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Getting CPI less than 1

Superscalar and VLIW processors

» Trade-off between static and dynamic instruction
scheduling
— Static scheduling places burden on software
— Dynamic scheduling places burden on hardware

* Superscalar processors issue a variable number of
instructions per cycle, up to a maximum, using static
(compiler) or dynamic (hardware) scheduling

* VLIW processors issue a fixed number of instructions per
cycle, seen as a packet (potentially with empty slots),
and created and scheduled statically by the compiler

Superscalar Execution

» A superscalar architecture is one in which
several instructions can be initiated
simultaneously and executed independently.

* Pipelining allows several instructions to be
executed at the same time, but they have to be
in different pipeline stages at a given moment.

» Superscalar architectures include all features
of pipelining but, in addition, there can be
several instructions executing simultaneously
in the same pipeline stage.




Superscalar Execution

» Higher instruction fetch bandwidth

» INT instructions, loads and stores occupy one slot

» FP instructions occupy second slot

» Need pipelined FP datapath, otherwise FP datapath

becomes bottleneck

Instruction type Pipe stages

INT instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

INT instruction IF ID EX MEM WB

FP instruction IF ID EX MEM wB

INT instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

Superscalar processor with dynamic

scheduling

» Extend Tomasulo’s algorithm to handle

multiple issue
* Instructions issued in program order

« Cannot issue multiple dependent instructions
in the same cycle. Two ways to deal with that:

1. Issue stage split in halves to issue dependent instructions in
the same cycle (one in half cycle, another in the second

half); not scalable

2. Add logic to be able to handle two or more instructions at the
same time; this done at Issue stage to process instructions

and find dependencies




Limitations of multiple-issue processors

Software and hardware implications

» Inherent limitations of ILP in programs (control and data dependencies)

» Need as many independent instructions as pipeline depth
» Deep unrolling, register pressure

» Hardware complexity increasing rapidly with instructions issued per
cycle

Adding FUs scales complexity linearly

Higher memory and register-file bandwidth, more ports
Memory system implications, interleaving

Dynamic scheduling expensive

Issue logic of dynamic scheduled processors expensive

yvyvyvwvy
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» Middle ground: combination of static (compiler) and dynamic scheduling

The Future?

* Moving away from ILP enhancements

Powerd Powers Poweré Power7

Introduced 2001 2004 2007 2010
Initial clock rate (GHz) 1.3 1.9 4.7 36
Transistor count (M) 174 276 To0 1200
Issues per clock 5 5 7 6
Functional units B 8 9 12
Cores/chip 2 2 2 8
SMT threads 0 2 2 4
Total on-chip cache (MB) 1.5 2 4.1 323

Figure 3.47 Characteristics of four IBM Power processors. All except the Powers were dynamically scheduled,
which is static, and in-order, and all the processors support two load/store pipelines. The Power6 has the same func-
tional units as the Power5 except for a decimal unit. Power7 uses DRAM for the L3 cache.
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Performance Beyond Traditional ILP

* There can be much higher natural parallelism
in some applications (e.g., Database or
Scientific codes)

« Explicit
— Thread Level Parallelism (TLP) or
— Data Level Parallelism (DLP)
« Thread: light-weight process with own

instructions and data

— Each thread has all the state (instructions, data, PC, register
state, and so on) necessary to allow it to execute

» Data Level Parallelism: Perform identical
operations on data, and lots of data
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Thread Level Parallelism (TLP)

* Goal: Improve Uniprocessor Throughput

» ILP exploits implicit parallel operations within a loop or
straight-line code segment

» TLP explicitly represented by the use of multiple threads of
execution that are inherently parallel

* Goal: Use multiple instruction streams to improve
1. Throughput of computers that run many programs
2. Execution time of multithreaded programs

e TLP could be more cost-effective to exploit than ILP
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Multithreaded Execution

» Hardware Multithreading: multiple threads to share the
functional units of 1 processor via overlapping
— processor must duplicate independent state of each thread e.g., a

separate copy of register file, a separate PC, and for running
independent programs, a separate page table

— memory shared through the virtual memory mechanisms, which
already support multiple processes

— HW for fast thread switch; much faster than full process switch
(which can take 100s to 1000s of clocks)

» single process might contain multiple threads; all threads within
a process share the same memory space, and can communicate
with each other directly, because they share the same variables

* When to switch between threads?

