
1

COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

Cristinel Ababei

Marquette University

Department of Electrical and Computer Engineering

COEN-2710 Microprocessors - Lecture 7

Large and Fast: Exploiting Memory

Hierarchy

(Ch.5)

2

Outline

◼ Memory Hierarchy

◼ Memory Technology

◼ Cache Memory – Direct Mapped

◼ Cache Performance

◼ Associative Caches

◼ Virtual Memory

◼ The BIG Picture

1

2

2

3

Since 1980, CPU has outpaced DRAM ...

CPU

60% per yr

2X in 1.5 yrs

DRAM

9% per yr

2X in 10 yrs
DRAM

CPU

Performance

(1/latency)

Year

Gap grew 50% per
year

◼ How did architects address this gap?
◼ Put small, fast “cache” memories between CPU and DRAM.

◼ Create a “memory hierarchy”!

4

Principle of Locality

◼ Programs access a small proportion of their

address space at any time

◼ Temporal locality

◼ Items accessed recently are likely to be

accessed again soon

◼ e.g., instructions in a loop, induction variables

◼ Spatial locality

◼ Items near those accessed recently are likely to

be accessed soon

◼ E.g., sequential instruction access, array data

3

4

3

5

Taking Advantage of Locality

◼ Memory hierarchy

◼ Store everything on disk

◼ Copy recently accessed (and nearby) items

from disk to smaller DRAM memory

◼ Main memory

◼ Copy more recently accessed (and nearby)

items from DRAM to smaller SRAM memory

◼ Cache memory attached to CPU

6

Memory Hierarchy

◼ Everything is a cache for something else

◼ Take advantage of the principle of locality to:
◼ Present as much memory as possible in the cheapest technology

◼ Provide access at speed offered by the fastest technology

O
n

-C
h

ip

C
ach

e

R
eg

isters

Control

Datapath

Secondary

Storage

(Disk/

FLASH/

PCM)

Processor

Main

Memory

(DRAM/

PCM)

L3

Cache

(SRAM)

1s 10,000,000s
 (10s ms)

Speed (ns): 10s-100s 100s

100s GsSize (bytes): Ks-Ms Ms

Tertiary

Storage

(Tape/

Cloud

Storage)

10,000,000,000s
 (10s sec)

Ts

5

6

4

7

Example of Recent Memory Hierarchy

8

Memory Hierarchy Levels

◼ Hit: data appears in some block in the upper level (example: Block X)

◼ Hit Rate: Fraction of memory access found in the upper level

◼ Hit Time: Time to access the upper level which consists of:

Time to determine hit/miss + Memory access time

◼ Miss: data needs to be retrieved from a block in the lower level (Block Y)

◼ Miss Rate = 1 - (Hit Rate)

◼ Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block to the processor

◼ Hit Time << Miss Penalty (500 instructions on 21264!)

Lower Level

MemoryUpper Level

Memory
To Processor

From Processor

Blk X

Blk Y

7

8

5

9

Outline

◼ Memory Hierarchy

◼ Memory Technology

◼ Cache Memory – Direct Mapped

◼ Cache Performance

◼ Associative Caches

◼ Virtual Memory

◼ The BIG Picture

10

Memory Technology

◼ Static RAM (SRAM)

◼ 0.5ns – 2.5ns, $2000 – $5000 per GB

◼ Dynamic RAM (DRAM)

◼ 50ns – 70ns, $20 – $75 per GB

◼ Magnetic disk

◼ 5ms – 20ms, $0.20 – $2 per GB

◼ Ideal memory

◼ Access time of SRAM

◼ Capacity and cost/GB of disk

9

10

6

11

DRAM Technology

◼ Data stored as a charge in a capacitor

◼ Single transistor used to access the charge

◼ Must periodically be refreshed

◼ Read contents and write back

◼ Performed on a DRAM “row”

