
Senior Design Final Report

E50: Parallelization of the Viola-Jones Face

Detection Algorithm on an FPGA

Team: Advisor:

Peter Irgens Curtis Bader Dr. Cristinel Ababei

Theresa Le Devansh Saxena

May 6, 2016

E50: Face Detection on an FPGA

Page | 1

Table of Contents
1) Abstract ... 2

2) Customer Needs Specification .. 3

3) FPGA Design .. 4

3.1) Introduction .. 4

3.2) Physical Overview ... 5

3.2.1) Camera .. 5

3.2.2) FPGA Development Kit ... 5

3.2.3) Display .. 7

3.2.4) Setup/ Connections ... 7

3.3) Top Level Design ... 8

3.3.1) Camera Driver .. 8

3.3.2) VGA Driver .. 8

3.3.3) Memory Architecture ... 10

3.3.4) Integral Image Generation .. 12

3.3.5) Subwindow Kernel Parallelization ... 14

3.3.6) Facebox... 17

3.3.7) Top Level Control .. 19

4) Software Design .. 21

5) Experimental Verification ... 22

5.1) Software ... 22

5.1.1) Methodology ... 22

5.1.2) Analysis .. 25

5.2) FPGA ... 26

5.2.1) Methodology ... 26

5.2.2) Analysis .. 28

6) Economic Analysis .. 29

6.1) Component Cost... 29

6.2) Development Cost .. 29

6.3) Final Estimated Product Cost ... 29

7) Design Risk Analysis .. 30

8) Customer Needs Analysis ... 30

9) Project Legacy ... 31

9.1) FPGA ... 31

9.2) Software ... 31

References ... 33

Appendix ... 34

E50: Face Detection on an FPGA

Page | 2

1) Abstract

Human face detection is the process of determining whether there are faces present in an image.

While humans excel at pattern detection like this, electronic detection requires a large amount of data

processing resulting in poor performance especially on conventional single-threaded software

implementations. This constricts real time face detection and thus limits the available applications it can

be utilized for.

The focus of this project is to create a parallelized hardware face detection implementation using

the original Viola-Jones (VJ) face detection algorithm on a Field Programmable Gate Array (FPGA)

using VHSIC Hardware Description Language (VHDL). It is also important to create single and

multithreaded versions of the software implementation of the original VJ algorithm for performance

comparisons. The hardware system must be fully implemented on an FPGA, capture live video of frame

size 320x240, determine whether there are faces present, and then output a video stream with boxes

indicating the locations of detected faces. The software implementations analyze static images with a

single face, 6 faces, and 53 faces at images sizes of 320x240, 640x480, and 1280x960 then produce an

augmented image with face indicators for each. These benchmarks allow for comparable

performance/cost analysis on 320x240 images with a single face and allow for extrapolative predictions

of the performance of FPGAs at higher image sizes with more resources available.

The main goal is to compare the performance, in terms of frames processed per second (FPS) of a

low-cost hardware system compared to a much more expensive general purpose CPU software system.

The FPGA system was able to achieve detections at 4.4 FPS for a 320x240 image. In comparison, the

single-threaded software implementation achieved an effective 7.7, 2.6, 0.7 FPS and the multithreaded

implementation achieved an effective 12.9, 4.4, 1.4 FPS for one face at 320x240, 640x480, and 1280x960

image sizes respectively. We expect that the benefit of the FPGA based implementation will increase as

the image sizes increase. This is because performance on a high density FPGA implementation can scale

relatively linearly with the number of hardware accelerators used while software implementations are

limited to costly multi-core processors whose performance does not linearly increase with thread count.

https://en.wikipedia.org/wiki/VHSIC

E50: Face Detection on an FPGA

Page | 3

2) Customer Needs Specification

We present an efficient and cost effective FPGA based implementation of the VJ algorithm. This

is an academic research project, and our customer is Dr. Cristinel Ababei. His primary objective for the

project is to study the achievable performance with a low-end FPGA chip based implementation

compared to sequential and parallel implementations of the VJ algorithm executed on a general purpose

CPU. To be able to achieve our primary objective, the project was divided into the following subtasks:

1. Study the VJ algorithm and identify the major computational bottlenecks that could be

parallelized using VHDL

2. Implement parallelized hardware acceleration for face detection using VHDL

3. Write a multi-threaded C++ implementation that runs on a general purpose CPU

4. Implement the multi-threaded C++ implementation to work with a video stream

5. Implement video stream processing on FPGA implementation for real-time face detection

6. Compare the multi-threaded C++ implementation with the VHDL implementation and the

original implementation

7. Publish findings in a journal paper

VHDL code can be ported to almost any FPGA and our implementation is a complete system

level hardware design that can be tested on various qualities of FPGA chips. We will be publishing all of

our source code for the VHDL and software implementations as well as our journal paper. This will allow

hobbyists and researchers to reproduce and compare our results with other implementations and under

different conditions.

Based upon related work, it is possible to speed up the detection performance to 16 FPS versus the serial

software implementation of 0.31 FPS for VGA resolutions, as described in [5]. Our aim is to reach an

FPS that is close if not better than the FPS achieved by related works. Our objective is to achieve real

time face detection with a video stream on the FPGA. By comparing the data from the two

implementations we will be able to make speculations about performance versus cost of the FPGA system

compared to the software implementations. The scope of this project is currently only limited to Dr.

Ababei’s research however it could be scaled to meet a wide variety of industrial applications such as

security and monitoring.

E50: Face Detection on an FPGA

Page | 4

3) FPGA Design

3.1) Introduction

The Design of the FPGA is made up of 3 main components: the OV7670 camera, the Altera

Cyclone IV FPGA DE2-115 development board, and a generic 640x480 VGA monitor as seen in figure

3.1-1 below. The FPGA implementation must be able to capture frames from the camera, process the

captured image for faces, and display the video stream output with a red box around detected faces. The

processing step includes frame capture, integral image calculation, parallel subwindow processing of a

pyramid of scaled images, and augmenting captured frames with face detection indicators.

Figure 3.1-1 - System Block Diagram

E50: Face Detection on an FPGA

Page | 5

3.2) Physical Overview

3.2.1) Camera

The OV7670 image sensor and DSP module is a low cost CMOS device that is capable of

processing VGA resolution images (640x480) at 30 frames per second [8]. A large number of registers

must be configured via the Serial Camera Control Interface (SCCB) to select the processed image

resolution, output data format and other parameters related to the image quality. This SCCB interface is

compatible with the industry standard I2C protocol. Due to the vast complexity and lack of

documentation about register functions, it is difficult to derive the correct register settings without

utilizing third party source code. The electronic hobbyist community has worked towards reverse

engineering the register set for improved image quality at various resolutions. Source code for the camera

configuration and image capture were liberated from Mike Field’s VHDL design [7] to interface the

OV7670 camera module with the FPGA. In this implementation, the camera is configured to process

640x480 resolution images, and format the output data as RGB565 format at 30 frames per second.

Connections between the camera and FPGA are depicted in figure 3.1-1 and detailed in table A.2.

