
1

Using UART on DE2-115 FPGA board

1. Overview

The objective of this project is to design several simple applications to showcase the use of the

Universal Asynchronous Receiver/Transmitter (UART) to connect the FPGA chip on the DE2-

115 board [1] to the host PC computer.

2. Overview

Before anything, we should first discuss a little the Universal Asynchronous

Receiver/Transmitter (UART). If you are already familiar with it, you can skip this section. This

discussion here has been adapted from lab#4 of the Embedded Systems course I teach here [2]

and the chapter on UART from this textbook [3].

The most basic method for communication with the FPGA chip or an embedded processor is

asynchronous serial. It is implemented over a symmetric pair of wires connecting two devices

(referred as host and target here, though these terms are arbitrary). Whenever the host has data to

send to the target, it does so by sending an encoded bit stream over its transmit (TX) wire. This

data is received by the target over its receive (RX) wire. The communication is similar in the

opposite direction. This simple arrangement is illustrated in Fig.2.1 below. This mode of

communications is called “asynchronous” because the host and target share no time reference

(no clock signal). Instead, temporal properties are encoded in the bit stream by the transmitter

and must be decoded by the receiver.

Figure 2.1: Basic serial communication.

A commonly used device for encoding and decoding such asynchronous bit streams is a

Universal Asynchronous Receiver/Transmitter (UART). UART is a circuit that sends parallel

data through a serial line. UARTs are frequently used in conjunction with the RS-232 standard

(or specification), which specifies the electrical, mechanical, functional, and procedural

characteristics of two data communication equipment.

A UART includes a transmitter and a receiver. The transmitter is essentially a special shift

register that loads data in parallel and then shifts it out bit by bit at a specific rate. The receiver,

on the other hand, shifts in data bit by bit and reassembles the data. The serial line is ‘1’ when it

is idle. The transmission starts with a start-bit, which is ‘0’, followed by data-bits and an optional

2

parity-bit, and ends with stop-bits, which are ‘1’. The number of data-bits can be 6, 7, or 8. The

optional parity bit is used for error detection. For odd parity, it is set to ‘0’ when the data bits

have an odd number of ‘1’s. For even parity, it is set to ‘0’ when the data-bits have an even

number of ‘1’s. The number of stop-bits can be 1, 1.5, or 2. The transmission with 8 data-bits, no

parity, and 1 stop-bit is shown in Fig.2.2 (note that the LSB of the data word is transmitted first).

Figure 2.2: Transmission of a byte.

No clock information is conveyed through the serial line. Before the transmission starts, the

transmitter and receiver must agree on a set of parameters in advance, which include the baud-

rate (i.e., number of bits per second), the number of data bits and stop bits, and use of parity bit.

To understand how the UART's receiver extracts encoded data, assume it has a clock running at

a multiple of the baud rate (e.g., 16x). Starting in the idle state (as shown in Fig.2.3), the

receiver “samples” its RX signal until it detects a high-low transition. Then, it waits 1.5 bit

periods (24 clock periods) to sample its RX signal at what it estimates to be the center of data bit

0. The receiver then samples RX at bit-period intervals (16 clock periods) until it has read the

remaining 7 data bits and the stop bit. From that point this process is repeated. Successful

extraction of the data from a frame requires that, over 10.5 bit periods, the drift of the receiver

clock relative to the transmitter clock be less than 0.5 periods in order to correctly detect the stop

bit.

Figure 2.3: Illustration of signal decoding.

UARTs can be used to interface to a wide variety of other peripherals. For example, widely

available GSM/GPRS cell phone modems and Bluetooth modems can be interfaced to a

microcontroller UART. Similarly GPS receivers frequently support UART interfaces. For more

details on UART and RS-232, please read references [4].

In this project, we'll use an UART controller - completely described in VHDL - to connect the

FPGA chip of the DE2-115 board to the host PC. The FPGA on the DE2-115 board can be

3

connected to the host PC through the RS-232 connector on the board as shown in Fig.2.4 (which

is an excerpt from the user manual of the board). The DE2-115 board uses the ZT3232

transceiver chip and a 9-pin DB9 connector for RS-232 communications. For detailed

information on the ZT3232 transceiver, here is its datasheet [5].

Figure 2.4: Connections between FPGA and ZT3232 (RS-232 chip) and the DB9 connector on

the DE2-115 board.

3. Implementation #1: Send characters from host PC to design entity on FPGA, which

"increments" and loops back the incremented chars

Here, we simply replicate an example from the textbook [2], with some minor changes to adapt it

to work on the DE2-115 board. This is a simple design entity running on the FPGA and

constructed with basically a UART controller - completely specified in VHDL - which receives

characters we send from the host PC, increments them, and sends them back (i.e., loop back) to

the host PC. On the host PC, we use a simple serial hyperterminal-like program such as putty to

send characters and to receive and display the looped-back data. The block diagram of the entire

design is shown in Fig.3.1.

4

Figure 3.1: Block diagram of design that uses VHDL UART controller to connect FPGA of

DE2-115 board to host PC.

You can download the entire Quartus II project directory at the bottom of this page. To set it up,

you need to program your DE2-115 board, connect the board with a serial cable to the host PC

(possibly using a USB to Serial adapter, like I do on my laptop, which does not have a serial

connector), and use a Serial terminal set up with a baud rate of 19200. The required baud rate is

19200 because that is how the VHDL UART controller is set up using some hard coded values.

If you want to change this, you must change the hard coded values inside the VHDL code (look

inside 2_uart.vhd) and then "re-compile" the whole project to generate a new programming file.

In this project I use putty terminal. Once, everything is set up, if you type in the putty terminal

for example "123456789" and then push KEY1 push button on the DE2-115 enough time, you

should get that data looped back and displayed inside the putty terminal as "23456789:" - as

shown in Fig.3.2 below.

Figure 3.2: Putty terminal shows data incremented looped-back data.

5

REFERENCES

[1] DE2-115 FPGA development board;

http://www.altera.com/education/univ/materials/boards/de2-115/unv-de2-115-board.html

[2] Lab#4 of Emebedded Systems Design (COEN-4720) course at Marquette University.

http://dejazzer.com/coen4720/labs/lab4_uart.pdf

[3] Chapter 7 on UART of textbook;

Pong P. Chu, FPGA Prototyping by VHDL Examples: Xilinx Spartan-3 Version, Wiley 2008.

[4] UART entry on Wikipedia (click also on the references therein for RS-232);

http://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter

[5] ZT3232 transceiver datasheet;

http://www.zywyn.com/pdf/ZT32xxE_ds.pdf

http://www.altera.com/education/univ/materials/boards/de2-115/unv-de2-115-board.html
http://dejazzer.com/coen4720/labs/lab4_uart.pdf
http://www.amazon.com/FPGA-Prototyping-VHDL-Examples-Spartan-3/dp/0470185317/ref=sr_1_1?ie=UTF8&qid=1429018454&sr=8-1&keywords=Pong+P.+Chu%2C+FPGA+Prototyping+by+VHDL+Examples
http://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
http://www.zywyn.com/pdf/ZT32xxE_ds.pdf