1.Alternate instruction per thread (fine grain)

2.When a thread is stalled, perhaps for a cache miss, another thread

can be executed (coarse grain)
12
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Simple Multithreaded Pipeline

N2 Thread
select

= Have to carry thread select down pipeline to ensure correct state bits read/
written at each pipe stage

= Appears to software (including 0S) as multiple, albeit slower, CPUs
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1. Fine-Grained Multithreading

Switches between threads on each cycle, causing the
execution of multiples threads to be interleaved

Usually done in a round-robin fashion, skipping any
stalled threads
CPU must be able to switch threads every clock

Advantage is it can hide both short and long stalls, since
instructions from other threads executed when one
thread stalls

Disadvantage is it slows down execution of individual
threads, since a thread ready to execute without stalls
will be delayed by instructions from other threads

Used on Sun’s T1 (2005) and T2 (Niagara, 2007)
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Fine-Grained Multithreading on the Sun T1

» Circa 2005; first major processor to focus on TLP
rather than ILP

Characteristic

SunTi1

Multiprocessor and
multithreading
support

Eight cores per chip; four threads per core. Fine-grained thread
scheduling. One shared floating-point unit for eight cores.
Supports only on-chip multiprocessing.

Pipeline structure

Simple, in-order, six-deep pipeline with three-cycle delays for
loads and branches.

L1 caches 16 KB instructions; 8 KB data. 64-byte block size. Miss to L2 is
23 cycles, assuming no contention.
L2 caches Four separate L2 caches, each 750 KB and associated with a

memory bank. 64-byte block size. Miss to main memory is 110
clock cycles assuming no contention.

Initial implementation

90 nm process; maximum clock rate of 1.2 GHz:; power 79 W;
300 M transistors; 379 mm? die.

15
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CPlon Sun T1
Benchmark Per-thread CPI Per-core CPI
TPC-C 7.2 1.80
SPECIBB 5.6 1.40
SPECWeb99 6.6 1.65

T1 has 8 cores; with 4 threads/core
Ideal effective CPI per thread? (4)
Ideal per-core CPI1? (1)

In 2005 when it was introduced, the Sun T1 processor had
the best performance on integer applications with extensive
TLP and demanding memory performance, such as
SPECJBB and transaction processing workloads
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2. Course-Grained Multithreading

+ Switches threads only on costly stalls, such as L2 cache
misses
+ Advantages
— Relieves need to have very fast thread-switching

— Doesn’t slow down thread, since instructions from other threads
issued only when the thread encounters a costly stall

* Disadvantage is hard to overcome throughput losses
from shorter stalls, due to pipeline start-up costs

— Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

— New thread must fill pipeline before instructions can complete

» Because of this start-up overhead, coarse-grained
multithreading is better for reducing penalty of high cost
stalls, where pipeline refill time << stall time

* Used in IBM AS/400, but not in modern processors
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3. Simultaneous Multithreading (SMT) for OO0
superscalars

* Techniques presented so far have all been
“vertical” multithreading where each pipeline stage
works on one thread at a time

* SMT uses fine-grain control already present inside
an OO0O superscalar to allow instructions from
multiple threads to enter execution on same clock
cycle. Gives better utilization of machine resources.

18
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Simultaneous Multithreading (SMT)

+ Simultaneous multithreading (SMT): a variation of fine-
grained multithreading implemented on top of a
multiple-issue, dynamically scheduled processor

+ Add multiple contexts and fetch engines and allow
instructions fetched from different threads to issue
simultaneously

+ Utilize wide out-of-order superscalar processor issue
gueue to find instructions to issue from multiple threads

* OOO instruction window already has most of the
circuitry required to schedule from multiple threads

* Any single thread can utilize whole machine
* Used in Core i7 (2008) and IBM Power 7 (2010)
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lllustration of Multithreading Categories

Execution slots .
5 Simultaneous

Superscalar Fine-Grained Coarse-Grained Multithreading
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Example 1: Intel Core i7

Aggressive out-of-order speculative
microarchitecture

 Total pipeline depth is 14 stages; branch
mispredictions cost 17 cycles

» 48 load and 32 store buffers

 Six independent functional units can each begin
execution of a ready micro-op in the same cycle

» Uses a 36-entry centralized reservation station
shared by six functional units, with ROB

— Up to six micro-ops may be dispatched to functional
units every cycle

21
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Intel Core i7 Performance: CPI
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The CPI for the 19 SPECCPU2006 benchmarks shows an average CPI of 0.83
for both the FP and integer benchmarks. SMT further improves performance by
15-30% (according to Intel)
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Back to Basics

« “A parallel computer is a collection of processing elements that
cooperate and communicate to solve large problems fast.”