Figure 3.2-1 - OV7670 Camera Module [6]

3.2.2) FPGA Development Kit

 The Terasic DE2-115 Development and Education Board [12] was chosen for our development

needs since it is a cheap education/development platform that was readily available from our project

advisor. Figure 3.1-1 shows a hardware overview of the development board with its peripheral

connections and components. This kit implements an Altera Cyclone IV FPGA (EP4CE115F29C7N) with

3,888 Kbits of embedded memory, 114,480 logic elements and 266 embedded 18x18 multipliers. [1] In

our application, the FPGA is the heart of the embedded system that captures image frames from the

camera, processes the captured image for locations of faces in the image, augments the captured image to

highlight the detected faces and generates VGA display signals to view the resultant face detections on a

monitor. The FPGA interfaces with the camera via GPIO pins on connector JP5 while the VGA display

E50: Face Detection on an FPGA

Page | 6

output is routed to a standard 15-pin D-SUB connector for monitor display. More details about the

internal logic will be discussed in following sections.

 A number of user controls are implemented using the development board’s general purpose

switches, push buttons and LEDs. As shown in figure 3.1-1 switches 15 to 17 facilitate capture mode

select, resend camera register values, and reset functions. The capture mode select switch puts the system

into a video processing mode if set to logic ‘0’ or single frame capture mode if set to logic ‘1’. In this

single frame capture mode, the KEY0 push button is used to flag a frame capture when pressed down and

then store/process the single frame when the button is released. This enables us to display single frame

face detection on the monitor for ease of debugging and photographing purposes. The resend camera

register value switch flags the camera controller to resend OV7670 register values since there is a

possibility for partial register configuration on device startup.

 It should also be noted that particular debug signals and performance measurement signals were

routed to GPIO pins for development and experimental verification purposes. These are listed in table

A.1.

Figure 3.2-2 - Terasic DE2-115 Development Board [13]

E50: Face Detection on an FPGA

Page | 7

3.2.3) Display

 As previously stated, a VGA display interface is used to connect a peripheral monitor to the

FPGA. Since standard VGA signals contain analog red, green and blue components, an onboard DAC

(ADV7123) converts 24 bit RGB formatted data to the analog RGB. Figure 3.1-1 illustrates the signals

that interface with the DAC and the signals that form the VGA interface. This implementation displays

320x240 images on 640x480, 60-Hz VGA monitors.

3.2.4) Setup/ Connections

 Setup and operation of the FPGA face detection system is rather simple. Assuming the DE2-115

development kit is used, a 12V 2A power source is required. The VHDL code needs to be synthesized

using Quartus Prime 15.1 software [4] and programed onto the FPGA. A VGA cable connects the board

to a generic VGA monitor port and the camera is connected to the necessary GPIO pins. Tables A.1, A.2

and A.3 from the appendix contain the pin connection information. The setup should look similar to

figure 3.2-3. Any display issues can be fixed using the reset switches (SW[17] and SW[16]).

Figure 3.2-3 - Photograph of FPGA Face Detection System

 Camera Module -------->

 DE2-115 board -->

E50: Face Detection on an FPGA

Page | 8

3.3) Top Level Design

The top level of the design consists of a number of components. These components facilitate

image frame capture, processing and display. All of these top level components are synchronized and

controlled from a top level control unit. A phase lock loop (PLL) generates clock signals that are

distributed to each component for synchronous processing of the subsystems. Figure 3.3-1 illustrates

some of the top level interconnections between each component. Details on each top level component are

discussed in the following sections.

3.3.1) Camera Driver

 The camera interface consists of two components. This includes the OV7670 Controller module

and the OV7670 Capture module. The OV7670 Controller configures registers on the camera via I2C,

writing the configuration data sequentially to the camera.

The OV7670 Capture module effectively captures and formats data that is received from the

camera. 320x240 images are captured at 30Hz into the image frame buffer with a data format of 12 bit

color (RGB 4:4:4). Source code for these modules were liberated from [7] so the majority of our rapid

development could be centered on the VHDL description for face detection image processing. It should

also be noted that the register configuration for the OV7670 image sensor is poorly documented, so it was

extremely beneficial to use working register values from [7].

3.3.2) VGA Driver

 The VGA driver enables captured frames to be displayed on a peripheral 640x480, 60Hz VGA

monitor. This driver continuously displays the contents of the image frame buffer, displaying both newly

captured frames along with frames augmented with face detection indicators. Since this system processes

only 320x240 images, the driver displays these images in the top left quadrant of the monitor. The rest of

the display is blanked with null/black pixels. This module also converts the 12 bit formatted color data

contained within the image frame buffer into a 24 bit color format to drive the peripheral ADV7123

digital to analog converter. VHDL code for this entity was provided from our advisor so the majority of

our rapid development could be centered on the VHDL description for face detection image processing.

E50: Face Detection on an FPGA

Page | 9

Figure 3.3-1 - Top Level Block Diagram

E50: Face Detection on an FPGA

Page | 10

3.3.3) Memory Architecture

 A single image frame buffer is utilized for storing captured frames from the camera and

displaying the detected faces onto the VGA monitor. This buffer has 76,800 addressable memory

locations to store a 12 bit color image with a resolution of 320x240. The stored image is converted into an

integral image format by the integral image generator, ii_gen, and is augmented by the faceBox entity to

display detected faces. Since multiple processes, operating at multiple clock frequencies, write to or read

from this buffer, a number of multiplexers switch the port addresses along with the read/write clocks.

Table 3.3-1 shows which clocks and addresses are multiplexed to the buffer ports during each process.

Figure 3.3-1 highlights top level interconnections for this image buffer.

PortA Function PortB Function PortA Clock PortB Clock PortA address PortB address

VGA Display Camera Capture 25 MHz 50 MHz
VGA address

(read)

Capture address

(write)

FaceBox Process II_Gen Process 40 MHz 100 MHz
Box address

(write)

Image address

(read)

Table 3.3-1 - Image Buffer Read and Write Addressing and Clock Multiplexing

Four buffers were implemented in the design to enable high bandwidth memory reads from both

the integral image (ii) and integral image square (iix2). Each integral image consists of two buffers,

containing exactly the same data, where one addresses the base(lower) chunk of data and the other

addresses the next(upper) chunk in the address space. Since 16 subwindows are currently implemented,

each buffer’s data output width is 16*wordSize; where wordSize is 21 bit for ii and 29 bit for iix2. These

chunks are adjacent in memory and allow a large mux like entity to route any 16*wordSize data set from

these two addressed chunks. Subwindow_top is the entity that addresses these chunks based on relative

position of the first subwindow kernel (subwindow[0]) in the scaled integral image. Each subwindow

instance is offset by 1 pixel in the X direction, relative to the integral image. Subwindow_top generates a

13 bit address where the upper 9 bits are used to address the integral image buffers and the lower 4 bits

are used as select signals for the large data mux routing. This type of memory architecture eliminates the

need to access the memory twice to access data for the 16 subwindows, but comes at the cost of doubling

the amount of memory needed for integral image buffering. Figure 3.3-2 shows the topology of the

integral image buffers in the top level of the design and important datapath elements.

