Arithmetic for Computers — Building the
ALU
(Ch.3 + Appendices A,C)

Cristinel Ababei

Marquette University
Department of Electrical and Computer Engineering

Outline

s Basics

“*ALU

s Carry look ahead
+« Shifting

Design process summary

1. Divide and Conquer:
€ Outline what needs to be accomplished

€®Formulate solution in terms of simpler
components

€ Design each component
2. Connect, test, and verify:

@ Put together the basic building blocks

@ Verify that every possible input gives valid output
% 3. Successive refinement:

€ Evaluate results, correct errors, improve design

Design Methodologies

*»Hierarchical Design to manage complexity

*»Top Down vs. Bottom Up
¢ Block Diagrams
€ Decomposition into Bit Slices
€ Truth Tables, K-Maps
€ Circuit Diagrams
€ Other: state & timing diagrams, ...

“*Measurement Criteria:
@ Design Performance
@ Design Cost
@ Design Time
@ Gate count
@ Power dissipation
®..

First step: arithmetic circuits

Questions to be addressed:

“How do we represent numbers?
®Integers vs. floating-point (i.e., real numbers)
®Negative numbers

«How do we implement:

@ Addition?

& Subtraction?
€ Multiplication?
®Division?

**How do we handle errors? (overflow, etc.)

Possible Representations

Sign Magnitude: One's Complement Two's Complement
000 = +0 000 = +0 000 = +0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2
011 = +3 011 = +3 011 = +3
100 = -0 100 = -3 100 = -4
101 = -1 101 = -2 101 = -3
110 = -2 110 = -1 110 = -2
111 = -3 111 = -0 111 = -1

% Issues: balance, number of zeros, ease of operations
% Which one is best? Why?

RISC-V -

«Positive numbers - regular binary

+*Negative numbers
€ Take equivalent positive binary number
@Flip the bits
®Add 1

« Significant design advantages
€®Easy to negate numbers (steps given above)
®Easy to check positive/negative (still have sign bit)
€Biggest one: adding and subtracting work right!

Sign extension

We will often need to take a 16-bit number and
put it into a 32-bit (or 64-bit) location.

Doing this in two’s complement requires some
slight additional care:

€ Must always replicate the left-most bit (sign bit)
into the other positions.

€ This process is called sign-extension, and is built
into most commands

Unsigned numbers

s Sometimes we have variables (like counters)
that can only be positive. By not using two’s
complement for these cases, we get a whole
extra bit of representation.

«»Positive-only numbers are called unsigned.

“*Math commands on unsigned numbers will
have to be handled carefully, both in design
and in programming (especially with the
built-in sign extension)

Addition & Subtraction

% Two's complement operations easy

@ subtraction using addition of negative numbers
0111
+ 1010

% Overflow (result too large for finite computer word):

@ e.g., adding two n-bit numbers does not yield an n-bit number
0111
+ 0001
1000

10

10

Integer Addition

“*Example: 7+ 6

©) (©) (1) (1) (0) (Carries)
0 0 0 1 1 1
o | o | o | 1 | 1 | o

©@ 1 M ©) 1

.. 0 0 (0 o 1 (1) o

= Overflow if result out of range

= Adding and operands, no overflow
= Adding operands

= Overflow if result sign is 1
= Adding operands

= Overflow if result sign is 0

11

11

Integer Subtraction

+ Add negation of second operand
s Example: 7-6=7 + (-6)
+7: 0000 0000 ... 0000 0111

—6: 1111 1111 ... 1111 1010
+1: 0000 0000 ... 0000 0001

++ Overflow if result out of range

€ Subtracting two or two operands, no
overflow
€ Subtracting from operand
» Overflow if result sign is 0
€ Subtracting from operand

» Overflow if result sign is 1

12

12

Practice

1. Represent +14, -14, +25, and =25 in
6-bit two’s complement notation
2. Using these representations,
a) Add -14 +-14
b) Add 14 + -25
c) Add 14 + 25
3. Any overflows?

13

13

Detecting Overflow

% No overflow when adding a positive and a negative
number
% No overflow when signs are the same for subtraction

% Overflow occurs when the value affects the sign:
€ adding two positives yields a negative
€ adding two negatives gives a positive
@ subtract a negative from a positive and get a negative
@ subtract a positive from a negative and get a positive

% How to handle overflow:
@ Control jumps to predefined address for exception
@ Interrupted address is saved for possible resumption

@ Ignore it (several commands for unsigned arithmetic do not
cause exceptions on overflow)

14

14

Outline

< Basics

*ALU

s Carry look ahead
+« Shifting

15

15

The Arithmetic Logic Unit (ALU)

+ Will use a bottom-up approach to design a 32-bit ALU (64-bit is
similar)

+ Based on the chosen instruction set, we need to be able to
implement:

& Addition

@ Subtraction

@ Bit-wise AND

@ Bit-wise OR Will be integrated into ALU
@ Set on less-than

@ Zero-flag (BNE)

4 Nor

@ Shift left

@ Shift right

@ Multiplication
@ Division

(Will do later)

16

16

Building blocks: Start with 1-bit ALU

Start with just AND, OR, ADD functions

ALU inputs:

€ Input A, Input B, Carry In, Control flags
(for deciding what operation is implemented)

ALU outputs:
®Result, Carry Out

«»Practice: Work out the logic formulas for Add
from the basic concept of addition

17

17

ALU formulas

AND
®Result = AB
OR
®Result = A+B
ADD
®Result = ABC, + ABC, + ABC, + ABC,
@ Carry Out = AB + AC, +BC,

18

18

% Implement AND, OR,
ADD logic

% Use 3-input mux to
select output function
(Operation)

First-pass ALU Implementation

Oparation
Camyln |

R e
_.__r/.l'
=D,

1 Ae=ult

T

Y

19

19

+» Just need to hook
up in series (in chain) so
the carries will propagate.
* This is an example of
hierarchical design
(using building blocks)
- what the book calls
“abstraction”

ai—a
B3y

Extending to full 32-bit ALU

Ciparation

= FAnsulid

Aesultz

[=1==1] Al

20

20

Including subtraction

% Subtraction is just A plus B,

so just need an inverter!
< Implement AND, OR, Birver \qun:p.w
ADD logic ; |

Ty
% Use 2-input mux to —~L)
choose ADD/SUB tD

(Binvert)

< Use 3-input mux to b i ,
select output function So _

(Operation)

1 = Aesult

CaryCut

21

21

Including NOR

< A NOR operation can be written as AeB
Therefore, we can use the AND gate.
Just need another inverter!

% To implement NOR, set

Alnvert and Ao Heaion

Blnvert and

i Birwar Camyln |
Operation = AND o - '
Dol ST T

E } 1 H—= Aesult

b L
(/]
a 2
PR
’u-

CaryCut

22

22

Including Set on Less Than (SLT)

% SLT sets output =1if A<B, Oelse
% Bitwise formula for slt:
Result =0, unless A-B <0 and this is LSB
“ So:
@ Set Binvert (to perform A-B)
€ Add anew input called Less

» Connect to logical 0, for all bits except LSB
» Connect LSB Less input to sign bit (MSB) from A-B
€@ Question: Where do we get that sign bit? (We will
be setting the result output of the MSB to logic 0)

®Answer: Need slightly modified ALU for MSB; add
an output called Set connected to MSB adder

23

23

Final Standard and MSB Units

Standard 1-bit units
Chain 31 of them (for bits b

Index 0..30)

[-+—= Result

Loss

7

LSB: Connect to Set oo
Else: Hardwire to 0

MSB unit
Use for last bit

(bit Index 31)

(Note we’ve also added overflow
detection to the MSB.) | Tt I s

MSB sign bit

24

24

Final Version with Zero-check flag

Control lines: “ALU operation”, 4 bits:
% Ainvert

* Bnegate
% Operationl
» Operation0 Bnegate Operation
Al VB:.? - | &
Fei4 g
0000 = and w—f o]|
0001 = or ALL! oparation =% Aﬁ: e o
CarryOut
0010 = add | =
o
0110 = sub =l Cain ‘
4 la Bl—e ALUS | Besultt | o =
0111 = slt ol lass RS 5
1100 = NOR = Zera ___ CarmyOut : >0— Zoro
= I - : :
AL = Rasult ™ b P s I
a2 —= Carryln
Dvariow b2— Az [Resu2 o
0—= Less
b —= CarmyOut
'
i Camyln i ‘
L) Resuidt [
BTyl adl Carryln | —————&——=
= - ba|a-1 AL3T | Set
0 ’] Less] = Overfiow

25

Problem for You

“*Analyze the performance of this design
®Does it implement the required tasks? YES

€®How long does it take to do it?

» Assume: The logic in a 1-bit adder takes 2 levels of logic to produce
the carry output, and each gate has a 1 ns delay in this particular
design.

» What’s the total amount of delay from IN to OUT for a 32-bit ALU to do
an ADD?

“This design is called aripple carry adder.
Not the best

<+What is the minimum delay possible?

26

26

Outline

“*Basics

“ALU

s+ Carry look ahead
+« Shifting

27

27

Carry look-ahead

So, what do we know without any delay?
€ The values of the a; and b; inputs
What can we do with them?

