
Cristinel Ababei

Marquette University

Department of Electrical and Computer Engineering

COEN-2710 Microprocessors - Lecture 6

Arithmetic for Computers – Building the

ALU

(Ch.3 + Appendices A,C)

2

Outline

❖Basics

❖ALU

❖Carry look ahead

❖Shifting

1

2

3

Design process summary

❖1. Divide and Conquer:

◆Outline what needs to be accomplished

◆Formulate solution in terms of simpler

components

◆Design each component

❖2. Connect, test, and verify:

◆Put together the basic building blocks

◆Verify that every possible input gives valid output

❖3. Successive refinement:

◆Evaluate results, correct errors, improve design

4

Design Methodologies

❖Hierarchical Design to manage complexity

❖Top Down vs. Bottom Up
◆ Block Diagrams

◆ Decomposition into Bit Slices

◆ Truth Tables, K-Maps

◆ Circuit Diagrams

◆ Other: state & timing diagrams, ...

❖Measurement Criteria:
◆Design Performance

◆Design Cost

◆Design Time

◆Gate count

◆Power dissipation

◆ ...

3

4

5

First step: arithmetic circuits

Questions to be addressed:

❖How do we represent numbers?

◆Integers vs. floating-point (i.e., real numbers)

◆Negative numbers

❖How do we implement:

◆Addition?

◆Subtraction?

◆Multiplication?

◆Division?

❖How do we handle errors? (overflow, etc.)

6

Sign Magnitude: One's Complement Two's Complement
 000 = +0 000 = +0 000 = +0

 001 = +1 001 = +1 001 = +1

 010 = +2 010 = +2 010 = +2

 011 = +3 011 = +3 011 = +3

 100 = -0 100 = -3 100 = -4

 101 = -1 101 = -2 101 = -3

 110 = -2 110 = -1 110 = -2

 111 = -3 111 = -0 111 = -1

❖ Issues: balance, number of zeros, ease of operations

❖Which one is best? Why?

Possible Representations

5

6

7

RISC-V - Two’s complement

❖Positive numbers - regular binary

❖Negative numbers

◆Take equivalent positive binary number

◆Flip the bits

◆Add 1

❖Significant design advantages

◆Easy to negate numbers (steps given above)

◆Easy to check positive/negative (still have sign bit)

◆Biggest one: adding and subtracting work right!

8

Sign extension

We will often need to take a 16-bit number and

put it into a 32-bit (or 64-bit) location.

Doing this in two’s complement requires some

slight additional care:

◆Must always replicate the left-most bit (sign bit)

into the other positions.

◆This process is called sign-extension, and is built

into most commands

7

8

9

Unsigned numbers

❖Sometimes we have variables (like counters)

that can only be positive. By not using two’s

complement for these cases, we get a whole

extra bit of representation.

❖Positive-only numbers are called unsigned.

❖Math commands on unsigned numbers will

have to be handled carefully, both in design

and in programming (especially with the

built-in sign extension)

10

❖ Two's complement operations easy

◆ subtraction using addition of negative numbers

 0111

+ 1010

❖ Overflow (result too large for finite computer word):

◆ e.g., adding two n-bit numbers does not yield an n-bit number

 0111

+ 0001

 1000

Addition & Subtraction

9

10

11

Integer Addition

❖Example: 7 + 6

◼ Overflow if result out of range

◼ Adding positive and negative operands, no overflow

◼ Adding two positive operands

◼ Overflow if result sign is 1

◼ Adding two negative operands

◼ Overflow if result sign is 0

12

Integer Subtraction

❖Add negation of second operand

❖Example: 7 – 6 = 7 + (–6)

 +7: 0000 0000 … 0000 0111

–6: 1111 1111 … 1111 1010

+1: 0000 0000 … 0000 0001

❖Overflow if result out of range

◆Subtracting two positive or two negative operands, no

overflow

◆Subtracting positive from negative operand

➢Overflow if result sign is 0

◆Subtracting negative from positive operand

➢Overflow if result sign is 1

11

12

13

Practice

1. Represent +14, -14, +25, and –25 in

6-bit two’s complement notation

2. Using these representations,

a) Add -14 + -14

b) Add 14 + -25

c) Add 14 + 25

3. Any overflows?

14

❖ No overflow when adding a positive and a negative

number

❖ No overflow when signs are the same for subtraction

❖ Overflow occurs when the value affects the sign:

◆adding two positives yields a negative

◆adding two negatives gives a positive

◆subtract a negative from a positive and get a negative

◆subtract a positive from a negative and get a positive

❖ How to handle overflow:

◆Control jumps to predefined address for exception

◆ Interrupted address is saved for possible resumption

◆ Ignore it (several commands for unsigned arithmetic do not

cause exceptions on overflow)

Detecting Overflow

13

14

15

Outline

❖Basics

❖ALU

❖Carry look ahead

❖Shifting

16

The Arithmetic Logic Unit (ALU)
❖ Will use a bottom-up approach to design a 32-bit ALU (64-bit is

similar)

❖ Based on the chosen instruction set, we need to be able to
implement:

◆Addition

◆Subtraction

◆Bit-wise AND

◆Bit-wise OR

◆Set on less-than

◆Zero-flag (BNE)

◆Nor

◆Shift left

◆Shift right

◆Multiplication

◆Division

}Will be integrated into ALU

(Will do later)}

15

16

17

Building blocks: Start with 1-bit ALU

Start with just AND, OR, ADD functions

ALU inputs:

◆Input A, Input B, Carry In, Control flags

(for deciding what operation is implemented)

ALU outputs:

◆Result, Carry Out

❖Practice: Work out the logic formulas for Add

from the basic concept of addition

18

ALU formulas

AND

◆Result = AB

OR

◆Result = A+B

ADD

◆Result =

◆Carry Out =

iiii ABCCBACBACBA +++

ii BCACAB ++

17

18

19

First-pass ALU Implementation

❖ Implement AND, OR,

ADD logic

❖ Use 3-input mux to

select output function

(Operation)

20

Extending to full 32-bit ALU

❖ Just need to hook

up in series (in chain) so

the carries will propagate.

❖ This is an example of

hierarchical design

(using building blocks)

- what the book calls

“abstraction”

19

20

21

Including subtraction

❖ Subtraction is just plus ,

so just need an inverter!

❖ Implement AND, OR,

ADD logic

❖ Use 2-input mux to

choose ADD/SUB

(Binvert)

❖ Use 3-input mux to

select output function

(Operation)

BA
Add 1

Flip the bits

22

Including NOR

❖ A NOR operation can be written as

Therefore, we can use the AND gate.

Just need another inverter!

❖ To implement NOR, set

AInvert and

BInvert and

Operation = AND

A B•

New input AInvert

21

22

23

Including Set on Less Than (SLT)

❖ SLT sets output = 1 if A < B, 0 else

❖ Bitwise formula for slt:

 Result = 0, unless A-B < 0 and this is LSB

❖ So:

◆Set Binvert (to perform A-B)

◆Add a new input called Less

➢Connect to logical 0, for all bits except LSB

➢Connect LSB Less input to sign bit (MSB) from A-B

◆Question: Where do we get that sign bit? (We will

be setting the result output of the MSB to logic 0)

◆Answer: Need slightly modified ALU for MSB; add

an output called Set connected to MSB adder

24

Final Standard and MSB Units

Standard 1-bit units

Chain 31 of them (for bits

Index 0..30)

MSB unit

Use for last bit

(bit Index 31)

(Note we’ve also added overflow

detection to the MSB.)

MSB sign bit

LSB: Connect to Set

Else: Hardwire to 0

23

24

25

Final Version with Zero-check flag

Control lines: “ALU operation”, 4 bits:

❖ Ainvert

❖ Bnegate

❖ Operation1

❖ Operation0

=

0000 = and

0001 = or

0010 = add

0110 = sub

0111 = slt

1100 = NOR

26

Problem for You

❖Analyze the performance of this design

◆Does it implement the required tasks? YES

◆How long does it take to do it?
➢ Assume: The logic in a 1-bit adder takes 2 levels of logic to produce

the carry output, and each gate has a 1 ns delay in this particular

design.

➢ What’s the total amount of delay from IN to OUT for a 32-bit ALU to do

an ADD?

❖This design is called a ripple carry adder.

Not the best

❖What is the minimum delay possible?

25

26

27

Outline

❖Basics

❖ALU

❖Carry look ahead

❖Shifting

28

Carry look-ahead

So, what do we know without any delay?

◆The values of the ai and bi inputs

What can we do with them?