An example data access:

If subwindow[0] requires the data stored at pixel location x=3,y=0, then subwindow[1] will

receive the data from x=4,y=0 and subwindow[15] will receive the data from x=18,y=0. So the upper 9

bits of the generated ii_rdaddress, within subwindow_top, will be zero to address the first 16 words in

memory via the lower chunk buffer and the following 16 words via the upper chunk buffer. The lower 4

bits of the generated ii_rdaddress are used to select which 16 words are routed to the subwindows. Since

the addressed pixel location was x=3,y=0, word[3]:word[18] are routed to subwindow[0]:subwindow[15]

respectively.

E50: Face Detection on an FPGA

Page | 11

Figure 3.3-2 - Expanded Integral Image Memory Topology

It should also be noted that each integral image buffer is divided into two partitions. These are

upper and lower partitions within the same addressable RAM entity. The division of each integral image

buffer allows one portion to be written to by the integral image generator process while the other can be

read from by the subwindow process. In this implementation, a buffer contains two 39*59 pixel integral

images in the same buffer. Each buffer contains 8,192 addressable memory locations and the most

significant bit of the 13 bit address determines if the lower or upper memory partitions is being operated

on. So effectively 0(dec) is the base address of the lower memory partitions and 4,096(dec) is the base

address of the upper memory partitions. In the top level, the mem_state signal determines which partitions

of the integral image memory space is being written to by ii_gen and read from subwindow_top. Table

3.3-2 indicates how the integral image buffer is being written to and read from depending on the current

memory state.

E50: Face Detection on an FPGA

Page | 12

mem_state='0'
lower memory partition is being written to by ii_gen.vhd while the upper is being

read to subwindow_top.vhd

mem_state='1'
upper memory partition is being written to by ii_gen.vhd while the lower is being

read to subwindow_top.vhd

Table 3.3.-2 - Integral Image Memory State Table

But how does this memory architecture impact the system performance? This architecture allows

the current subwindow classifier cascade to execute while the next integral image is being generated. The

ii_gen process is always completed before the parallel subwindows can scan through the 36 possible scan

locations within the current integral image. So performance is effectively the same as a memory

architecture that stores the integral image of the entire scaled image.

3.3.4) Integral Image Generation

 The integral image generator (ii_gen) converts a portion of the source image to an integral image

and integral image square format. The integral image at location (x,y) contains the sum of grayscale

pixels above and to the left of the of (x,y). Also, the integral image square at location (x,y) contains the

sum of squared grayscale pixels above and to the left of (x,y). From this, the cumulative sum of grayscale/

grayscale squared pixels within a rectangular region can be evaluated by four array references from the

respective integral image. Figure 3.3-3 illustrates that the sum of pixels inside rectangle D can be

computed with four array references on values of the integral image: (4+1)-(2+3).

Figure 3.3-3 - Integral Image Calculation Reference

 To generate the integral images, ii_gen must convert the 12 bit (RGB 4:4:4) color source data to 8

bit grayscale. From the YUV colorspace, grayscale representations of a RGB pixel can be determined by

the luminance(Y) component. [3] This luminance component is the sum of individually scaled R, G and B

component as expressed in Eq.1. To eliminate the need for floating point multipliers, the scalars were

implemented by bit shifting each RGB component. (Eq.2 and Eq.3) Also, to increase the contrast of the

grayscale data, each RGB component was concatenated to itself before the shifting. The resultant

grayscale conversion of the 12 bit (RGB 4:4:4) color data is expressed in Eq.4

 The integral image generator utilizes accumulators and recursive computation to create the

resultant integral image. An accumulator is used to build the sum of grayscale pixels within the current

row of (x,y). Adding this value to the previous rows (x,y-1) integral image value results in the integral

E50: Face Detection on an FPGA

Page | 13

image value at (x,y). In the case that the generator is operating on the first row, the resultant integral

image value at (x,y=0) is only the accumulated sum of grayscale pixel values up to (x,y=0). It should be

noted that the datapath of the integral image generator was pipelined to increase performance. Figure 3.3-

4 illustrates the data path between each buffer and indicates locations of the pipeline’s registers.

Figure 3.3-4 - Integral Image Generator Block Diagram with Pipeline Indicators

Another feature of this generator is that it enables linear scaling of the source image. It is

important to process multiple scaled image sizes such that faces of difference size are scaled down to the

fixed 24x24 pixel subwindow area for subwindow kernel feature evaluation. This scaling is achieved by

manipulating the image buffer read address during the integral image generation process. Linear scaling

effectively down-samples an image by omitting pixel data in the resultant image. The data that persists in

the resultant scaled image is selected by scaling the coordinates of the source image relative to the

integral image space. Figure 3.3-5 illustrates linear scaling where (x*scale,y*scale) is the location of the

source data relative to the location of the resultant integral image (x,y).

Figure 3.3-5 - Example of linear scaling by factor of 2

E50: Face Detection on an FPGA

Page | 14

3.3.5) Subwindow Kernel Parallelization

A classifier cascade is a trained chain of face feature evaluations that filters out non-faces

throughout its execution. Multiple feature evaluations occur throughout the 25 strong stages of the

cascade, accumulating values based on feature calculations in a fixed 24x24 pixel subwindow area. This

particular classifier cascade implements features comprised of three rectangular areas. The sum of

grayscale values contained within these rectangular areas are used to determine differences between dark

and light spots on human faces. The accumulated values from feature evaluations are compared to strong

thresholds at the end of each strong classification stage. If these thresholds are not exceeded, then non-

face is detected in the current subwindow. If at the end of a strong stage, a non-face is detected then the

currently evaluated subwindow is rejected and another subwindow begins its evaluation for faces. If the

classifier cascade completes the last classification stage without detecting a non-face, then the subwindow

region is determined to contain a face. Figure 3.3-6(a) illustrates the sequential nature of the classifier

cascade while figure 3.3-6(b) highlights an example rectangular feature from one cascade evaluation

node.

Figure 3.3-6 - (a) Classifier Cascade (b) Example Rectangular Feature

Figure 3.3-7 is a generalized representation of the subwindow kernel that facilitates feature

calculations of the classifier cascade. The kernel implements two data paths: one for variance

normalization of the subwindow and the other for feature calculation.

E50: Face Detection on an FPGA

Page | 15

Figure 3.3-7 - Subwindow Kernel

 Variance normalization aims to normalize processed subwindows to light levels of the images

used in training of the classifier cascade. Similar to the Viola-Jones suggestion [14], feature values are

normalized in a post calculation step. The weak threshold is scaled based upon the relative variance

normalization calculation of each subwindow. Calculations for the variance normalization factor are

expressed in Eq.5 and Eq.6. The mean (m) can be evaluated from the integral image (p0:p3) while the

sum of squared pixel values is evaluated from the integral image of squared pixels (ssp0:ssp3). Note the

the number of pixels per subwindow (N) is nominally 576 for a 24x24 subwindow area but is

approximated to 512 for division via bit shifting.

