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Credits: Slides adapted primarily from presentations from Mike Johnson, 

Morgan Kaufmann, and other online sources 
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Outline

❖Historical Perspective

❖Technology Trends

❖The Computing Stack: Layers of Abstraction

❖Performance Evaluation

❖Benchmarking
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Historical Perspective

❖ ENIAC of WWII - first general purpose computer
◆ Used for computing artillery firing tables

◆ 80 feet long by 8.5 feet high; used 18,000 vacuum tubes

◆ Performed 1900 additions per second
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Computing Devices Then…

Electronic Delay Storage Automatic Calculator (EDSAC) - early British computer

University of Cambridge, UK, 1949

Considered to be the first stored program electronic computer
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Computing Systems Today

Scalable, Reliable,
Secure Services

MEMS for 
Sensor Nets

Internet
Connectivity

Clusters

Massive Cluster

Gigabit Ethernet

Databases
Information Collection
Remote Storage
Online Games
Commerce
 …

❖The world is a large parallel system
◆Microprocessors in everything

◆Vast infrastructure behind them

RobotsRouters

Cars

Sensor

Nets
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Technology Trends

❖ Electronics technology evolution

◆ Increased capacity and performance

◆Reduced cost

Year Technology Relative performance/cost

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit (IC) 900

1995 Very large scale IC (VLSI) 2,400,000

2005 Ultra large scale IC (ULSI) 6,200,000,000
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Moore’s Law
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Feature Size Decreasing

Source: International Technology Roadmap for Semiconductors (ITRS) 2009 Exec. Summary
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Computation speed increasing
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Memory Capacity increasing
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Power Trends

FrequencyVoltageload CapacitivePower 2 =

×1000×30 5V → 1V

The power wall:

◼ Can’t reduce voltage or remove heat more

◼ How else can we improve performance?
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Uniprocessor Performance

Solution: Can increase the number of processors!
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Types of Parallelism

❖Instruction Level Parallelism

Multiple instructions executing within processor, 

e.g. pipelining, superscalar design

Simultaneous, temporal multithreading

❖Multiprocessing

◆More than one processor per chip

◆May be tightly or loosely coupled

Flynn’s

Taxonomy:

Single

Instruction

Multiple

Instruction

Single

Data

SISD MISD

Multiple

Data

SIMD MIMD
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Example: Intel i7

Intel i7 Nehalem Architecture, 4 cores
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Example: AMD Zen (family 17h) 

[Images source: wikichip.org]

• Over 1300 sensors to monitor the state of the die over all critical paths 

• 48 high-speed power supply monitors, 20 thermal diodes, and 9 high-
speed droop detectors 
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Example: ARM

• Neoverse N1 (codename Ares) is a high-performance ARM 
microarchitecture designed by ARM Holdings for the server market.

[Images source: wikichip.org]
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Example: (ARM) Vulcan

• Vulcan is a 16 nm high-performance 64-bit ARM microarchitecture 
designed by Broadcom and later introduced by Cavium for the server 
market.

[Images source: wikichip.org]
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Example: Nvidia V100

• Tesla Volta V100 graphics processor has 5,120 
CUDA / Shader cores and is based upon 21 Billion 
transistors. 
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Example: (Tilera) Mellanox TILE-Gx8072

Powerful Processor Cores

• 72 cores operating at 
frequencies up to 1.2 GHz

Cache

• 22.5 MBytes total on-chip 
cache

• 32 KB L1 instruction 
cache and 32 KB L1 data 
cache per core

• 256 KB L2 cache per core

• 18 MBytes coherent L3 
cache
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Still the same basics!

1. Input

2. Control

3. Datapath

4. Memory

5. Output
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Hardware Architectures

❖Von Neumann architecture

Single memory for both

Programs and Data 

❖Harvard Architecture

Separate memories for

Programs and Data

❖Modified Harvard Architecture

Single physical memory, but separate CPU

pathways for Programs and Data
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Datapath and Control
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Instruction Set Architectures (ISAs)

❖CISC: Complex Instruction Set Chip

Large number of core instructions

Leads to larger, slower hardware

Good for special purpose processors 

(or necessary backwards compatibility, such as Intel)

❖RISC: Reduced Instruction Set Chip  

Small number of general instructions

Leads to more compact, faster hardware

Good for general purpose processors
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The Computing Stack: Hierarchy

❖Must focus on one “layer” or “abstraction”

Instruction Set
Architecture (ISA)

Software
Architecture

Hardware
Architecture

Algorithm

Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics
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Manufacturing ICs

❖Yield: proportion of working dies per wafer
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❖Gates constructed of transistor circuits

❖Circuits etched directly into silicon

◆Original Pentium: 4.5 million transistors

◆Pentium IV: 42 million transistors

◆Pentium IV Itanium: 592 million transistors

◆i7: 731 million transistors

Intel Core i7 Wafer

❖300mm wafer, 280 chips, 

32nm technology

❖Each chip is 20.7 x 10.5 mm
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❖ Execution time (response time, latency)

 — How long does it take for my job to run?

— How long does it take to execute a job?

— How long must I wait for the database query?

❖ Throughput

 — How many jobs can the machine run at once?

— What is the average execution rate?

— How much work is getting done?

If we upgrade a machine with a new processor what do 

we increase?