@®Figure out when a Carry Out will be generated
(regardless of the Carry In value).
gi=ab;
@®Figure out when a Carry In will be propagated
to the Carry Out. (when c,,, will equal c;,)
pi =2 +b

% At each bit, weget c,,, =g +p c,

28

28

4-bit case, expanded

C1 = go *+ PoSo
C; =g + P&
= g; + P1(go + PoCo)
= g; + P19 + PiP¢Co
Cs g, + P2C;
=g, + P,(g; + P19y + P1PCo)
= g, + P91 + P2P190 + P2P1P0Co
Cy4 gs + PsC3
= g3z + P3(g; + P,9:1 + PP190 + P2P1PoCo)
= g3 + P39z + P3P2g; + P3P2P190 + P3P2P1PoCo

29

29

«»Can we build a 16-bit adder this way?

€ How much delay would it have?

€ How many gate inputs for the MSB Carry Out?
s*How about a compromise?

Hierarchical design approach:

€ Put together 4 4-bit carry-lookahead adders

€ Create 4-bit signals: propagates (P0-3), generates

(G0-3), carries (C1- 4). Example formulas:
Py = P3P2P1Po

Gy = g3 + P39, + P3P,9; + P3P,P19p
C, = G, + Pyc

30

30

16-bit hierarchical carry-lookahead

% How much total delay canin
is there in this design? 28— Garn s
@ 1stlevel p & g in I R
(@& bin —>p & gout) a9 e
& 15t level P & G out? oty [
(p & g in>P & G out) " a{: L osute-r
& 2d |evel Carry Out? B
(P & G in—»C out) v A
@ 15t level carry in? e
(Cin+p&gin—>cin) E—E“'f'"_—unum..
€ Result out? S
(a&b &cin — Result M o2
out) i‘““

«» What is the g%_:_ st - Resulliz-15
performance i
improvement? e

sk
31
31
Outline

“»Basics

<+ ALU

s Carry look ahead

+» Shifting

32

32

Shifting

Shifting we need to implement (6 kinds)
@ Direction: Left or right

®Extension:

» Logical (Zero extended)
» Arithmetic (Sign extended)
» Rotate (extended by rotation of bits)

s Goal —shiftin 1 clock cycle. Common types:
» Barrel Shifter (Full mux into flip-flop for each bit)
» Combinational Shifter (Hierarchical, MUX-based)
» Funnel Shifter (Selects a region of a doubled register)

33

33

Combinational Shifter from MUXes

+ 8-bit right shifter

[T0] [£0] [0] [T 0] [0] [0] [T 0] [[9
I I I I I | |

[—

1 1 1 1 1 1 1 1 | 1 | 1 | 1 1 \I
|1 o||1 o||1 o||1 o||1 o||1 o||1 o||1 o|
]]]] | | | |

[—

1 1 | 1 | 1 1 1 1 1 1 1 1 1 1 1
|1 o||1 o||1 o||1 o||1 o||1 o||1 o||1 o|._
]]]]]]]]

R? RG RS R4 R3 RZ Rl RO
Issues/questions
« What comes in the MSBs?
+ How many levels for 32-bit shifter?
+ How can we do rotates (circular shifting)?

34

34

Funnel Shifter

% Advantage: Can do all 6 kinds of shifts with same

hardware (can still use combinational mux design).

2N- 0

1 N-1
Left half | Right half
| 1

Offset k

N-1 0

Type Left half Right half Offset
Logical Left Ryai=Rg |0...0 N-k
Logical Right 0...0 Ry = Ro k
Arithmetic Left Rya—-Rge |0...0 N-k
Arithmetic Right Rn1--Rnt | Ry —Ro k
Rotate Left Ryai—Ro |Ryai—Ro N-k
Rotate Right Ryai—Ro |Ryai—Ro k

35

35

	Slide 1
	Slide 2: Outline
	Slide 3: Design process summary
	Slide 4: Design Methodologies
	Slide 5: First step: arithmetic circuits
	Slide 6: Possible Representations
	Slide 7: RISC-V - Two’s complement
	Slide 8: Sign extension
	Slide 9: Unsigned numbers
	Slide 10: Addition & Subtraction
	Slide 11: Integer Addition
	Slide 12: Integer Subtraction
	Slide 13: Practice
	Slide 14: Detecting Overflow
	Slide 15: Outline
	Slide 16: The Arithmetic Logic Unit (ALU)
	Slide 17: Building blocks: Start with 1-bit ALU
	Slide 18: ALU formulas
	Slide 19: First-pass ALU Implementation
	Slide 20: Extending to full 32-bit ALU
	Slide 21: Including subtraction
	Slide 22: Including NOR
	Slide 23: Including Set on Less Than (SLT)
	Slide 24: Final Standard and MSB Units
	Slide 25: Final Version with Zero-check flag
	Slide 26: Problem for You
	Slide 27: Outline
	Slide 28: Carry look-ahead
	Slide 29: 4-bit case, expanded
	Slide 30
	Slide 31: 16-bit hierarchical carry-lookahead
	Slide 32: Outline
	Slide 33: Shifting
	Slide 34: Combinational Shifter from MUXes
	Slide 35: Funnel Shifter

