted by vehicles: air
mass flow and velocity density. The results show that their
solution could be helpful for traffic control systems in cities
because areas with the highest concentration of pollution usu-
ally comprise crossings, traffic lights, and congested regions.
However, their method has one disadvantage: it depends on the
car engine’s mechanical characteristics and the fuel’s chemical
composition.

The use of machine learning algorithms in-vehicle diag-
nostic systems has provided various benefits. However, the
need for an internet connection to transfer data from the
vehicles limits their use in regions with low bandwidth. To
overcome this problem, this work proposes a new methodology
for estimating C'O4 levels using machine learning algorithms
embedded into a typical OBD-II automotive scanner. The
proposed approach is predicted to be more efficient than
existing methods that process information off-board in terms
of latency, accuracy, and memory savings.

III. TINYML VEHICULAR SOFT SENSOR

This section describes developing a soft-sensor to estimate
CO2 using a TinyML regressor model embedded into an
OBD-II automotive scanner known as Macchina AOQ. This
hardware enables software customization, making it possible
to deploy the TinyML model and investigate the impact of
the soft-sensor on memory, latency, and performance of the
inferences. An overview of the target hardware architecture
and the coupling with the vehicle is described in Figure 1.
Note that only three variables are used in the proposed TinyML
regressor model.

Macchina A0 OBD-II

ESP32-WROVER-E Maodule

MCuU
+
Memory

Wifi

-

1o Blustaath
Ports

Input
DLC
Connectors

Variables I

Vehicle under study DLC

Intake Pressure
Intake Tamp.
Speed

ECU

Fig. 1. The hardware architecture used to deploy the TinyML regressor model
(soft-sensor).

The study was carried out in an eight-stage workflow, as
described in Figure 2, under the best practices of Machine
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Learning Operations (MLOps). Each stage of the workflow
will be explained in detail next.

A. Collect Data

Four vehicles were selected for this data collection exercise.
The course covered was a 5 km loop on a section of road in
Natal, Brazil. This road included paved and asphalt stretches
and had 2:00 pm to 4:00 pm as the period for the testing
experiment. An OBD-II automotive scanner was connected
to each vehicle. In addition, the Torque OBDPro app !
was configured to collect data from intake pressure, intake
temperature, speed, and mass airflow (MAF) every 1 second.

B. Process Data

The target variable for the regressor model is the C'O,
emission. However, this variable is not natively exposed to
the OBD-II system. Fortunately, C'O5 emission can be derivate
from other variables according to Eq. 1:

COMg/s) = it W)

: ensztyFuel (g/l)
assuming petrol as the fuel, the Air Fuel Ratio (AFR) is con-
figure to 14.7, CO2PL(g/L) to 2310 and Densityp,.;(g/1)
to 737 [5].

Note that the MAF values are not always available in
vehicles; thus, a demand to derivate CO5 emission from other
variables emerges. In our proposal, the prediction of emissions
is based on intake pressure, intake temperature, and speed
variables. An additional pre-processing stage is necessary to
normalize the variables and avoid the dominant influence of
them with a higher values range. For convenience, a min-max
normalization was adopted. A sample of the clean dataset is
shown in Figure 3.

C. Design a Model

The baseline model used in the experiments is a Multilayer
Perceptron Neural Network with three input layers, a single
hidden layer with five neurons, and one output layer. The
evaluation scenario will vary the number of hidden layers (1
to 16), the number of neurons (1 to 80), and the activation
functions (relu or sigmoid) to investigate their impact on the
memory, model performance, and inference time of the model
embedded in an OBD-II automotive scanner.

D. Train a Model

For training, 70% of the dataset was selected and randomly
scrambled. The optimizer used was Adamax, with a learning
rate equal to 0.001, 3y equal to 0.9, 35 equal to 0.99 and e
equal to 10~7. The batch size was configured to 20 and the
model trained by 100 epochs. The convergence of the train was
based on Mean Square Error (MSE) loss function. In contrast,
the evaluation metric was set to Mean Absolute Percentage
Error (MAPE). In the end, 0.2% (1121 instances) of the dataset
was also used for validation purposes. All these parameters
were chosen by convenience after empirical experimentation.