12

DRAM array

11

12

7

13

DRAM Architecture

R
o
w

 A
d
d
re

s
s

D
e
c
o
d
e
r

Col.
1

Col.
2M

Row 1

Row 2N

Column Decoder &
Sense Amplifiers

M

N

N+M

bit lines
word lines

Memory cell
(one bit)

DData

• Bits stored in 2-dimensional arrays on chip

• Modern chips have around 4 logical banks on each chip

– each logical bank physically implemented as many smaller arrays

14

Memory subsystem

Memory channel Memory channel

DIMM (Dual in-line memory module)

Processor

“Channel”

13

14

8

15

Advanced DRAM Organization

◼ Bits in a DRAM are organized as a

rectangular array

◼ DRAM accesses an entire row

◼ Burst mode: supply successive words from a

row with reduced latency

◼ Double data rate (DDR) DRAM

◼ Transfer on rising and falling clock edges

◼ Quad data rate (QDR) DRAM

◼ Separate DDR inputs and outputs

16

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac

Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

Row and Column access times (ns)

15

16

9

17

Increasing Memory Bandwidth

◼ 4-word wide memory
◼ Miss penalty = 1 + 15 + 1 = 17 bus cycles

◼ Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

◼ 4-bank interleaved memory
◼ Miss penalty = 1 + 15 + 4×1 = 20 bus cycles

◼ Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

18

Flash Storage

◼ Nonvolatile semiconductor storage

◼ 100× – 1000× faster than disk

◼ Smaller, lower power, more robust

◼ But more $/GB (between disk and DRAM)

17

18

10

19

Flash Types

◼ NOR flash: bit cell like a NOR gate

◼ Random read/write access

◼ Used for instruction memory in embedded systems

◼ NAND flash: bit cell like a NAND gate

◼ Denser (bits/area), but block-at-a-time access

◼ Cheaper per GB

◼ Used for USB keys, media storage, …

◼ Flash bits wears out after 1000’s of accesses

◼ Not suitable for direct RAM or disk replacement

◼ Wear leveling: remap data to less used blocks

20

Disk Storage (Sectors and Access)

◼ Nonvolatile, rotating magnetic storage

◼ Each sector records

◼ Sector ID

◼ Data (512 bytes, 4096 bytes proposed)

◼ Error correcting code (ECC)

◼ Used to hide defects and recording errors

◼ Synchronization fields and gaps

◼ Access to a sector involves

◼ Queuing delay if other accesses are pending

◼ Seek: move the heads

◼ Rotational latency

◼ Data transfer

◼ Controller overhead

19

20

11

21

Disk Access Example

◼ Given
◼ 512B sector, 15,000rpm, 4ms average seek

time, 100MB/s transfer rate, 0.2ms controller
overhead, idle disk

◼ Average read time
◼ 4ms seek time

+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

◼ If actual average seek time is 1ms
◼ Average read time = 3.2ms

22

Outline

◼ Memory Hierarchy

◼ Memory Technology

◼ Cache Memory – Direct Mapped

◼ Cache Performance

◼ Associative Caches

◼ Virtual Memory

◼ The BIG Picture

21

22

12

23

4 Questions for Memory Hierarchy

◼ Q1: Where can a block be placed in the upper level?

(Block placement)

◼ Q2: How is a block found if it is in the upper level?

 (Block identification)

◼ Q3: Which block should be replaced on a miss?

 (Block replacement)

◼ Q4: What happens on a write?

 (Write strategy)

24

Q1: Where can a block be placed in the upper level?

