
Embedded Machine Learning on TinyML Systems

TensorFlow Lite Micro

Robert David, Jared Duke, Advait Jain, Vijay Janapa-Reddi,
Nat Jeffries, Jian Li, Nick Kreeger, Ian Nappier, Meghna Natraj,
Shlomi Regev, Rocky Rhodes, Tiezhen Wang, Pete Warden.

TF Micro
Micro

TF Micro

SoftwareHardware

Micro

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library
Features

Limited Operating
System Support

TF Micro

SoftwareHardware

Micro

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library
Features

Limited Operating
System Support

TF Micro

SoftwareHardware

Micro

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library
Features

Limited Operating
System Support

TF Micro

SoftwareHardware

Micro

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library
Features

Limited Operating
System Support

TF Micro

SoftwareHardware

Micro

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library
Features

Limited Operating
System Support

TF Micro

SoftwareHardware

Micro

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library
Features

Limited Operating
System Support

TF Micro

SoftwareHardware

Micro

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library
Features

Limited Operating
System Support

Micro

Himax
WE-I Plus EVB

SparkFun
Edge 2

Espressif
EYE

Arduino
BLE Sense 33

...

...

How do you use TFL Micro?

OpResolver Interpreter Input Data

Invoke() Output Data Action

specify ops
you’re using with

load a model
into an

into model inputs,
copy the

run the model via
from model
outputs, read the

TFLite Micro:
Interpreter

● TFLite Micro uses an

interpreter design

● Store the model as

data and loop through

its ops at runtime

TFLite Micro Design

Interpreter
(generally slower than compiled code)

Compiler
(generally faster than interpreted code)

● Each layer like a Conv

or softmax can take

tens of thousands or

even millions of cycles

to complete execution

ML is Different

Conv

W (16⨉64⨉1⨉1)
B (16)

Many cycles

● Parsing overhead is

relatively small for the

TFMicro interpreter

when we consider the

overall network graph

ML is Different

data

Conv

W (64⨉3⨉3⨉3)
B (64)

Relu

MaxPool

Conv

W (16⨉64⨉1⨉1)
B (16)

Relu

Conv

W (16⨉64⨉1⨉1)
B (16)

Conv

W (16⨉64⨉1⨉1)
B (16)

Relu Relu

Concat

Model Total
Cycles

Calculation
Cycles

Interpreter
Overhead

Visual Wake
Words (Ref) 18,990.8K 18,987.1K < 0.1%

Google
Hotword

(Ref)
36.4K 34.9K 4.1%

Sparkfun Edge 2
(Apollo 3 Cortex-M4)

- Change the model

without recompiling
the code

Interpreter
Advantages

- Change the model

without recompiling
the code

- Same operator code
can be used across

multiple different
models in the system

Interpreter
Advantages

- Same portable model

serialization format

can be used across a
lots of systems.

Interpreter
Advantages

Himax
WE-I Plus EVB

SparkFun
Edge 2

Espressif
EYE

Arduino
BLE Sense 33

TFLite Micro
Interpreter Execution

if (op_type == CONV2D) {
 Convolution2d(conv_size, input, output, weights);
} else if (op_type == FULLY_CONNECTED) {
 FullyConnected(input, output, weights)

}

The FlatBuffer File Format

TFLite Micro:
Model Format

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.

 model = tflite::GetModel(g_model);
 if (model->version() != TFLIGHT_SCHEMA_VERSION) {
 TF_LITE_REPORT_ERROR(error_reporter,
 "Model provided is schema version %d not equal "
 "to supported version %d.",
 model->versison(), TFLITE_SCHEMA_VERSION);

 return;
 }

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.

 model = tflite::GetModel(g_model);
 if (model->version() != TFLIGHT_SCHEMA_VERSION) {
 TF_LITE_REPORT_ERROR(error_reporter,
 "Model provided is schema version %d not equal "
 "to supported version %d.",
 model->versison(), TFLITE_SCHEMA_VERSION);

 return;
 }

// Map the model into a usable data structure. This doesn't involve
any
// copying or parsing, it's a very lightweight operation.

model = tflite::GetModel(g_model);
if (model->version() != TFLIGHT_SCHEMA_VERSION) {
 TF_LITE_REPORT_ERROR(error_reporter,
 "Model provided is schema version %d not equal
"
 "to supported version %d.",
 model->versison(), TFLITE_SCHEMA_VERSION);

 return;
}

How is g_model stored?

Serialization

● JSON

● ProtoBuf

● FlatBuffer

Serialization
Libraries JSON

ProtoBufFlatBuffer
Better

Performance

Developer
Friendly

Flexible
Schemas

Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)

● Limited OS support
● Limited compute
● Limited memory

Hardware & Software
Limitations

Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)

What is g_model?