If we add a new machine to the lab what do we 

increase?

How to Measure Performance?
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Definition of Performance

❖Performance 

(larger number means better performance)

So "X is n times faster than Y"  means 

1
performance( )

execution time( )
x

x
=

performance( ) execution time( )

performance( ) execution time( )

x y
n

y x
= =
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Measuring Execution Time

❖ Elapsed time
◆Total response time, including all aspects

➢ Processing, I/O, OS overhead, idle time

◆Determines system performance

❖ CPU time
◆Time spent processing a given job

➢Discounts I/O time, other jobs’ shares

◆Comprises user CPU time and system CPU time

◆Different programs are affected differently by CPU and 
system performance
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CPU Clocking

❖Operation of digital hardware governed by a 

constant-rate clock

Clock (cycles)

Data transfer

and computation

Update state

Clock period

◼ Clock period (clock cycle time OR cycle time): duration of a clock cycle

◼ e.g., 250ps = 0.25ns = 250×10–12s

◼ Clock frequency (rate): cycles per second

◼ e.g., 4.0GHz = 4000MHz = 4.0×109Hz

◼ Clock period is the inverse of clock frequency
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CPU Time (Execution time)

❖Performance improved by

◆Reducing number of clock cycles

◆Increasing clock rate

◆Hardware designer must often trade off clock rate 

against cycle count

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

=

=
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CPU Time: Example 1

❖ Computer A: 2GHz clock rate, 10s CPU time

❖ Designing Computer B

◆Aim for 6s CPU time

◆Can do faster clock, but causes 1.2 × clock cycles

❖ How fast must Computer B clock be?

4GHz
6s

1024

6s

10201.2
Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s

Cycles Clock1.2

Time CPU

Cycles Clock
Rate Clock

99

B

9

AAA

A

B

B
B

=


=


=

==

=


==
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Instruction Count and CPI

❖Instruction Count for a program

◆Determined by program, ISA and compiler

❖Average cycles per instruction

◆Determined by CPU hardware

◆If different instructions have different CPI

➢Average CPI affected by instruction mix

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio Per CyclesCount nInstructioCycles Clock CPU


=

=

=
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CPI: Example 2

❖Computer A: Cycle Time = 250ps, CPI = 2.0

❖Computer B: Cycle Time = 500ps, CPI = 1.2

❖Same ISA

❖Which is faster, and by how much?

1.2
500psI

600psI

A
Time CPU

B
Time CPU

600psI500ps1.2I

B
Time Cycle

B
CPICount nInstructio

B
Time CPU

500psI250ps2.0I

A
Time Cycle

A
CPICount nInstructio

A
Time CPU

=



=

==

=

==

=

A is faster…

…by this much
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CPI in More Detail

❖If different instruction classes take different 

numbers of cycles


=

=
n

1i

ii )Count nInstructio(CPICycles Clock

◼ Weighted average CPI


=









==

n

1i

i
i

Count nInstructio

Count nInstructio
CPI

Count nInstructio

Cycles Clock
CPI

Relative frequency
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CPI: Example 3

❖Alternative compiled code sequences using 
instructions in classes A, B, C

Class A B C

CPI for class 1 2 3

IC in sequence 1 2 1 2

IC in sequence 2 4 1 1

◼ Sequence 1: IC = 5

◼ Clock Cycles

= 2×1 + 1×2 + 2×3

= 10

◼ Avg. CPI = 10/5 = 2.0

◼ Sequence 2: IC = 6

◼ Clock Cycles

= 4×1 + 1×2 + 1×3

= 9

◼ Avg. CPI = 9/6 = 1.5
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Performance Summary

❖Performance depends on

◆Algorithm: affects IC, possibly CPI

◆Programming language: affects IC, CPI

◆Compiler: affects IC, CPI

◆Instruction set architecture: affects IC, CPI, Tc

The BIG Picture

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU =
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SPEC CPU Benchmark

❖ Programs used to measure performance
◆Supposedly typical of actual workload

❖ Standard Performance Evaluation Corp (SPEC)
◆Develops benchmarks for CPU, I/O, Web, …

❖ SPEC CPU2006
◆Elapsed time to execute a selection of programs

➢Negligible I/O, so focuses on CPU performance

◆Normalize relative to reference machine

◆Summarize as geometric mean of performance ratios
➢CINT2006 (integer) and CFP2006 (floating-point)

n

n

1i

iratio time Execution
=
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CINT2006 for Intel Core i7 920
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What You Will Learn

❖How programs are translated into the 

machine language

◆And how the hardware executes them

❖The hardware/software interface

❖What determines program performance

◆And how it can be improved

❖How hardware designers improve 

performance

❖What is parallel processing
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Eight Great Ideas Invented by Computer Architects

1. Design for Moore’s Law

2. Use abstraction to simplify design

3. Make the common case fast

4. Performance via parallelism

5. Performance via pipelining

6. Performance via prediction

7. Hierarchy of memories

8. Dependability via redundancy
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Concluding Remarks

❖Cost/performance is improving
◆Due to underlying technology development

❖Hierarchical layers of abstraction
◆In both hardware and software

❖Instruction Set Architecture (ISA)
◆The hardware/software interface

❖Execution time: the best performance measure

❖Power is a limiting factor
◆Use parallelism to improve performance
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