◼ Block 12 placed in 8 block cache:

◼ Direct mapped, 2-way set associative (SA), Fully associative

◼ S.A. Mapping = Block Number MODULO Number Sets

Cache

012345670123456701234567

Memory

1111111111222222222233
01234567890123456789012345678901

Fully associative
(Full Mapped)

Direct Mapped
(12 mod 8) = 4

2-Way Set Associative
(12 mod 4) = 0

23

24

13

25

Direct Mapped Cache

◼ Location determined by address

◼ Direct mapped: only one choice

◼ (Block address) modulo (#Blocks in cache)

◼ #Blocks is a

power of 2

◼ Use low-order

address bits

26

◼ Block is minimum quantum of caching

◼ Data select field used to select data within block

◼ Index Used to Lookup Candidates in Cache

◼ Index identifies the set

◼ How do we know which particular block is stored in a cache

location?

◼ Store block address as well as the data

◼ Actually, only need the high-order bits

◼ Called the tag

◼ If no candidates match, then declare cache miss

◼ What if there is no data in a location?

◼ Valid bit: 1 = present, 0 = not present

◼ Initially 0

Q2: How is a block found if it is in the upper level?

25

26

14

27

Address Subdivision

28

Cache Example

◼ 8-blocks, 1 word/block, direct mapped

◼ Initial state

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

27

28

15

29

Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr. Binary addr Hit/miss Cache block

22 10 110 Miss 110

30

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

29

30

16

31

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

32

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

31

32

17

33

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

34

Block Size Considerations

◼ Larger blocks should reduce miss rate

◼ Due to spatial locality

◼ But in a fixed-sized cache

◼ Larger blocks  fewer of them

◼ More competition  increased miss rate

◼ Larger blocks  pollution

◼ Larger miss penalty

◼ Can override benefit of reduced miss rate

◼ Early restart and critical-word-first can help

33

34

18

35

Q3: Which block should be replaced on a miss?

◼ Easy for Direct Mapped

◼ Set Associative or Fully Associative:
◼ LRU (Least Recently Used): Appealing, but hard to

implement for high associativity

◼ Random: Easy, but – how well does it work?

◼ Miss rates:

Assoc: 2-way 4-way 8-way

Size LRU Ran LRU Ran LRU Ran

16K 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64K 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256K 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

36

Cache Misses

◼ On cache hit, CPU proceeds normally

◼ On cache miss

◼ Stall the CPU pipeline

◼ Fetch block from next level of hierarchy

◼ Instruction cache miss

◼ Restart instruction fetch

◼ Data cache miss

◼ Complete data access

35

36

19

37

Q4: What Happens on a Write?

Write-Through Write-Back

Policy

• Data written to cache

block

• Also written to lower-

level memory

• Write data only to
the cache block

• Update lower level
when a block falls
out of the cache

Debug Easy Hard

Do read misses
produce writes? No Yes

Do repeated
writes make it to

lower level?
Yes No

38

Write-Through

◼ On data-write hit, could just update the block in
cache
◼ But then cache and memory would be inconsistent

◼ Write through: also update memory

◼ But makes writes take longer
◼ e.g., if base CPI = 1, 10% of instructions are stores, write

to memory takes 100 cycles
◼ Effective CPI = 1 + 0.1×100 = 11

◼ Solution: write buffer
◼ Holds data waiting to be written to memory

◼ CPU continues immediately
◼ Only stalls on write if write buffer is already full

37

38

20

39

Write-Back

◼ Alternative: On data-write hit, just update the

block in cache

◼ Keep track of whether each block is dirty

◼ When a dirty block is replaced

◼ Write it back to memory

◼ Can use a write buffer to allow replacing block to

be read first

40

Write Buffers for Write-Through Caches

Q. Why a write buffer?

Processor
Cache

Write Buffer

Lower

Level

Memory

Holds data awaiting write-through to

lower level memory

A. So CPU doesn’t stall

Q. Why a buffer, why not just
one register?

A. Bursts of writes are
common

Q. Are Read After Write (RAW)
hazards an issue for write
buffer?

A. Yes! Drain buffer before next
read, or check write buffers for
match on reads

39

40

21

41

Outline

◼ Memory Hierarchy

◼ Memory Technology

◼ Cache Memory – Direct Mapped

◼ Cache Performance

◼ Associative Caches

◼ Virtual Memory

◼ The BIG Picture

42

Measuring Cache Performance

◼ Components of CPU time
◼ Program execution cycles

◼ Includes cache hit time

◼ Memory stall cycles
◼ Mainly from cache misses

◼ With simplifying assumptions:

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

=

=

41

42

22

43

Cache Performance Example

◼ Given
◼ I-cache miss rate = 2%

◼ D-cache miss rate = 4%

◼ Miss penalty = 100 cycles

◼ Base CPI (ideal cache) = 2

◼ Load & stores are 36% of instructions

◼ Miss cycles per instruction
◼ I-cache: 0.02 × 100 = 2

◼ D-cache: 0.36 × 0.04 × 100 = 1.44

◼ Actual CPI = 2 + 2 + 1.44 = 5.44
◼ Ideal CPU is 5.44/2 =2.72 times faster

44

Average Memory Access Time

◼ Hit time is also important for performance

◼ Average memory access time (AMAT)

◼ AMAT = Hit time + Miss rate × Miss penalty

◼ Example

◼ CPU with 1ns clock, hit time = 1 cycle, miss

penalty = 20 cycles, miss rate = 5%

◼ AMAT = 1 + 0.05 × 20 = 2ns

◼ 2 cycles per instruction

43

44

23

45

Performance Summary

◼ When CPU performance increased

◼ Miss penalty becomes more significant

◼ Decreasing base CPI

◼ Greater proportion of time spent on memory

stalls

◼ Increasing clock rate

◼ Memory stalls account for more CPU cycles

◼ Can’t neglect cache behavior when

evaluating system performance!

46

Outline

◼ Memory Hierarchy

◼ Memory Technology

◼ Cache Memory – Direct Mapped

◼ Cache Performance

◼ Associative Caches

◼ Virtual Memory

◼ The BIG Picture

45

46

24

47

Associative Caches

◼ Fully associative

◼ Allow a given block to go in any cache entry

◼ Requires all entries to be searched at once

◼ Comparator per entry (expensive)

◼ n-way set associative

◼ Each set contains n entries

◼ Block number determines which set

◼ (Block number) modulo (#Sets in cache)

◼ Search all entries in a given set at once

◼ n comparators (less expensive)

48

Recall

Q1: Where can a block be placed in the upper level?

◼ Block 12 placed in 8 block cache:

◼ Direct mapped, 2-way set associative (SA), Fully associative

◼ S.A. Mapping = Block Number MODULO Number Sets

Cache

012345670123456701234567

Memory

1111111111222222222233
01234567890123456789012345678901

Fully associative
(Full Mapped)

Direct Mapped
(12 mod 8) = 4

2-Way Set Associative
(12 mod 4) = 0

47

48

25

49

Associativity Example

◼ Compare 4-block caches

◼ Direct mapped, 2-way set associative,

fully associative

◼ Block access sequence: 0, 8, 0, 6, 8

◼ Direct mapped

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

50

Associativity Example

◼ 2-way set associative
Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

◼ Fully associative
Block

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

49

50

26

51

How Much Associativity?