Parallel Architecture =
Computer Architecture + Communication Architecture

» Two classes of multiprocessors WRT memory:
1. Centralized Memory Multiprocessor
» < few dozen processor chips (and < 100 cores)
+ Small enough to share single, centralized memory
2. Physically Distributed-Memory multiprocessor
» Larger number chips and cores than 1
* BW demands = Memory distributed among processors

24




Centralized vs. Distributed Memory

Scale

2.2 @

Interconnectlon network Men Eu e e o Ment %

‘ Interconnection network
Centralized Distributed-memory
Shared-memory Multiprocessor

Multiprocessor

25

1. Centralized Memory
Multiprocessor

* Also called symmetric multiprocessors (SMPs)
because single main memory has a symmetric
relationship to all processors

» Large caches = single memory can satisfy
memory demands of small number of processors

» Can scale to a few dozen processors by using a
switch and by using many memory banks

« Although scaling beyond that is technically
conceivable, it becomes less attractive as the
number of processors sharing centralized
memory increases

26



Centralized Memory Multiprocessor

Any processor can directly reference any memory location

“Dance-hall” organization Interconnect examples

Processor Processor Processor Processor Bus
[LoclCache || || tocalcache || || Localcache || || Local cache |
I I
( Interconnect J Crosshar
| |
Memory 1/0
I

Multi-stage network

B Symmetric (shared-memory) multi-processor (SMP):

= Uniform memory access time: cost of accessing an uncached* memory address is the same
for all processors

27

SMP Examples: Commodity processors

Memory Contraller

Note size of
crossbar:
about die
area of one
core

Intel Core i7 (quad core)
(networkisaring)

Eight cores

AMD Phenom Il (six core)

28



2. Distributed Shared Memory (DSM)
Multiprocessor

» Also called non uniform memory access (NUMA)

since the access time depends on the location of
a data word in memory

* Pros:

— Cost-effective way to scale memory bandwidth
» If most accesses are to local memory
— Reduces latency of local memory accesses
« Cons:

— Communicating data between processors more complex

— Must change software to take advantage of increased
memory BW

29

Distributed Shared Memory
Multiprocessor

Memory I»—(‘D Memory I»—[D Memory I» [I[e] Memory r le}

Interconnection network

30
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NUMA Example

Example: latency to access location X is higher from cores 5-8 than cores 1-4

Example: modern dual-socket configuration

(X1 Memory Memory
| |
Memory Controller Memory Controller
On chip network
Core 1 Core2 Core5 Core 6 /
Core3 Core 4 Core? Core 8

AMD Hyper-transport /
Intel QuickPath

31

Two Models for Communication and
Memory Architecture

1. Communication in DSM and SMP occurs through a
shared address space (via loads and stores):
shared memory multiprocessors either

* UMA (Uniform Memory Access time) for shared
address, centralized memory MP

* NUMA (Non Uniform Memory Access time
multiprocessor) for shared address, distributed
memory MP

2. Communication occurs by explicitly passing
messages among the processors:
message-passing multiprocessors

* Mostly clusters and warehouse scale systems

32



Networks-on-Chip (NoC)

« See separate PPT
presentation dedicated to
this topic only!
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Graphics Processing Units (GPUSs)

+ Original GPUs were dedicated fixed-function devices for
generating 3D graphics (mid-late 1990s) including high-
performance floating-point units

— Provide workstation-like graphics for PCs
— Programmability was an afterthought

» Over time, more programmability added (2001-2005)

— E.g., New language Cg (Nvidia) for writing small programs run on
each vertex or each pixel, also Windows DirectX variants

— Massively parallel (millions of vertices or pixels per frame) but very
constrained programming model

» Graphics logical pipeline:

Input Vertex Geometry Setup & Pixel Raster Operations/
— —> —> e —
Assembler Shader Shader Rasterizer Shader Output Merger
35
Historical PC

CPU
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\ ront Side Bus

North _—

Bridge i Memery
:; PCI Bus
A
'

South Framebuffer

Bridge Memory

A A
Y Y
VGA
LAN UART —— |
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display

(a)

display

(b)

Contemporary: Intel, AMD

Intel
CPU

Front Side B
x16 PCI-Express Link i Sl

North DDR2
=~ Bridge = Memory
x4 PCI-Express Link 128-bit
derivative 667 MT/s
GPU
South
Memoby Bridge
AMD
CPU
CPU
core
128-bit
internal bus t oLl
North DDR2
Bridge Memory

x16 PCIl-Express Link ; HyperTransport 1.03

- Chipset

GPU
Memory

w
by
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Basic unified GPU architecture
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GPU
Host Interface | T
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Example GPU with 112 streaming processor (SP) cores organized in 14 streaming multiprocessors (SMs); the cores
are highly multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The processors connect
with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has eight SP cores, two special
function units (SFUs), instruction and constant caches, a multithreaded instruction unit, and a shared memory.
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A Shift in the GPU Landscape

* Some users noticed they could do general-purpose
computation by mapping input and output data to
images, and computation to vertex and pixel shading
computations

» Referred to as general-purpose computing on
graphics processing units (GP-GPU)

+ Incredibly difficult programming model as had to use
graphics pipeline model for general computation
— A programming revolution was needed!