◆Figure out when a Carry Out will be generated

(regardless of the Carry In value).

 gi = ai bi

◆Figure out when a Carry In will be propagated

to the Carry Out. (when cout will equal cin)

 pi = ai + bi

❖At each bit, we get cout = g + p cin

27

28

29

4-bit case, expanded

c1 = g0 + p0c0

c2 = g1 + p1c1

 = g1 + p1(g0 + p0c0)

 = g1 + p1g0 + p1p0c0

c3 = g2 + p2c2

 = g2 + p2(g1 + p1g0 + p1p0c0)

 = g2 + p2g1 + p2p1g0 + p2p1p0c0

c4 = g3 + p3c3

 = g3 + p3(g2 + p2g1 + p2p1g0 + p2p1p0c0)

 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0

30

❖Can we build a 16-bit adder this way?

◆How much delay would it have?

◆How many gate inputs for the MSB Carry Out?

❖How about a compromise?

Hierarchical design approach:

◆Put together 4 4-bit carry-lookahead adders

◆Create 4-bit signals: propagates (P0-3), generates

(G0-3), carries (C1- 4). Example formulas:

P0 = p3p2p1p0

G0 = g3 + p3g2 + p3p2g1 + p3p2p1g0

C1 = G0 + P0c0

29

30

31

16-bit hierarchical carry-lookahead

❖ How much total delay
is there in this design?
◆1st level p & g in

(a & b in →p & g out)

◆1st level P & G out?
(p & g in→P & G out)

◆2nd level Carry Out?
(P & G in→C out)

◆1st level carry in?
(C in + p & g in → c in)

◆Result out?
(a & b & c in → Result
out)

❖What is the
performance
improvement?

32

Outline

❖Basics

❖ALU

❖Carry look ahead

❖Shifting

31

32

33

Shifting

Shifting we need to implement (6 kinds)

◆Direction: Left or right

◆Extension:
➢ Logical (Zero extended)

➢Arithmetic (Sign extended)

➢Rotate (extended by rotation of bits)

❖Goal – shift in 1 clock cycle. Common types:
➢Barrel Shifter (Full mux into flip-flop for each bit)

➢Combinational Shifter (Hierarchical, MUX-based)

➢Funnel Shifter (Selects a region of a doubled register)

34

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

S2 S1 S0A0A1A2A3A4A5A6A7

R0R1R2R3R4R5R6R7

Combinational Shifter from MUXes

❖ 8-bit right shifter

Issues/questions

❖ What comes in the MSBs?

❖ How many levels for 32-bit shifter?

❖ How can we do rotates (circular shifting)?

33

34

35

Funnel Shifter

❖ Advantage: Can do all 6 kinds of shifts with same

hardware (can still use combinational mux design).

Right halfLeft half

Output

0N-12N-1

0N-1

Offset k

Type Left half Right half Offset

Logical Left RN-1 – R0 0…0 N-k

Logical Right 0…0 RN-1 – R0 k

Arithmetic Left RN-1 – R0 0…0 N-k

Arithmetic Right RN-1…RN-1 RN-1 – R0 k

Rotate Left RN-1 – R0 RN-1 – R0 N-k

Rotate Right RN-1 – R0 RN-1 – R0 k

35

	Slide 1
	Slide 2: Outline
	Slide 3: Design process summary
	Slide 4: Design Methodologies
	Slide 5: First step: arithmetic circuits
	Slide 6: Possible Representations
	Slide 7: RISC-V - Two’s complement
	Slide 8: Sign extension
	Slide 9: Unsigned numbers
	Slide 10: Addition & Subtraction
	Slide 11: Integer Addition
	Slide 12: Integer Subtraction
	Slide 13: Practice
	Slide 14: Detecting Overflow
	Slide 15: Outline
	Slide 16: The Arithmetic Logic Unit (ALU)
	Slide 17: Building blocks: Start with 1-bit ALU
	Slide 18: ALU formulas
	Slide 19: First-pass ALU Implementation
	Slide 20: Extending to full 32-bit ALU
	Slide 21: Including subtraction
	Slide 22: Including NOR
	Slide 23: Including Set on Less Than (SLT)
	Slide 24: Final Standard and MSB Units
	Slide 25: Final Version with Zero-check flag
	Slide 26: Problem for You
	Slide 27: Outline
	Slide 28: Carry look-ahead
	Slide 29: 4-bit case, expanded
	Slide 30
	Slide 31: 16-bit hierarchical carry-lookahead
	Slide 32: Outline
	Slide 33: Shifting
	Slide 34: Combinational Shifter from MUXes
	Slide 35: Funnel Shifter

