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How do you use TFL Micro?

OpResolver Interpreter Input Data

Invoke() Output Data Action

specify ops 
you’re using with

load a model 
into an

into model inputs,
copy the

run the model via
from model 
outputs, read the



TFLite Micro: 
Interpreter



● TFLite Micro uses an 

interpreter design

● Store the model as 

data and loop through 

its ops at runtime

TFLite Micro Design



Interpreter
(generally slower than compiled code)

Compiler
(generally faster than interpreted code)



● Each layer like a Conv 

or softmax can take 

tens of thousands or 

even millions of cycles 

to complete execution

ML is Different

Conv
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B (16)

Many cycles



● Parsing overhead is 

relatively small for the 

TFMicro interpreter 

when we consider the 

overall network graph

ML is Different
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Model Total 
Cycles

Calculation 
Cycles

Interpreter 
Overhead

Visual Wake 
Words (Ref) 18,990.8K 18,987.1K < 0.1%

Google 
Hotword 

(Ref)
36.4K 34.9K 4.1%

Sparkfun Edge 2 
(Apollo 3 Cortex-M4)



- Change the model 

without recompiling 
the code
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- Change the model 

without recompiling 
the code

- Same operator code 
can be used across 

multiple different 
models in the system

Interpreter 
Advantages



- Same portable model 

serialization format 

can be used across a 
lots of systems.

Interpreter 
Advantages
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TFLite Micro 
Interpreter Execution

if (op_type == CONV2D) {
  Convolution2d(conv_size, input, output, weights);
} else if (op_type == FULLY_CONNECTED) {
  FullyConnected(input, output, weights)

}



The FlatBuffer File Format

TFLite Micro: 
Model Format



// Map the model into a usable data structure.  This doesn't involve any
// copying or parsing, it's a very lightweight operation.

    model = tflite::GetModel(g_model);
    if (model->version() != TFLIGHT_SCHEMA_VERSION) {
        TF_LITE_REPORT_ERROR(error_reporter,
                            "Model provided is schema version %d not equal "
                            "to supported version %d.",
                            model->versison(), TFLITE_SCHEMA_VERSION);

        return;
    }
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// Map the model into a usable data structure.  This doesn't involve 
any
// copying or parsing, it's a very lightweight operation.

model = tflite::GetModel(g_model);
if (model->version() != TFLIGHT_SCHEMA_VERSION) {
    TF_LITE_REPORT_ERROR(error_reporter,
                        "Model provided is schema version %d not equal 
"
                        "to supported version %d.",
                        model->versison(), TFLITE_SCHEMA_VERSION);

    return;
}



How is g_model stored? 



Serialization



● JSON

● ProtoBuf

● FlatBuffer

Serialization 
Libraries JSON

ProtoBufFlatBuffer
Better

Performance

Developer
Friendly

Flexible
Schemas
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● Limited OS support
● Limited compute
● Limited memory

Hardware & Software
Limitations
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What is g_model?

● Array of bytes, and acts as 

the equivalent of a file on disk

● Holds all of the information 
about the model, its 

operators, their connections, 

and the trained weights



• Does not require copies to be made 
before using the data inside the model

FlatBuffers



• Does not require copies to be made 
before using the data inside the model

• The format is formally specified as a 
schema file 

FlatBuffers



• Does not require copies to be made 
before using the data inside the model

• The format is formally specified as a 
schema file 

• Schema file is used to automatically 
generate code to access the 
information in the model byte array

FlatBuffers



Name Args Input Output Weights

Conv2D 3x3 0 1 2

FC - 1 3 4

Softmax - 3 5 -

Index Type Values

2 Float 0.01, 7.45, 9.23, ...

4 Int8 34, 19, 243, ...

... ... ...

Metadata (version, quantization ranges, etc)

g_model FlatBuffer Format

Weight Buffers



The Tensor Arena

TFLite Micro: 
Memory Allocation



● Embedded systems typically have 

only hundreds or tens of kilobytes 

of RAM 

Why Care 
About Memory?
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● Embedded systems typically have 

only hundreds or tens of kilobytes 

of RAM 

● Easy to hit memory limits when 

building an end-to-end application

Why Care 
About Memory?
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● Embedded systems typically have 

only hundreds or tens of kilobytes 

of RAM 

● Easy to hit memory limits when 

building an end-to-end application

● So any framework that integrates 

with embedded products must offer 
control over how memory usage

Why Care 
About Memory?
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Cache (4KB)  



● Products are expected to run for 

months or even years, which poses 

challenges for memory allocation 

● Need to guarantee that memory 

allocation will not end up 

fragmented → contiguous memory 

cannot be allocated even if there’s 

enough memory overall

Long-Running 
Applications



● In embedded systems, the 

standard C and C++ memory APIs 
(malloc and new) rely on 
operating system support