𝑉𝑎𝑟 𝑁𝑜𝑟𝑚 𝐹𝑎𝑐𝑡𝑜𝑟 = √𝑚2 −
1

𝑁
𝛴(𝑥2) Eq.5

𝑉𝑎𝑟 𝑁𝑜𝑟𝑚 𝐹𝑎𝑐𝑡𝑜𝑟 = √([𝑝0 + 𝑝3] − [𝑝1 + 𝑝2])2 −
1

512
([𝑠𝑠𝑝0 + 𝑠𝑠𝑝3] − [𝑠𝑠𝑝1 + 𝑠𝑠𝑝2]) Eq.6

 The second data path facilitates feature calculation of the classifier cascade. Integral image values

representing three rectangles, or one feature, are calculated and weighted at the same time to produce the

resultant feature value. Values from the integral image (r0:r11) enable quick summations of the pixels

within a rectangular region.

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 = 𝑤𝑒𝑖𝑔ℎ𝑡0 ∗ 𝛴𝑝𝑖𝑥𝑒𝑙𝑠𝑟𝑒𝑐𝑡0 + 𝑤𝑒𝑖𝑔ℎ𝑡1 ∗ 𝛴𝑝𝑖𝑥𝑒𝑙𝑠𝑟𝑒𝑐𝑡1 + 𝑤𝑒𝑖𝑔ℎ𝑡2 ∗ 𝛴𝑝𝑖𝑥𝑒𝑙𝑠𝑟𝑒𝑐𝑡2 Eq.7

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 = 𝑤0 ∗ ([𝑟0 + 𝑟3] − [𝑟1 + 𝑟2]) + 𝑤1 ∗ ([𝑟4 + 𝑟7] − [𝑝5 + 𝑟6]) + 𝑤2 ∗ ([𝑟8 + 𝑝11] − [𝑟9 + 𝑟10]) Eq.8

E50: Face Detection on an FPGA

Page | 16

Figure 3.3-8 - Relative orientation of rectangle references in subwindow area. Locations and dimensions

of rectangles are dependent on classifier cascade parameters.

 Based upon the normalized weak node threshold and the resultant feature value, a left_tree and

right_tree value is accumulated into a register for strong threshold comparison at the end of a

classification stage. Detection results are monitored in the Subwindow_top level.

To achieve performance gains through parallelization, 16 subwindow kernels are implemented in

parallel within the Subwindow_top level of the design. These kernels evaluate 16 individual subwindow

regions that are offset by one pixel horizontally (relative to the scaled image/integral image) while sharing

the same control and cascade parameters. The theoretical maximum performance gain over a single kernel

would be 16x. But since the kernels operate in a single instruction multiple data manner, a single face in

one of the subwindows will lengthen the effective execution time for all kernels. So an estimate

performance gain over a single kernel is between 10x-12x, depending on the number and density of faces

in the image.

E50: Face Detection on an FPGA

Page | 17

3.3.6) Facebox

FaceBox is an entity that serves as an intermediate memory element to store detection results and

draw indicators (red boxes) onto the original captured frame after all detection processing is complete.

The buffer contained within this entity serves as FIFO memory that stores detections from the 16

subwindow kernels along with positions and image scales relative to the processed subwindow. After

subwindow processing is complete for all scales of the image, the faceBox process writes data to the

image buffer in the top level, patterning red boxes around each detected face. Figure 3.3-9 shows a

generic representation of the components contained in this entity and figure 3.3-10 expresses how boxes

are drawn onto captured image.

Figure 3.3-9 - faceBox Entity

E50: Face Detection on an FPGA

Page | 18

Algorithm: faceBox draw process

1: Input: scale, subwind0_xpos, subwin0_ypos from FIFO buffer, addressed to count_box_out

2: Output: red pixel data from drawLine functions

3: wait for faceBox start flag

4: while count_box_out < count_box_in do

5: for i=0:15 do // 16 subwindows logged in parallel

6: if detection=true for subwindow[i] then

7: scale=current subwindow scale

8: box_dim=24*scale

9: x_base=(subwin0.x_pos + i)*scale

10: y_base=(subwindow0,y_pos)*scale

11: drawLineHorizontal(length=box_dim, x_base, y_base, scale) // top line

12: x_base=(subwin0.x_pos + i + 24)*scale

12: y_base=(subwindow0,y_pos)*scale

14: drawLineVertical(length=box_dim, x_base, y_base, scale) // right line

15: x_base=(subwin0.x_pos + i)*scale

16: y_base=(subwindow0,y_pos)*scale

17: drawLineVertical(length=box_dim, x_base, y_base, scale) // left line

18: x_base=(subwin0.x_pos + i)*scale

19: y_base=(subwindow0,y_pos + 24)*scale

20: drawLineHorizontal(length=box_dim, x_base, y_base, scale) // bottom line

21: end if

22: end for

23: count_box_out++

24: end while

25: flag draw process is done

Figure 3.3-10 - faceBox Draw Process

E50: Face Detection on an FPGA

Page | 19

3.3.7) Top Level Control

A top state machine was designed to coordinate the camera capture, image processing and writing

detection indicators onto the captured frame. This state machine first enables new image frames to be

captured into the image buffer and then proceeds to process the image. Image processing consists of

integral image generation and subwindow evaluation. An integral image, of size 39x59 pixel, is initially

generated. Following this, the next integral image in the scaled image is generated while the 16 parallel

subwindow kernels scan through and evaluate the previous integral image for faces. By the end of the

subwindow scanning, the next integral image has been generated such that the subwindows proceed to

evaluate this new integral image without any downtime. The concurrent subwindow evaluation of the

current integral image and generation of the next integral image continues in a scanning pattern

throughout the current scaled image. Once the last subwindow scan in a scaled image is complete, the

image scale increments and the system proceeds to evaluate/scan the image at the new image scale. The

system evaluates four scaled images and then updates the original captured image with red box indicators

around the detected faces. This augmented frame is displayed on the VGA monitor for a few frames

before the system captures a new frame to process. The effective scanning of the subwindow kernels and

integral images is depicted by figure 3.3-11. A high level overview of the top level state machine process

is expressed in figure 3.3-12.

Figure 3.3-11 - Integral Image and Subwindow Kernel Scanning

E50: Face Detection on an FPGA

Page | 20

Figure 3.3-12 - Top Level Process Flow Chart

E50: Face Detection on an FPGA

Page | 21

4) Software Design

The objective of the software design is to parallelize the VJ algorithm using pthreads in order to

achieve a speed boost compared to the sequential (original) version [11]. For reference, the pseudocode

of the algorithm is presented in Figure 4.1-1 below.

Algorithm: Viola-Jones Face Detection Algorithm

1: Input: original test image

2: Output: image with face indicators as rectangles

3: for i ← 1 to num of scales in pyramid of images do

4: Downsample image to create imagei

5: Compute integral image, imagei

6: for j ← 1 to num of shift steps of sub-window do

7: for k ← 1 to num of stages in cascade classier do

8: for l ← 1 to num of filters of stage k do

9: Filter detection sub-window

10: Accumulate filter outputs

11: end for

12: if accumulation fails per-stage threshold then

13: Reject sub-window as face

14: Break this k for loop

15: end if

16: end for

17: if sub-window passed all per-stage checks then

18: Accept this sub-window as a face

19: end if

20: end for

21: end for

Figure 4.1-1. A pseudocode variation of the Viola Jones Algorithm.