39
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General-Purpose GPUs (GP-GPUs)

* In 2006, Nvidia introduced GeForce 8800 GPU supporting
a new programming language: CUDA
— “Compute Unified Device Architecture”
— Subsequently, broader industry pushing for OpenCL, a vendor-neutral
version of same ideas.
 |dea: Take advantage of GPU computational performance
and memory bandwidth to accelerate some kernels for
general-purpose computing

» Attached processor model: Host CPU issues data-parallel
kernels to GP-GPU for execution

» This lecture has a simplified version of Nvidia CUDA-style
model and only considers GPU execution for
computational kernels, not graphics

— Would need another course to describe graphics processing

40
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CUDA Revolution

CUDA Community Showcase
— http://www.nvidia.com/object/gpu-applications.html
— Computational fluid dynamics, EDA, finance, life sciences, signal processing, ...
— Speed-up’s of >300x for some applications
GPU Technology Conference
— http://www.gputechconf.com/page/home.html
— Include archive of previous editions
General-Purpose Computation on Graphics Hardware
— http://gpgpu.org/
— Catalog the current and historical use of GPUs for general-purpose computation
Download CUDA
— https://developer.nvidia.com/cuda-downloads
— And start using it!
Many universities have already courses dedicated to teaching and
using CUDA

41
41
CUDA Compilation
» As a programming model, CUDA is a set of
extensions to ANSI C
» CPU code is compiled by the host C compiler and
the GPU code (kernel) is compiled by the CUDA
compiler. Separate binaries are produced
GPU Assembly / Kernel Object | | Kernel Object
Kernel Code Code - Code
e (bar.s) Generator H \bar.gpu‘;
Int ted S H
Vooc v | AN j EEE
42
42
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http://www.nvidia.com/object/gpu-applications.html
http://www.gputechconf.com/page/home.html
http://gpgpu.org/
https://developer.nvidia.com/cuda-downloads

GPU Memory Hierarchy

Thread

Per-thread

Local Memory

Block

Per-block
Shared
Memory

Sequential

. Kernels
Per-device

Global
Memory

43
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CUDA Device Memory Space Overview

* Each thread can: (Device) Grid
— R/W per-thread registers Block (0, 0) Block (1, 0)

— R/W per-thread local memory

— R/W per-block shared memory
Thread (0,0)  Thread (1, 0) | | Thread (0, 0) |Thread (1, 0)

— R/W per-grid global memory
— Read only per-grid constant

memory ¢ s ¢ gy > ¢ Yy S ¢ gy ¥ N
— Read only per-grid texture
memory | | =
e The host can R/W Tow : : : :

global, constant, and
texture memories

44



Example: Tesla Architecture

Control

Thread Execution Control Unit

04 I FI . I | e
Theseal Themd Torepd The Thesd
Processoss Fromsos. FOETT Fromsos. P
doniva| fotintral  froentea]  fontiontes fomtort
Host 3 S * F *
Memory = -
Lrs Device Memary )
e Used for Technical and Scientific Computing
e L1/L2 Data Cache
— Allows for caching of global and local data
— Same on-chip memory used for Shared and L1
— Configurable at kernel invocation
45
45
CPU vs. GPU memory hierarchies
Core 21 GB/sec Memory
<) "
(Gigabytes)
L3 cache
(8 MB)
CoreN CPU:
Big caches, few threads, modest memory BW
Rely mainly on caches and prefetching
texture
cache
(12KB)
Core1 177 GB/sec Memory
L1 cache DDR5 DRAM
(64 KB)
L2 cache (~1GB)
1 |(768KB)
texture
t:‘:;) GPU:
Core N
Small caches, many threads, huge memory BW
e Rely mainly on multi-threading
(CMU 15418, Spring 2012
46
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Entire system view: CPU + discrete GPU

L3 cache
(8 MB)

(~1 MB),

Multi-core GPU

21GB/sec

PCle x16 bus ¢———

Memory
DDR3 DRAM

(Gigabytes)