◼ Increased associativity decreases miss rate

◼ But with diminishing returns

◼ Simulation of a system with 64KB

D-cache, 16-word blocks, SPEC2000

◼ 1-way: 10.3%

◼ 2-way: 8.6%

◼ 4-way: 8.3%

◼ 8-way: 8.1%

52

Set Associative Cache Organization

51

52

27

53

Replacement Policy

◼ Direct mapped: no choice

◼ Set associative
◼ Prefer non-valid entry, if there is one

◼ Otherwise, choose among entries in the set

◼ Least-recently used (LRU)
◼ Choose the one unused for the longest time

◼ Simple for 2-way, manageable for 4-way, too hard
beyond that

◼ Random
◼ Gives approximately the same performance

as LRU for high associativity

54

Multilevel Caches

◼ Primary cache attached to CPU

◼ Small, but fast

◼ Level-2 cache services misses from

primary cache

◼ Larger, slower, but still faster than main

memory

◼ Main memory services L-2 cache misses

◼ Some high-end systems include L-3 cache

53

54

28

55

Example

◼ Given

◼ CPU base CPI = 1, clock rate = 4GHz

◼ Miss rate/instruction = 2%

◼ Main memory access time = 100ns

◼ With just primary cache

◼ Miss penalty = 100ns/0.25ns = 400 cycles

◼ Effective CPI = 1 + 0.02 × 400 = 9

56

Example (cont.)

◼ Now add L-2 cache

◼ Access time = 5ns

◼ Global miss rate to main memory = 0.5%

◼ Primary miss with L-2 hit

◼ Penalty = 5ns/0.25ns = 20 cycles

◼ Primary miss with L-2 miss

◼ Extra penalty = 400 cycles

◼ CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4

◼ Performance ratio = 9/3.4 = 2.6

55

56

29

57

Outline

◼ Memory Hierarchy

◼ Memory Technology

◼ Cache Memory – Direct Mapped

◼ Cache Performance

◼ Associative Caches

◼ Virtual Memory

◼ The BIG Picture

58

Virtual Memory

◼ Use main memory as a “cache” for
secondary (disk) storage
◼ Managed jointly by CPU hardware and the

operating system (OS)

◼ Programs share main memory
◼ Each gets a private virtual address space

holding its frequently used code and data

◼ Protected from other programs

◼ CPU and OS translate virtual addresses to
physical addresses
◼ VM “block” is called a page

◼ VM translation “miss” is called a page fault

57

58

30

59

Address Translation

◼ Fixed-size pages (e.g., 4K)

60

Page Fault Penalty

◼ On page fault, the page must be fetched

from disk

◼ Takes millions of clock cycles

◼ Handled by OS code

◼ Try to minimize page fault rate

◼ Fully associative placement

◼ Smart replacement algorithms

59

60

31

61

Page Tables

◼ Stores placement information

◼ Array of page table entries, indexed by virtual
page number

◼ Page table register in CPU points to page
table in physical memory

◼ If page is present in memory

◼ PTE stores the physical page number

◼ Plus other status bits (referenced, dirty, …)

◼ If page is not present

◼ PTE can refer to location in swap space on
disk

62

Translation Using a Page Table

61

62

32

63

Mapping Pages to Storage

64

Replacement and Writes

◼ To reduce page fault rate, prefer least-
recently used (LRU) replacement
◼ Reference bit (aka use bit) in PTE set to 1 on

access to page

◼ Periodically cleared to 0 by OS

◼ A page with reference bit = 0 has not been
used recently

◼ Disk writes take millions of cycles
◼ Block at once, not individual locations

◼ Write through is impractical

◼ Use write-back

◼ Dirty bit in PTE set when page is written

63

64

33

65

Fast Translation Using a TLB

◼ Address translation would appear to require

extra memory references

◼ One to access the PTE

◼ Then the actual memory access

◼ But access to page tables has good locality

◼ So use a fast cache of PTEs within the CPU

◼ Called a Translation Look-aside Buffer (TLB)

◼ Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100

cycles for miss, 0.01%–1% miss rate

◼ Misses could be handled by hardware or software

66

Fast Translation Using a TLB

65

66

34

67

TLB Misses

◼ If page is in memory

◼ Load the PTE from memory and retry

◼ Could be handled in hardware
◼ Can get complex for more complicated page table

structures

◼ Or in software
◼ Raise a special exception, with optimized handler

◼ If page is not in memory (page fault)