● Many devices have no OS, 
or have very limited functionality

Lack of OS Support

Software
TF Micro Application

Arduino

mbed OS

Software

Nano 33 BLE Sense
Hardware



1. Ask developers to supply a contiguous area of memory to the interpreter, 

and in return the framework avoids any other memory allocations

How TFL Micro solves these challenges

constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model, resolver,
  tensor_arena, kTensorArenaSize, error_reporting);



1. Ask developers to supply a contiguous area of memory to the interpreter, 

and in return the framework avoids any other memory allocations

2. Framework guarantees that it won’t allocate from this “arena” after 
initialization, so long-running applications won’t fail due to fragmentation

How TFL Micro solves these challenges



1. Ask developers to supply a contiguous area of memory to the interpreter, 

and in return the framework avoids any other memory allocations

2. Framework guarantees that it won’t allocate from this “arena” after 
initialization, so long-running applications won’t fail due to fragmentation

3. Ensures clear budget for the memory used by ML, and that the framework 
has no dependency on OS facilities needed by malloc or new

How TFL Micro solves these challenges



Operator Variables Interpreter State Operator Inputs and 
Outputs

uint8_t tensor_arena[kTensorArenaSize]



constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model,
   resolver, tensor_arena, kTensorArenaSize, error_reporting);

Arena size?

● Depends on what ops 
are in the model (and the 
parameters of those 
operations)
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constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model,
   resolver, tensor_arena, kTensorArenaSize, error_reporting);

Arena size?

● Depends on what ops
are in the model (and the 
parameters of those 
operations)

● Size of operator inputs and 
outputs is platform 
independent, but different 
devices can have different 
operator implementations

● → hard to forecast exact 
size of arena needed



constexpr int kTensorArenaSize = 6000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model,
   resolver, tensor_arena, kTensorArenaSize, error_reporting);

Solution

● Create as large an arena as 
you can and run your 

program on-device

● Use the arena_used_bytes() 

function to get the actual 

size used.

● Resize the arena to that 
length and rebuild

● Best to do this on your 
deployment platform, since 

different op implementations 

may need varying scratch 

buffer sizes
* Call MicroInterpreter::arena_used_bytes() to get the actual memory size used.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/micro_interpreter.h#L173


The OpsResolver

TFLite Micro: 
NN Operations



Why Care About 
Binary Size?
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● Executable code used by a 
framework takes up space in Flash
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Why Care About 
Binary Size?
● Executable code used by a 

framework takes up space in Flash

● Flash is a limited resource on 
embedded devices and often just 
tens of kilobytes available



011010101
001010111
010101011
010101011
0110011

Why Care About 
Binary Size?
● Executable code used by a 

framework takes up space in Flash

● Flash is a limited resource on 
embedded devices and often just 
tens of kilobytes available

● If compiled code is too large, it 
won’t be usable by applications.



Micro

Core 
functionality

Model 
operators

Model loading

Memory 
plannerError reporting

...

conv2D

conv3D

tanh

depthwise_conv2d

l2_normalize
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max_pool
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< 20KBs



Optimizing Operator 
Usage in TFL Micro
● There are many operators in 

TensorFlow (~1400 and growing)



● There are many operators in 
TensorFlow (~1400 and growing)

● Not all operators are used or 
even needed to perform inference

Optimizing Operator 
Usage in TFL Micro
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● There are many operators in 
TensorFlow (~1400 and growing)

● Not all operators are used or 
even needed to perform inference

● Bring in or load only those that 
are important to conserve 
memory usage

Optimizing Operator 
Usage in TFL Micro

Model 
operators

conv2D

conv3D

tanh

depthwise_conv2d

l2_normalize

sigmoid

max_pool

...



Allow developers to specify which ops they want to be included in the binary

How to Reduce the Size Taken by Ops?

tflite::MicroMutableOpResolver<4> 
op_resolver(error_reporter);
if (op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
    return;
}
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static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

  return;

}



Ti
ny

C
on

v 
Ke

yw
or

d 
Sp

ott
in

g 
M

od
el

DepthwiseConv2D

W  (1⨉10⨉8⨉8)
B (8)

FullyConnected

W  (4⨉4000)
B (4)

Softmax

labels_softmax

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

  return;

}
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static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

  return;

}
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static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

  return;

}
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static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

  return;

}
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 https://netron.app

Which Ops
to Include?
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If memory is not an issue, you can choose to simply include all operators, 

both used and unused, at the expense of increased memory consumption

static tflite::AllOpsResolver resolver;

// Build an interpreter to run the model with.
static tflite::MicroInterpreter static_interpreter(
    model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
interpreter = &static_interpreter;



● Selective op registration 
reduces memory 
consumption by 30%

● Memory reduction varies by 
model, depending on the 
operators used by the model

Memory 
Improvements



Compatible with the TensorFlow training environment.

Built to fit on embedded systems:

- Very small binary footprint
- No dynamic memory allocation

- No dependencies on complex parts of the standard C/C++ libraries

- No operating system dependencies, can run on bare metal
- Designed to be portable across a wide variety of systems

In Summary, what is TensorFlow Lite Micro?

Micro



Thank You!