● Array of bytes, and acts as

the equivalent of a file on disk

● Holds all of the information
about the model, its

operators, their connections,

and the trained weights

• Does not require copies to be made
before using the data inside the model

FlatBuffers

• Does not require copies to be made
before using the data inside the model

• The format is formally specified as a
schema file

FlatBuffers

• Does not require copies to be made
before using the data inside the model

• The format is formally specified as a
schema file

• Schema file is used to automatically
generate code to access the
information in the model byte array

FlatBuffers

Name Args Input Output Weights

Conv2D 3x3 0 1 2

FC - 1 3 4

Softmax - 3 5 -

Index Type Values

2 Float 0.01, 7.45, 9.23, ...

4 Int8 34, 19, 243, ...

...

Metadata (version, quantization ranges, etc)

g_model FlatBuffer Format

Weight Buffers

The Tensor Arena

TFLite Micro:
Memory Allocation

● Embedded systems typically have

only hundreds or tens of kilobytes

of RAM

Why Care
About Memory?

Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)

● Embedded systems typically have

only hundreds or tens of kilobytes

of RAM

● Easy to hit memory limits when

building an end-to-end application

Why Care
About Memory?

Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)

● Embedded systems typically have

only hundreds or tens of kilobytes

of RAM

● Easy to hit memory limits when

building an end-to-end application

● So any framework that integrates

with embedded products must offer
control over how memory usage

Why Care
About Memory?

Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)

● Products are expected to run for

months or even years, which poses

challenges for memory allocation

● Need to guarantee that memory

allocation will not end up

fragmented → contiguous memory

cannot be allocated even if there’s

enough memory overall

Long-Running
Applications

● In embedded systems, the

standard C and C++ memory APIs
(malloc and new) rely on
operating system support

● Many devices have no OS,
or have very limited functionality

Lack of OS Support

Software
TF Micro Application

Arduino

mbed OS

Software

Nano 33 BLE Sense
Hardware

1. Ask developers to supply a contiguous area of memory to the interpreter,

and in return the framework avoids any other memory allocations

How TFL Micro solves these challenges

constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model, resolver,
 tensor_arena, kTensorArenaSize, error_reporting);

1. Ask developers to supply a contiguous area of memory to the interpreter,

and in return the framework avoids any other memory allocations

2. Framework guarantees that it won’t allocate from this “arena” after
initialization, so long-running applications won’t fail due to fragmentation

How TFL Micro solves these challenges

1. Ask developers to supply a contiguous area of memory to the interpreter,

and in return the framework avoids any other memory allocations

2. Framework guarantees that it won’t allocate from this “arena” after
initialization, so long-running applications won’t fail due to fragmentation

3. Ensures clear budget for the memory used by ML, and that the framework
has no dependency on OS facilities needed by malloc or new

How TFL Micro solves these challenges

Operator Variables Interpreter State Operator Inputs and
Outputs

uint8_t tensor_arena[kTensorArenaSize]

constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model,
 resolver, tensor_arena, kTensorArenaSize, error_reporting);

Arena size?

● Depends on what ops
are in the model (and the
parameters of those
operations)

constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model,
 resolver, tensor_arena, kTensorArenaSize, error_reporting);

Arena size?

● Depends on what ops
are in the model (and the
parameters of those
operations)

● Size of operator inputs and
outputs is platform
independent, but different
devices can have different
operator implementations

constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model,
 resolver, tensor_arena, kTensorArenaSize, error_reporting);

Arena size?

● Depends on what ops
are in the model (and the
parameters of those
operations)

● Size of operator inputs and
outputs is platform
independent, but different
devices can have different
operator implementations

● → hard to forecast exact
size of arena needed

constexpr int kTensorArenaSize = 6000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model,
 resolver, tensor_arena, kTensorArenaSize, error_reporting);

Solution

● Create as large an arena as
you can and run your

program on-device

● Use the arena_used_bytes()

function to get the actual

size used.

● Resize the arena to that
length and rebuild

● Best to do this on your
deployment platform, since

different op implementations

may need varying scratch

buffer sizes
* Call MicroInterpreter::arena_used_bytes() to get the actual memory size used.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/micro_interpreter.h#L173

The OpsResolver

TFLite Micro:
NN Operations

Why Care About
Binary Size?

011010101
001010111
010101011
010101011
0110011

● Executable code used by a
framework takes up space in Flash

Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)

Why Care About
Binary Size?
● Executable code used by a

framework takes up space in Flash

● Flash is a limited resource on
embedded devices and often just
tens of kilobytes available

011010101
001010111
010101011
010101011
0110011

Why Care About
Binary Size?
● Executable code used by a

framework takes up space in Flash

● Flash is a limited resource on
embedded devices and often just
tens of kilobytes available

● If compiled code is too large, it
won’t be usable by applications.