◼ OS handles fetching the page and updating
the page table

◼ Then restart the faulting instruction

68

TLB Miss Handler

◼ TLB miss indicates

◼ Page present, but PTE not in TLB

◼ Page not preset

◼ Must recognize TLB miss before

destination register overwritten

◼ Raise exception

◼ Handler copies PTE from memory to TLB

◼ Then restarts instruction

◼ If page not present, page fault will occur

67

68

35

69

Page Fault Handler

◼ Use faulting virtual address to find PTE

◼ Locate page on disk

◼ Choose page to replace

◼ If dirty, write to disk first

◼ Read page into memory and update page

table

◼ Make process runnable again

◼ Restart from faulting instruction

70

TLB and Cache Interaction

◼ If cache tag uses

physical address

◼ Need to translate

before cache lookup

◼ Alternative: use virtual

address tag

◼ Complications due to

aliasing

◼ Different virtual

addresses for shared

physical address

69

70

36

71

Memory Protection

◼ Different tasks can share parts of their

virtual address spaces

◼ But need to protect against errant access

◼ Requires OS assistance

◼ Hardware support for OS protection

◼ Privileged supervisor mode (aka kernel mode)

◼ Privileged instructions

◼ Page tables and other state information only

accessible in supervisor mode

◼ System call exception (e.g., syscall in MIPS)

72

Outline

◼ Memory Hierarchy

◼ Memory Technology

◼ Cache Memory – Direct Mapped

◼ Cache Performance

◼ Associative Caches

◼ Virtual Memory

◼ The BIG Picture

71

72

37

73

Memory Hierarchy

◼ Common principles apply at all levels of

the memory hierarchy

◼ Based on notion of caching

◼ At each level in the hierarchy

◼ Block placement

◼ Finding a block

◼ Replacement on a miss

◼ Write policy

The BIG Picture

74

1) Block Placement

◼ Determined by associativity

◼ Direct mapped (1-way associative)

◼ One choice for placement

◼ n-way set associative

◼ n choices within a set

◼ Fully associative

◼ Any location

◼ Higher associativity reduces miss rate

◼ Increases complexity, cost, and access time

73

74

38

75

2) Finding a Block

◼ Hardware caches
◼ Reduce comparisons to reduce cost

◼ Virtual memory
◼ Full table lookup makes full associativity feasible

◼ Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set

associative

Set index, then search

entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0

76

3) Replacement on Miss

◼ Choice of entry to replace on a miss

◼ Least recently used (LRU)

◼ Complex and costly hardware for high associativity

◼ Random

◼ Close to LRU, easier to implement

◼ Virtual memory

◼ LRU approximation with hardware support

75

76

39

77

4) Write Policy

◼ Write-through
◼ Update both upper and lower levels

◼ Simplifies replacement, but may require write
buffer

◼ Write-back
◼ Update upper level only

◼ Update lower level when block is replaced

◼ Need to keep more state

◼ Virtual memory
◼ Only write-back is feasible, given disk write

latency

78

Sources of Misses

◼ Compulsory misses (aka cold start misses)

◼ First access to a block

◼ Capacity misses

◼ Due to finite cache size

◼ A replaced block is later accessed again

◼ Conflict misses (aka collision misses)

◼ In a non-fully associative cache

◼ Due to competition for entries in a set

◼ Would not occur in a fully associative cache of
the same total size

77

78

40

79

Cache Design Trade-offs

Design change Effect on miss rate Negative performance

effect

Increase cache size Decrease capacity

misses

May increase access

time

Increase associativity Decrease conflict

misses

May increase access

time

Increase block size Decrease compulsory

misses

Increases miss

penalty. For very large

block size, may

increase miss rate

due to pollution.