In the multithreaded implementation, the outermost for-loop in line 3 was optimized with one

pthread for each scaled image in the image pyramid. The algorithm is computed over every scaled image

in the image pyramid sequentially and this makes the image pyramid a very good candidate for

parallelization such that multiple scaled images can be computed concurrently. After a pthread is created

for every scaled image, all the pthreads are executed simultaneously.

For the pthread implementation to work correctly, the threads must be able to read from the

cascade classifier and then write their results into a single data structure. To avoid any race conditions

when the threads are trying to read from the cascade classifier, we created local copies of this object for

each of the threads so that the threads no longer needed to compete for this object. We used this approach

E50: Face Detection on an FPGA

Page | 22

instead of implementing a mutex lock because the sub-window sweeping heavily relies on the data stored

in the cascade classifier and the threads must be able to access it quickly for every sub-window shift.

Making the threads compete for this resource would tremendously slow down the computation. Once the

threads have completed their task, they have to be able to store the results (location of detected faces) into

a single data structure which is then used to draw the rectangles around faces. The threads need to access

this data structure only at the end once all the computation is completed and store the results. Because the

threads need access to this data structure only once, we protected it with a mutex lock instead of creating

a data structure for each pthread and compiling them together into a single data structure in the end. The

latter approach would have been more computationally intensive and increased the execution time.

5) Experimental Verification

5.1) Software

To be able to detect faces of different sizes, the algorithm works with a pyramid of scaled images.

This effectively allows sweeping using the same set of Haar-like patterns on different scaled versions of

the initial image. Thus, sliding sub-windows will sweep each of the images from the pyramid as

illustrated in Figure 5.1-1. The image pyramid was parallelized using pthreads such that a thread is

assigned to each of the images in the image pyramid and then the algorithm is computed over each of

these images simultaneously.

 Figure 5.1-1 - Image Pyramid

5.1.1) Methodology

Testing verification involved running both the sequential and parallelized algorithms over a set of

test images and recording two things: the number of faces detected and the execution time. The set of test

images includes a photo with one face (Figure 5.1-2), six faces (Figure 5.1-3), and fifty-three faces

E50: Face Detection on an FPGA

Page | 23

(Figure 5.1-4). All the test images were resized to three different sizes: 320x240 pixels, 640x480 pixels,

and 1280x960 pixels.

Figure 5.1-2 - The 240x320 pixel image for one face (Dr. Cristinel Ababei).

Figure 5.1-3 - The 320x240 pixel image for six faces.

E50: Face Detection on an FPGA

Page | 24

Figure 5.1.4 The 320x240 pixel image for fifty-three faces.

We predict that as the number of faces increases and the size of the photo increases, the execution

time will also increase. This is because for a smaller image, it may not need to be scaled and resized eight

times in order to detect a face whereas for a larger image, the algorithm may go through the entire set of

scaled images in the image pyramid to find a face. With a larger number of faces, the algorithm needs to

stop at each potential face to determine if a face is actually there. This process would happen less

frequently if there are fewer faces in a photo. The majority of the sub-windows in a picture are non-faces

and are rejected very fast since the algorithm does not need to go through more stages of the cascade

classifier. More faces implies that the algorithm runs through all the stages of the cascade classifier for

these faces and hence, requires more execution time. We also predict that the parallelized implementation

will be faster than the sequential implementation in every case. Results of our tests are recorded in the

table 5.1-1 and presented visually in Figure 5.1-5.

Image
Total

number

of faces
Size

Original --

Execution

Time (ms)

Original --

Number of

faces detected

Original -

- FPS

Multithreaded

-- Execution

Time (ms)

Multithreaded

-- Number of

faces detected

Multithreaded -

- FPS
Speedup

Cris 1

Small 128.785 1 7.765 77.381 1 12.923 1.664

Medium 383.008 1 2.611 227.059 1 4.404 1.687

Large 1422.079 1 0.703 732.453 0 1.365 1.942

Stock

Photo
6

Small 155.474 6 6.432 93.24 5 10.725 1.667

Medium 440.47 6 2.270 228.539 6 4.376 1.927

Large 1640.132 6 0.610 838.548 6 1.193 1.956

Original

Test

Photo
53

Small 157.924 0 6.332 95.339 0 10.489 1.656

Medium 521.372 46 1.918 288.512 33 3.466 1.807

Large 1748.578 43 0.572 895.484 42 1.117 1.953

 Average: 1.807

Table 5.1-1 - Test results of the original and parallelized implementation of the VJ Algorithm.

E50: Face Detection on an FPGA

Page | 25

Figure 5.1-5 - A plot of execution times versus picture size and number of faces. The abbreviation “seq”

stands for sequential (original) and “par” stands for parallelized (ours).

5.1.2) Analysis

As predicted, the execution time increased as the number of faces and the size of the photos

increased. This makes sense because one would expect that the algorithm would need to stop more

frequently at each possible face candidate when there are more faces in the photo. The algorithm scales

more images in the image pyramid as the image size increased. Also, the parallelized implementation of

the algorithm was consistently faster than the sequential implementation. This was also expected because

some of the work was divided and executed simultaneously thereby making the overall execution time

faster.

It is also important to note that there are some instances where our implementation did not detect

some faces that the original implementation did. There are a few reasons why this may have occurred.

One possible reason is because we constrained the number of images in the pyramid to eight so that we

could assign each scaled image to a thread to execute concurrently with the other threads. Another is that

we constrained the scale factor to be a whole number to be more in line with the FPGA implementation.

The original VJ Algorithm did not use a whole number for the scale factor and there was not a limit to the

number of images in the image pyramid. Therefore, the original implementation was able to create more

images in the image pyramid with some of the sizes being in between the scaled images we generated.

E50: Face Detection on an FPGA

Page | 26

5.2) FPGA

To quantify the performance of the FPGA based face detection system, the number of processed

frames per second (FPS) must be measured. This is accomplished by measuring the time elapsed from

capturing an image to displaying the detection results. More specifically this is the time elapsed from the

start of a frame capture to the end of drawing face boxes onto the captured image. An experiment was

conducted to gather the minimum, maximum and average FPS of our FPGA face detection system.

5.2.1) Methodology

To measure the FPS of the FPGA system, a register was implemented such that it toggles every

time the face box draw process completes. This register output was routed to a GPIO of the FPGA such

that periodic toggling of the register can be measured. An oscilloscope was used to measure the frequency

of the generated signal. It should be noted that the generated signal frequency is the measure of two full

image processing cycles per second. Since the actual FPS of the system is relative to one full image

processing cycle, the FPS is double the observed signal frequency.