-CO2PL
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E. Evaluate & Optimize

Two quantization methods provided by the TensorFlow
library were adopted in this stage: OPTIMIZE_FOR_SIZE
and EXPERIMENTAL_SPARSITY. The former uses a rep-
resentative dataset version under training to quantize biases
and activations functions. The target is to reduce the size,
latency, and loss functions. On the other hand, the Ilatter
permits optimization by taking advantage of the sparsitivity
of the weights from a pruning strategy. Again, the target is to
reduce the size and latency of the model artifact, but without
prioritizing the loss functions.

FE. Convert Model

The model created with TensorFlow is now converted to
a lightweight version from the TensorFlow Lite. The quan-
tization approaches mentioned in the previous stage are re-
sponsible for optimizing and converting the model into a tiny
format. After that, the model artifact is then transformed into
a TensorFlow Lite Micro object. Next, each scalar-tensor is
encapsulated in a 2D array and wrapped into a 32-bit float
list. Finally, the file is converted into a C++ file.

G. Deploy model

The deployment of the tinyML model into the target hard-
ware (Machhina AQ) is the last step before making perfor-
mance evaluations. For the sake of understanding, Figure 4
describes an overview of the end-to-end process of deploying
the model. All previous stages of the data workflow were
implemented in the cloud using Google Colaboratory. They
are represented by step 1 in Figure 4. The next step is to
export the model artifact into a C++ object (step 2). Finally,
this artifact is transmitted from a serial port where it is
deployed to the Macchina AO (step 3). An ESP32-WROVER-
E module supports the target hardware. Additionally, an Data
Link Connection (DLC) interface is required to establish
communication with the vehicle ECU. The main specifications
of the target hardware are shown in Table I.

TABLE I
MACCHINA AQ SPECIFICATION.

Items Specifications

Creative Commons 4.0 Int.
ESP32-WROVER-E
Xtensa® 32-bit LX6

License
Main module
Microprocessors

Integrated crystal 40 MHz
Integrated SPI flash 4 MB
Integrated PSRAM 8 MB

Clock frequency up to 240 MHz
Performance up to 600 DMIPS
Cores 2

H. Make Inferences

The final stage of the proposed workflow aims to evaluate
the model’s inference performance in the target hardware. In
order to conduct experiments, an OBD-II Emulator (step 4
in Figure 4) was configured to emulate the generation of
the vehicle data (step 5). Next, the emulator is connected
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Fig. 2. The proposed eight-stage workflow used to develop and deploy the TinyML regressor model (soft-sensor).

pressure temperature speed emission
1720 0.617284 0.285714 0.531646  3.624733
2122  0.839506 0.071429 0.898734  3.624733
1213 0.962963 0.464286 0.658228  2.985075
428  0.506173 0.571429 0.000000 1.066098
1621  0.716049 0.000000 0.848101  3.198294

Fig. 3. A sample of the normalized and clean dataset considering the
independent (intake pressure, intake temperature, speed) and target (C'O2
emission) variables.
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Fig. 4. An end-to-end process for deploy a tinyML model into an OBD-II
automotive scanner.

to the target hardware using a DLC port. The Freematics
GUI application makes the generation of the data. Finally, a
serial port connecting the PC Desktop and the target hardware
monitors the inferences and collects all experiment results.

IV. RESULTS AND DISCUSSION

This section discusses the results obtained from implement-
ing the proposed workflow to deploy a tinyML into an OBD-II
automotive scanner.

Figure 5 describes a comparative evaluation of different
models with a single hidden layer, variations in the number
of neurons, activation functions, and quantization methods. In
all scenarios, the sigmoid activation function demanded more
memory resources. The explanation is because its definition
is based on a more complicated mathematical formula when

compared with relu. In addition, it is also observed that the
quantization methods reduced the tinyML model sizes on
average by 92% when compared to TensorFlow. In particular,
the sparsity quantization becomes less efficient when the
complexity of the network increases.
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4§ 2400 - e sigmoid
% x Total number of params.
< 2200- L o 26
g T e 51
x
£ 2000- * e 101
S e 201
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1800 - ° Model Type
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1600 - . % Quantization
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Neurons

Fig. 5. Comparison between the number of neurons and the use of memory
considering different activation functions and quantization approaches for a
single hidden layer network.

In order to evaluate the inference time is necessary to define
a setup of the deployed model. In our experiments, the sparsity
quantization was adopted because it presented the average best
result in terms of memory usage. This is confirmed by results
of Figures 5 and 8.

A first performance evaluation of the inference is described
by Figure 6. It shows a study of varying the number of neurons
in a single hidden layer and its influence over the MAPE for
different activation functions. The results show that the relu
reduces, on average, the inference time by 81.95% and the
MAPE by 50.5% compared to sigmoid. However, as expected,
the computational demand increase as more neurons is added
to the network.