80

Cache Coherence Problem

◼ Suppose two CPU cores share a physical
address space
◼ Write-through caches

Time

step

Event CPU A’s

cache

CPU B’s

cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

79

80

41

81

Coherence Defined

◼ Informally: Reads return most recently
written value

◼ Formally:

◼ P writes X; P reads X (no intervening writes)
 read returns written value

◼ P1 writes X; P2 reads X (sufficiently later)
 read returns written value
◼ c.f. CPU B reading X after step 3 in example

◼ P1 writes X, P2 writes X
 all processors see writes in the same order
◼ End up with the same final value for X

82

Cache Coherence Protocols

◼ Operations performed by caches in
multiprocessors to ensure coherence

◼ Migration of data to local caches
◼ Reduces bandwidth for shared memory

◼ Replication of read-shared data
◼ Reduces contention for access

◼ 1. Snooping protocols

◼ Each cache monitors bus reads/writes

◼ 2. Directory-based protocols

◼ Caches and memory record sharing status of
blocks in a directory

81

82

42

83

Concluding Remarks

◼ Fast memories are small, large memories are slow
◼ We really want fast, large memories

◼ Caching helps to create this illusion

◼ Principle of locality
◼ Programs use a small part of their memory space

frequently

◼ Memory hierarchy
◼ L1 cache  L2 cache  …  DRAM memory
 disk

◼ Memory system design is critical for
multiprocessors

83

	Slide 1
	Slide 2: Outline
	Slide 3: Since 1980, CPU has outpaced DRAM ...
	Slide 4
	Slide 5: Taking Advantage of Locality
	Slide 6: Memory Hierarchy
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Memory Technology
	Slide 11: DRAM Technology
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Advanced DRAM Organization
	Slide 16: DRAM Generations
	Slide 17: Increasing Memory Bandwidth
	Slide 18: Flash Storage
	Slide 19: Flash Types
	Slide 20: Disk Storage (Sectors and Access)
	Slide 21: Disk Access Example
	Slide 22: Outline
	Slide 23: 4 Questions for Memory Hierarchy
	Slide 24: Q1: Where can a block be placed in the upper level?
	Slide 25: Direct Mapped Cache
	Slide 26
	Slide 27
	Slide 28: Cache Example
	Slide 29: Cache Example
	Slide 30: Cache Example
	Slide 31: Cache Example
	Slide 32: Cache Example
	Slide 33: Cache Example
	Slide 34: Block Size Considerations
	Slide 35
	Slide 36: Cache Misses
	Slide 37
	Slide 38: Write-Through
	Slide 39: Write-Back
	Slide 40
	Slide 41
	Slide 42: Measuring Cache Performance
	Slide 43: Cache Performance Example
	Slide 44: Average Memory Access Time
	Slide 45: Performance Summary
	Slide 46
	Slide 47: Associative Caches
	Slide 48
	Slide 49: Associativity Example
	Slide 50: Associativity Example
	Slide 51: How Much Associativity?
	Slide 52: Set Associative Cache Organization
	Slide 53: Replacement Policy
	Slide 54: Multilevel Caches
	Slide 55: Example
	Slide 56: Example (cont.)
	Slide 57
	Slide 58: Virtual Memory
	Slide 59: Address Translation
	Slide 60: Page Fault Penalty
	Slide 61: Page Tables
	Slide 62: Translation Using a Page Table
	Slide 63: Mapping Pages to Storage
	Slide 64: Replacement and Writes
	Slide 65: Fast Translation Using a TLB
	Slide 66: Fast Translation Using a TLB
	Slide 67: TLB Misses
	Slide 68: TLB Miss Handler
	Slide 69: Page Fault Handler
	Slide 70: TLB and Cache Interaction
	Slide 71: Memory Protection
	Slide 72
	Slide 73: Memory Hierarchy
	Slide 74: 1) Block Placement
	Slide 75: 2) Finding a Block
	Slide 76: 3) Replacement on Miss
	Slide 77: 4) Write Policy
	Slide 78: Sources of Misses
	Slide 79: Cache Design Trade-offs
	Slide 80: Cache Coherence Problem
	Slide 81: Coherence Defined
	Slide 82: Cache Coherence Protocols
	Slide 83: Concluding Remarks