Ten measurements were conducted to determine the minimum, maximum and average FPS. Tests

were performed for a single face centered in the frame, medium lighting and with a white background.

Data samples were collected with the subject’s face at a variety of distances from the camera. It should be

noted that this system processes 320x240 pixel images with 4 scales implemented. Figures 5.2-1 and 5.2-

2 show a block diagram of the setup and the actual setup we used respectively.

Figure 5.2-1 - General Test Setup Block Diagram

E50: Face Detection on an FPGA

Page | 27

Figure 5.2-2 - Photo of Test Environment

Device Description

Camera ov7670 without fifo

Development Kit / FPGA Terasic DE2-115 w/ Altera Cyclone IV EP4CE115F29C7N FPGA

Monitor Generic 640x480 VGA, 60Hz

Table 5.2-1 - System components

Test Equipment Serial# Notes

Agilent MSO-X 2012A 100MHz

Oscilloscope MY53280162 Located in DLLe, no calibration history

Table 5.2-2 - Test equipment

E50: Face Detection on an FPGA

Page | 28

Detection Rate

Data Sample Measured frequency [Hz] Frames Per Second

1 1.97 3.94

2 2.23 4.46

3 2.2 4.4

4 2.08 4.16

5 2.4 4.8

6 2.23 4.46

7 2.41 4.82

8 2.4 4.8

9 2.08 4.16

10 1.97 3.94

Single Face Min 1.97 3.94

Single Face Max 2.41 4.82

Single Face Avg 2.197 4.394

Table 5.2-3 - FPGA test results

5.2.2) Analysis

From the results in table 5.2-3 it is clear that the FPGA performs at an average 4.4 FPS, ranging

from 3.94 to 4.82 FPS. This is a respectable detection speed for this image size but could be improved by

further optimizing internal routing and sequential logic. It should be noted that lighting conditions play a

large role this system’s performance since other tests in a darker lit room with a desk lamp lighting the

target face results in detection rates between 4-7 FPS. See the appendix for details related to design metric

such as resource utilization, power consumption, and timing analysis.

In comparison to the pthread software implementation, for a single face in 320x240 pixel image,

the pthread effective performance for the Cris image (figure 5.1-2) was 13.5 FPS compared to the

FPGA’s average 4.4 FPS. This small image comparison favors the pthread implementation for detection

rates.

Performance gains, in favor of the FPGA implementation, occur at larger image sizes. The

pthread implementation resulted in a detection speed as low as 0.987 FPS while the performance of an

FPGA based system could remain consistent at 4.4 FPS by increasing the number of subwindow kernels.

Although we do not have experimental results to verify this prediction, an FPGA with more resource

could effectively implement multiple instances of our 16 kernel design and process different locations of

the same image with minimal performance impact. It should also be noted that the pthread results do not

include the execution time for capturing an image while the FPGA dedicates 33ms to a single frame

capture.

E50: Face Detection on an FPGA

Page | 29

6) Economic Analysis

Product cost is not relevant to this project because it is purely an academic research project.

Therefore there is not a preliminary bill of materials, an estimated sales forecast, an expected production

process, or an estimation of manufacturing labor costs.

6.1) Component Cost

The team has been using an FPGA chip and DE2-115 board as well as a camera to work on this

project. The FPGA chip and DE2-115 board have been given to the team by Dr. Ababei. The cost of

these components are detailed in Table 6.1-1.

Component Cost

DE2-115 FPGA Development Board $595 1

OV7670 Camera Module (B) 640X480 CMOS CameraChip Image Sensor

Development Board

$11.99 2

Total: $606.99 * 4 team members =

$2427.96

Table 6.1-1. A table listing the components we plan to use and their cost.

The software used to program the FPGA is Quartus Prime 15.1 and is available for free on the Altera

website.

6.2) Development Cost

Concerning the development costs, each team member worked an estimated 160 hours to

complete the project. Assuming an $50 hourly rate for each team member, the total development cost is

defined in Eq.9 as:

$50/hr * 160 hours * 4 team members = $32,000 Eq. 9

6.3) Final Estimated Product Cost

The recurring cost includes maintenance of the VHDL code. Based upon Glass’s findings in his

article “Frequently forgotten fundamental facts about software engineering” [10], maintenance accounts

for 60% of the total cost of the entire software life cycle. Therefore, the total cost is defined in Eq.10 as:

(Development cost + component costs) * 100 / 40 = ($2427.96 + 32000) * 100 / 40 = ~$86,070 Eq.10

1 http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=502
2 http://www.ebay.com/itm/like/251698097943?ul_noapp=true&chn=ps&lpid=82

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=502
http://www.ebay.com/itm/like/251698097943?ul_noapp=true&chn=ps&lpid=82

E50: Face Detection on an FPGA

Page | 30

7) Design Risk Analysis

Concerning the design risk, the application of our project was not used for any safety

applications, meaning that our project has no potential to be used in a situation that may harm human

beings. Because of this reason, the design for the VHDL code was done without regard to any standards

that may be audited at any point. There are also no regulatory issues or expected pathway for clearance to

market. Lastly, there are no legal issues with the design concerning patents or state or federal laws.

8) Customer Needs Analysis

The primary objective of this project was to study the achievable performance with a low-end

FPGA based implementation of the VJ algorithm compared to sequential and parallel implementations of

the algorithm executed on a general purpose CPU. To be able to achieve this objective, the project was

divided into seven subtasks. The subtasks along with their status are listed in Figure 8.1-1.

Customer Need Project Result

Study Viola-Jones algorithm and identify

computational bottlenecks

Computational bottlenecks were identified and

parallelized using hardware and software

Implement parallelized hardware acceleration of

face detection using VHDL

Image capture, display, and image processing

components are described in VHDL and implemented

on an FPGA. Subwindow kernels achieve parallelized

execution of classifier cascade

Create single and multi-threaded software

implementations for comparison benchmarks

Both versions created and tested with multiple static

images of various sizes and number of faces

Implement multi-threaded implementation to work

with a video stream

This task was not accomplished in the given time frame

and requires more time for research and testing

Implement face detection video stream Real time FPGA implementation achieved a detection

rate of 4.4 FPS on average.

Compare the single and multithreaded CPU

implementation with the FPGA implementation

Performance for the single and multithreaded CPU

implementation was compared with the performance of

the FPGA Implementation. Our findings are expressed

in section 5 of this document.

Submit journal paper and release all source code

to public

Journal paper submitted to Springer Publishing and

awaiting approval. All source code and papers have

been made available to Dr. Cristinel Ababei

Figure 8.1-1 - Customer Needs Analysis

We were able to achieve the primary objective for this project and study the performance of a

low-end FPGA chip based implementation of the VJ algorithm compared to sequential and parallel CPU

implementations of the algorithm. Even though we did not get the multithreaded CPU implementation to

work with a video stream, we were able to calculate the effective frames per second for our CPU

implementation which we then compared to the FPGA implementation. One of the goals of this project is

to provide our source code for the VHDL and software implementations so that other researchers can

reproduce our results and compare them to other implementations.