Micro

Core
functionality

Model
operators

Model loading

Memory
plannerError reporting

...

conv2D

conv3D

tanh

depthwise_conv2d

l2_normalize

sigmoid

max_pool

...

< 20KBs

Optimizing Operator
Usage in TFL Micro
● There are many operators in

TensorFlow (~1400 and growing)

● There are many operators in
TensorFlow (~1400 and growing)

● Not all operators are used or
even needed to perform inference

Optimizing Operator
Usage in TFL Micro

data

Conv

W (64⨉3⨉3⨉3)
B (64)

Relu

MaxPool

Conv

W (16⨉64⨉1⨉1)
B (16)

Relu

Conv

W (16⨉64⨉1⨉1)
B (16)

Conv

W (16⨉64⨉1⨉1)
B (16)

Relu Relu

Concat

● There are many operators in
TensorFlow (~1400 and growing)

● Not all operators are used or
even needed to perform inference

● Bring in or load only those that
are important to conserve
memory usage

Optimizing Operator
Usage in TFL Micro

Model
operators

conv2D

conv3D

tanh

depthwise_conv2d

l2_normalize

sigmoid

max_pool

...

Allow developers to specify which ops they want to be included in the binary

How to Reduce the Size Taken by Ops?

tflite::MicroMutableOpResolver<4>
op_resolver(error_reporter);
if (op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
 return;
}

Ti
ny

C
on

v
K

ey
w

or
d

Sp
ott

in
g

M
od

el

Reshape_2

DepthwiseConv2D

W (1⨉10⨉8⨉8)
B (8)

FullyConnected

W (4⨉4000)
B (4)

Softmax

labels_softmax

Hello!

Ti
ny

C
on

v
Ke

yw
or

d
Sp

ott
in

g
M

od
el

Reshape_2

DepthwiseConv2D

W (1⨉10⨉8⨉8)
B (8)

FullyConnected

W (4⨉4000)
B (4)

Softmax

labels_softmax

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

 return;

}

Ti
ny

C
on

v
Ke

yw
or

d
Sp

ott
in

g
M

od
el

DepthwiseConv2D

W (1⨉10⨉8⨉8)
B (8)

FullyConnected

W (4⨉4000)
B (4)

Softmax

labels_softmax

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

 return;

}

Reshape_2

Ti
ny

C
on

v
Ke

yw
or

d
Sp

ott
in

g
M

od
el

FullyConnected

W (4⨉4000)
B (4)

Softmax

labels_softmax

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

 return;

}

Reshape_2

DepthwiseConv2D

W (1⨉10⨉8⨉8)
B (8)

Ti
ny

C
on

v
Ke

yw
or

d
Sp

ott
in

g
M

od
el

DepthwiseConv2D

W (1⨉10⨉8⨉8)
B (8)

Softmax

labels_softmax

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

 return;

}

Reshape_2

FullyConnected

W (4⨉4000)
B (4)

Ti
ny

C
on

v
Ke

yw
or

d
Sp

ott
in

g
M

od
el

DepthwiseConv2D

W (1⨉10⨉8⨉8)
B (8)

FullyConnected

W (4⨉4000)
B (4)

labels_softmax

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

 return;

}

Reshape_2

Softmax

 https://netron.app

Which Ops
to Include?

data

Conv

W (64⨉3⨉3⨉3)
B (64)

Relu

MaxPool

Conv

W (16⨉64⨉1⨉1)
B (16)

Relu

Conv

W (16⨉64⨉1⨉1)
B (16)

Conv

W (16⨉64⨉1⨉1)
B (16)

Relu Relu

Concat

https://netron.app/

If memory is not an issue, you can choose to simply include all operators,

both used and unused, at the expense of increased memory consumption

static tflite::AllOpsResolver resolver;

// Build an interpreter to run the model with.
static tflite::MicroInterpreter static_interpreter(
 model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
interpreter = &static_interpreter;

● Selective op registration
reduces memory
consumption by 30%

● Memory reduction varies by
model, depending on the
operators used by the model

Memory
Improvements

Compatible with the TensorFlow training environment.

Built to fit on embedded systems:

- Very small binary footprint
- No dynamic memory allocation

- No dependencies on complex parts of the standard C/C++ libraries

- No operating system dependencies, can run on bare metal
- Designed to be portable across a wide variety of systems

In Summary, what is TensorFlow Lite Micro?

Micro

Thank You!