Figure 7 shows the quantification of the error using as a
reference the test dataset. This evaluation scenario assesses
whether there are accuracy losses when quantizing the Ten-
sorFlow model. Results clarify for both activation functions
a marginal quantization error. This behavior occurred because
the change of tensors from float64 to float32 was insignificant.
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Fig. 6. Comparison between the number of neurons and the inference time
for the deployed artifact (TensorFlow Lite Sparsity) considering different
activation functions and MAPE performance in a single hidden layer network.
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Fig. 7. Comparison between TensorFlow and quantized models for different
numbers of neurons in the hidden layer and activation function.

22

In addition, the use of relu decreased the MSE by an average
of 61.22%.

A different evaluation scenario is described in Figure 8.
This study compares the network size (number of layers) and
memory use, considering different activation functions and
quantization approaches. The study setup supposes using five
neurons in each hidden layer. Results show that the sparsity
quantization is more efficient regarding memory usage as
the number of hidden layers increases, independently of the
activation function. Comparing the two quantization methods,
the average reduction is 16.37%.
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Fig. 8. Comparison between the network size (number of layers) and the
use of memory considering different activation functions and quantization
approaches.

Figure 9 shows the comparison between the network size
(number of layers) and the inference time for the deployed
artifact (TensorFlow Lite Sparsity) considering different acti-
vation functions and MAPE performance under the use of relu
and sigmoid activation functions. The results show that the relu
activation function reduces, on average, the processing time by
78.3% and the MAPE by 49% compared to sigmoid, and the
performance difference increases the more hidden layers are
added.

Overall, this last study is coherent with the previous evalua-
tion scenarios. The adoption of the sigmoid activation function
in the envisaged problem has degraded the performance even
though it increases the model complexity. On the other hand,
relu presented promising results using only two hidden layers.
That performance was similar to the use of 16 hidden layers.
This result is fascinating because using only two hidden layers
reduces memory use more than four times compared to using
16 hidden layers.

V. CONCLUSION

This work proposes a soft sensor to estimate C'Oy emission
in vehicles using TinyML paradigms. The proposed data
workflow follows the best practices defined by the MLOps
literature. First, the raw data was fetched from an OBD-
IT automotive scanner connected to the Torque APP and
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Fig. 9. Comparison between the network size (number of layers) and the
inference time for the deployed artifact (TensorFlow Lite Sparsity) considering
different activation functions and MAPE performance.

compiled into an actual route and in an urban scenario. Then,
after a pre-processing and cleaning procedure, the raw data
was served into a training pipeline where a TinyML model
was generated. Finally, the model artifact was deployed into a
customized OBD-II automotive scanner called Macchina AO.

The proposed workflow experimented with different con-
figurations, including the adoption of a sort of quantization
method. Results demonstrated that using quantization methods
could potentially increase the efficiency of compression of
models reducing the size of deployed artifacts on average by
92%.

Results have also highlighted the influence of activation
functions on the performance of the deployed model in
the target hardware. The scenarios where the relu activation
function was adopted improved paved results compared to
sigmoid counterparts. It was observed that improvements were
directly proportional to the number of neurons, i.e., the greater
the number of neurons, the more significant the difference
between the inference time. Furthermore, it was verified that
relu reduced the MAPE metric by a factor of 50% when
compared to sigmoid.

Results also elucidated interesting issues regarding the in-
fluence of quantization methods on the estimation error. For
example, models based on pure TensorFlow artifact (without
quantization) demonstrated marginal difference regarding es-
timation error compared to scenarios where sparsity and size
quantizations were adopted. A deep exploration brought to
light the explanation due to the subtle change in the numerical
types of tensors from float64 to float32. This behavior was
observed during all experiments and intensified with increasing
network complexity.

Another important issue investigated by the envisaged study
was the inference time referenced to deployed model in the
target hardware. Due to performance results, only the model
based on sparsity quantization was deployed. Experiments

demonstrated that the use of relu activation function for the
problem under study was significantly less sensitive to the
increase of network complexity when compared to the sigmoid
counterpart.

Overall, the experimental results demonstrated auspicious
directions and established answers to the hypotheses and
research questions raised in the paper. In future works, it
is paved the exploration of more complex network scenarios
using convolutions and recurrent architectures.
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