E50: Face Detection on an FPGA

Page | 31

9) Project Legacy

9.1) FPGA

 With respect to the FPGA design, what was learned includes elements from clean VHDL

description techniques. From this project, VHDL descriptions of embedded RAM/ROM entities was a

fundamental learning experience. Designing memory entities for the classifier cascade ROM emphasized

the structure of Altera’s embedded memory, specifically the structure of the registered inputs which

enabled us to derive a state machine that properly sets up control/data signals and latches information that

is read. It was also a good experience in determining how to initialize the contents of multiple ROM

components that are declared from the same design entity through the use of generic mapping and file I/O

libraries.

 An equally important takeaway is development of design skills for complex hardware designs

that are dependent on execution performance. Specifically, using the Altera TimeQuest Time Analyzer to

determine approximate combinational propagation delays between registered elements enabled the

integral image generator to be pipelined effectively. Pipelining enabled the integral image generator to be

clocked at 100MHz while pipelined rather than 40MHz without. This performance increase, coupled with

the toggling partitioned integral image memory, enables the face detection system to continuously feed

the subwindow kernels while minimizing the embedded memory resource utilization for the design. It

should be noted that the FPGA that was used in this design would have not been able to facilitate integral

image sizes of 320x240 due to embedded resource limitations, so this memory optimization is necessary.

Also, this optimization serves as platform for resource savings in future designs that clone multiple

instances of our top level design on larger FPGAs.

Future design improvements for the FPGA should be focused around the integral image to

subwindow kernel interface. It was determined that the timing most critical data path exists between the

registered integral image address input and the integral image registers contained within each subwindow

kernel. Here, the system spends most of its execution time loading integral image values into the

subwindow configuration registers for variance and feature evaluations. So since the current design is

limited to a 40 MHz clock speed at this interface, it would behoove future designs to optimize the

addressing/ datapath delays by revisions to combinational logic or implementation of pipelining.

9.2) Software

The following are a few lessons were learned while working on the multi-threaded software

implementation of the VJ algorithm.

1. For concurrent programming, the developers must be able to properly visualize how threads

interacts with specific resources and remember that these threads are executing concurrently.

Drawing out the threads with the resources can really help find and predict race conditions.

2. Reading the pthread documentation thoroughly helped us realize that race conditions can occur

not only when the threads are trying to write to a certain resource but also when they are trying to

read from it.

3. Preventing race conditions from occurring due to multiple threads. Forgetting to set up these

protections led to many segmentation faults as multiple threads were unable to gain access to the

E50: Face Detection on an FPGA

Page | 32

data it needed. To resolve this issue, local copies were made of the data structure that each thread

needed to read from and a mutex lock was used to protect the data structure that all the threads

had to write to after terminating.

4. To simplify your work, start with an image the size of the sub-window with a single face and

running on a single thread. Once this implementation works, increase the image size by a pixel so

that now you would have two sub-windows. Now, test your implementation with two threads.

Eliminating all the unnecessary variables when debugging pthreads help find the actual source of

the problem.

One improvement for software is to pick a different part of the algorithm to parallelize. The outermost

for-loop (the image pyramid) was selected to parallelize however parallelizing the sub-windows may

dramatically decrease execution time as the sub-window calculation is where the algorithm spends most

of its time. So, instead of parallelizing the image pyramid, the focus could be shifted to parallelizing the

sub-window sweeping such that there are multiple sub-windows sweeping the image to detect faces

instead of a single sub-window.

E50: Face Detection on an FPGA

Page | 33

References

[1] Altera. (2016, March). “Cyclone IV FPGA Device Family Overview” [online]. Available:

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-iv/cyiv-

51001.pdf [May 3, 2016]

[2] Analog Devices. (2010, July) “ADV7123” [online]. Available:

http://www.analog.com/media/en/technical-documentation/data-sheets/ADV7123.pdf [May 3, 2016].

[3] C. Wright, "YUV Colorspace", Softpixel.com, 2004. [Online]. Available:

http://softpixel.com/~cwright/programming/colorspace/yuv/. [May 3, 2016].

[4] "Design Software - Overview", Altera.com, 2016. [online]. Available:

https://www.altera.com/products/design-software/overview.tablet.html. [May 3, 2016].

[5] D. Hefenbrock, J. Oberg, N. Thanh, R. Kastner and S. Baden, 'Accelerating Viola-Jones Face

Detection to FPGA-Level Using GPUs', 2010 18th IEEE Annual International Symposium on Field-

Programmable Custom Computing Machines, 2010.

[6] "DROK® VGA OV7670 640X480 Camera Sensor Module Lens CMOS SCCB Interface Compatible

With I2C Interface : Electronics", Amazon.com, 2016. [Online]. Available:

http://www.amazon.com/sunkee-OV7670-640X480-Compatible-

Interface/dp/B00AZWVZKW/ref=sr_1_1?s=electronics&ie=UTF8&qid=1379557438&sr=1-

1&keywords=CMOS+OV7670+Camera. [May 3 2016].

[7] M. Field, "OV7670 camera", Hamsterworks.co.nz, 2016. [online]. Available:

http://hamsterworks.co.nz/mediawiki/index.php/OV7670_camera. [May 3, 2016].

[8] Omnivision. (2005, July). “OV7670/OV7171 CMOS VGA (640x480 CameraChip with OmniPixel

Technology” [online]. Available: http://www.voti.nl/docs/OV7670.pdf [May 3, 2016].

[9] Omnivision. (2005, Sept.). “OV7670/OV7171 CMOS VGA(640x480) CameraChip Implementation

Guide” [online]. Available:

http://www.haoyuelectronics.com/Attachment/OV7670%20+%20AL422B%28FIFO%29%20Camera

%20Module%28V2.0%29/OV7670%20Implementation%20Guide%20%28V1.0%29.pdf [May 3,

2016].

[10] R. Glass, 'Frequently forgotten fundamental facts about software engineering', IEEE Softw., vol. 18,

no. 3, pp. 112-111, 2001.

[11] Sites.google.com, 'Viola-Jones Face Detection - 5KK73 GPU Assignment 2012', 2015. [Online].

Available: https://sites.google.com/site/5kk73gpu2012/assignment/viola-jones-face-detection.

[Accessed: 27- Oct- 2015].

[12] Terasic Technologies, “DE2-115 User Manual”, Altera.com, 2010. [online]

Available:ftp://ftp.altera.com/up/pub/Altera_Material/Boards/DE2-115/DE2_115_User_Manual.pdf

[May 3, 2016].

[13] Terasic Technologies, "Terasic - DE Main Boards - Cyclone - Altera DE2-115 Development and

Education Board", Terasic.com.tw, 2016. [online]. Available: http://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&No=502. [May 3, 2016].