2011 and future:
Co-locating CPU+GPU on same chip
avoids PCle bus bottleneck

8 GB/sec each direction
(also reduces communication latency)
177 GB/sec Memory
DDR5 DRAM
(1-2GB)
(CMU 15-418, Spring 2012
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More descriptive | Closest old term Officlal CUDA/
H-

Vectorizable Vectorizable Loop Grid A vectorizable loop, executed on the GPU, made

@ Loop up of one or more Thread Blocks (bodies of

s vectorized loop) that can execute in parallel

3

g Body of Body of a Thread Block A vectorized loop executed on a multithreaded

3 Vectorized Loop | (StripMined) SIMD Processor, made up of one or more threads

< Vectorized Loop of SIMD instructions. They can communicate via

8 Local Memory.

)

£ Sequence of One iteration of CUDA Thread A vertical cut of a thread of SIMD instructions

SIMD Lane a Scalar Loop corresponding to one element executed by one

Operations SIMD Lane. Result is stored depending on mask
and predicate register.

A Thread of Thread of Vector | Warp A traditional thread, but it contains just SIMD

SIMD Instructions instructions that are executed on a multithreaded

Instructions SIMD Processor, Results stored depending on a
per-element mask.

SIMD Vector Instruction PTX Instruction A single SIMD instruction executed across SIMD

Instruction Lanes.

M A SIMD Processor executes

SIMD Vector Processor | Multiprocessor threads of SIMD instructions, independent of

Processor other SIMD Processors.

= Thread Block Scalar Processor | Giga Thread Assigns multiple Thread Blocks (bodies of

s Scheduler Engine vectorized loop) to multithreaded SIMD

3 Processors.

8

T SIMD Thread Thread scheduler | Warp Scheduler Hardware unit that schedules and issues threads

4 Scheduler in a Multithreaded of SIMD Instructions when they are ready to

@ cPU execute; includes a scoreboard to track SIMD

g Thread execution.

& SIMD Lane Vector lane Thread Processor A SIMD Lane executes the operations in a thread
of SIMD Instructions on a single element. Results
stored depending on mask.

GPU Memory Main Memory Global Memory DRAM memory accessible by all multithreaded

g SIMD Processors in a GPU.

3

-4

B Local Memory | Local Memory Shared Memory Fast local SRAM for one multithreaded SIMD

z Processor, unavailable to other SIMD Processors.

3

= SIMD Lane Vector Lane Thread Processor Registers in a single SIMD Lane allocated across

Registers Registers Registers a full thread block (body of vectorized loop)

Figure 6.12 Quick guide to GPU terms. We use the first column for hardware terms. Four groups

cluster these 12 terms. From top to bottom: Program Abstractions, Machine Objects, Processing Hardware,
48

and Memory Hardware.
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Domain SpeC|f|c Archltectures (DSA)
— [O0R3 DRAM chps |1

30 GiBls
1 G'B/S DDRG 2133 30 GBS [ WeightFIFo
(weight fetcher)
-—- l 30 GiB/s
©
©
> 10 Unified Matrix multiply
GiB/s buffer Systolic unit
14 E g 14 ) ;
Gisis, @ |  GiBis, | & toce) data 184K naricypiot
C:b E H S activation setup
£ storage)
173
o
= 3

Accumulators

Activation

167 GiB/s
Normalize / Pool
[ off-chip 110
D Data buffer
B Conutition = =
. Control

Figure 6.13 TPUv1 Block Diagram. The main computation part is the Matrix Multiply Unit (MXU) in the upper-right corner. Its
inputs are the Weight FIFO and the Unified Buffer and its output is the Accumulators. The 24 MiB Unified Buffer is almost a
third of the TPUv1 die, and the MXU with 65,536 multiple-accumulate ALUs is a quarter, so the datapath is nearlytwo-thirds
of the TPUv1 die. For CPUs, Multilevel caches are often two-thirds of the die. (Adapted from Hennessy JL, Patterson DA.
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DSA Five Principles

1.

2.

Use dedicated memories to minimize distance
over which data are moved

Invest resources saved from dropping advanced
microarchitectural optimizations into more
arithmetic units or bigger memories

Use the easiest form or parallelism that matches
the domain

Reduce data size and type to the simplest
needed for the domain

Use a domain-specific programming language
to port code to DSAs

51
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Conclusion

* ILP ran out of steam
 Parallelism (thread and core)

took over

* GPUs have become general

purpose, thousands of cores

* DSAs at the beginning
 Cloud — datacenters/warehouse

scale computers

52

52
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