[14] Viola, P.A., Jones, M.J.: Rapid Object Detection using a Boosted Cascade of Simple Features. IEEE

Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR), (2001)

E50: Face Detection on an FPGA

Page | 34

Appendix

FPGA Pinout

Figure A.1 - Dev Board GPIO Interface [12]

Port Name FPGA Pin

Dev Board

Interface Notes

clk_50 PIN_Y2 CLOCK_50 50MHz external oscillator

slide_sw_RESET PIN_Y23 SW[17] active high

slide_sw_resend_reg_values PIN_Y24 SW[16] active high

slide_sw_capture_mode PIN_AA22 SW[15] active high

btn_capture PIN_M23 KEY[0] active low

LED_config_finished PIN_F19 LEDR[1] camera configured

LED_dll_locked PIN_G19 LEDR[0] PLL is locked

ii_gen_done PIN_AG26 GPIO[35] (JP5) debug

subwin_done PIN_AF26 GPIO[29] (JP5) debug

faceBox_done PIN_AE24 GPIO[27] (JP5) debug

measure_performance PIN_AH23 GPIO[34] (JP5) toggle after every faceBox_done

Table A.1 - FPGA Clock, User Interface, Debug and Performance Measurement Connections

E50: Face Detection on an FPGA

Page | 35

Port Name FPGA Pin
Dev Board

Interface

Camera Pin

Name
Notes

na nc 3.3V (JP5) 3V3

na nc GND (JP5) GND

ov7670_pclk PIN_AC19 GPIO[10] (JP5) PCLK

ov7670_xclk PIN_AF16 GPIO[11] (JP5) XCLK

ov7670_vsync PIN_AF25 GPIO[16] (JP5) VSYNC

ov7670_href PIN_AC22 GPIO[17] (JP5) HREF

ov7670_data[7] PIN_AE16 GPIO[7] (JP5) D7

ov7670_data[6] PIN_AD21 GPIO[6] (JP5) D6

ov7670_data[5] PIN_Y16 GPIO[5] (JP5) D5

ov7670_data[4] PIN_AC21 GPIO[4] (JP5) D4

ov7670_data[3] PIN_Y17 GPIO[3] (JP5) D3

ov7670_data[2] PIN_AB21 GPIO[2] (JP5) D2

ov7670_data[1] PIN_AC15 GPIO[1] (JP5) D1

ov7670_data[0] PIN_AB22 GPIO[0] (JP5) D0

ov7670_sioc PIN_AF24 GPIO[14] (JP5) SIOC

ov7670_siod PIN_AE21 GPIO[15] (JP5) SIOD

ov7670_pwdn PIN_AD19 GPIO[12] (JP5) PWDN active high

ov7670_reset PIN_AF15 GPIO[13] (JP5) RESET active low

Table A.2 - FPGA to OV7670 Camera Interface Connections

E50: Face Detection on an FPGA

Page | 36

Port Name FPGA Pin Dev Board Interface Notes

na nc VGA_R (J13) analog out from DAC (U7)

na nc VGA_G (J13) analog out from DAC (U7)

na nc VGA_B (J13) analog out from DAC (U7)

vga_hsync PIN_G13 VGA_VS (J13)

vga_vsync PIN_C13 VGA_HS (J13)

vga_r[7] PIN_H10 DAC (U7)

vga_r[6] PIN_H8 DAC (U7)

vga_r[5] PIN_J12 DAC (U7)

vga_r[4] PIN_G10 DAC (U7)

vga_r[3] PIN_F12 DAC (U7)

vga_r[2] PIN_D10 DAC (U7)

vga_r[1] PIN_E11 DAC (U7)

vga_r[0] PIN_E12 DAC (U7)

vga_g[7] PIN_C9 DAC (U7)

vga_g[6] PIN_F10 DAC (U7)

vga_g[5] PIN_B8 DAC (U7)

vga_g[4] PIN_C8 DAC (U7)

vga_g[3] PIN_H12 DAC (U7)

vga_g[2] PIN_F8 DAC (U7)

vga_g[1] PIN_G11 DAC (U7)

vga_g[0] PIN_G8 DAC (U7)

vga_b[7] PIN_D12 DAC (U7)

vga_b[6] PIN_D11 DAC (U7)

vga_b[5] PIN_C12 DAC (U7)

vga_b[4] PIN_A11 DAC (U7)

vga_b[3] PIN_B11 DAC (U7)

vga_b[2] PIN_C11 DAC (U7)

vga_b[1] PIN_A10 DAC (U7)

vga_b[0] PIN_B10 DAC (U7)

vga_blank_N PIN_F11 DAC (U7)

vga_sync_N PIN_C10 DAC (U7)

vga_CLK PIN_A12 DAC (U7)

Table A.3 - FPGA to VGA Display Interface Connections

E50: Face Detection on an FPGA

Page | 37

FPGA Design Metrics

It is important to detail particular metrics from FPGA based design such as resource

utilization, power consumption estimation, maximum clock frequencies and longest path delay.

These metrics are quantitative benchmarks that can be compared between other similar

designs or other FPGA hardware. This information was included for completeness, even though

the original customer needs specification did include a requirement for this information,

Resource Utilization

Table A.5 was reported after full design compilation in the Flow Summary of Quartus II.

Resource Utilization

Flow Status Successful - Fri Apr 08 09:07:51 2016

Quartus Prime Version 15.1.0 Build 185 10/21/2015 SJ Lite Edition

Revision Name faceDetectSystem

Top-level Entity Name top

Family Cyclone IV E

Device EP4CE115F29C7

Timing Models Final

Total logic elements 33,327 / 114,480 (29 %)

Total combinational functions 29,079 / 114,480 (25 %)

Dedicated logic registers 16,035 / 114,480 (14 %)

Total registers 16035

Total pins 56 / 529 (11 %)

Total virtual pins 0

Total memory bits 2,175,501 / 3,981,312 (55 %)

Embedded Multiplier 9-bit elements 369 / 532 (69 %)

Total PLLs 1 / 4 (25 %)

Table A.5 - FPGA resources used

Power Consumption

Table A.6 was reported after full design compilation by the PowerPlay Power Analyzer tool

within Quartus II. By default board, junction and ambient temperatures are 25°C while “input I/O

signal toggle rate” and the “remaining signals toggle rate” were set to 50%.

E50: Face Detection on an FPGA

Page | 38

Power Estimation

PowerPlay Power Analyzer Status Successful - Fri Apr 08 09:07:51 2016

Quartus Prime Version 15.1.0 Build 185 10/21/2015 SJ Lite Edition

Revision Name faceDetectSystem

Top-level Entity Name top

Family Cyclone IV E

Device EP4CE115F29C7

Power Models Final

Total Thermal Power Dissipation 2497.39 mW

Core Dynamic Thermal Power

Dissipation 2300.88 mW

Core Static Thermal Power Dissipation 113.59 mW

I/O Thermal Power Dissipation 82.92 mW

Power Estimation Confidence Low: user provided insufficient toggle rate data

Table A.6 - FPGA power usage

Timing Analysis

Table 8 was reported by TimeQuest Timing Analyzer in Quartus II. Fmax is the maximum

frequency of the top level control and subwindow processes. The longest delay was determined

to be the longest data delay with respect to this clock.

Timing Analysis - Slow 1200mV 85C Model

Fmax 42.17 MHz

Longest Data Delay 23.799 ns

Table A.7 - Subwindow timing analysis

