
1

Lab 2: Introduction to C Programming
COEN-4720 Embedded Systems

Cris Ababei

Dept. of Electrical and Computer Engineering, Marquette University

1. Objective

The objective of this lab is to introduce you to C programming. This is done by writing several programs in

C and discussing how to compile, link, and execute on Windows or Linux. The first example is the simplest

“hello world” example. The second example is designed to expose you to as many C concepts as possible

within the simplest program. It assumes no prior knowledge of C. However, you must allocate significant

time to read suggested materials, but especially work on as many examples as possible.

2. Example1: Working on Windows

To get started with learning C, I suggest using a simple and general/generic IDE with a free C/C++

compiler. For example, CodeBlocks and Dev-C++ are nice IDEs for windows. I recommend to use

CodeBlocks, which you can download and install on your own laptop/PC from the link below.

http://www.codeblocks.org/

If you do not have an already installed compiler on your computer you should download and install the

bundle: codeblocks-20.03mingw-setup.exe

Or you could download just the CodeBlocks IDE: codeblocks-20.03-setup.exe

Install it, and then, separately download a Compiler, which you could install separately.

For example, you could download and install MinGW/GCC compiler as explained here:

https://wiki.codeblocks.org/index.php/Installing_a_supported_compiler

In my case, I installed it in M:\CodeBlocks, where I created a new directory M:\CodeBlocks\cristinel to

store all projects I will work on.

We create a program by creating a new project in CodeBlocks. So, start CodeBlocks and create a new

project. In the dialog window, select “Console Application” and click Go. Then select C as the type of

language you want to use and click Next. Then, type hello as the Project title, keep

M:\CodeBlocks\cristinel\ as the Folder to create the project in. Click Next and then click Finish.

This will automatically create a simple main.c template file. Replace its content with the following listing:

#include <stdio.h>

int main ()

{

 printf("Hello World!\n");

 return 0;

}

Then save it as hello.c. It could be very well saved as main.c (the default name) but we just want to change

its name. This first program will simply print “Hello World!” at the command prompt.

To compile this program, select Build->Build

Which creates the executable hello.exe in M:\CodeBlocks\cristinel\hello\bin\Release

To execute our program, start a command prompt window Start->Run and type cmd. Then navigate to the

project directory M:\CodeBlocks\cristinel\hello\bin\Release, where simply type hello.exe. This should

execute our program, which simply prints at the prompt “Hello World!”

http://www.codeblocks.org/
https://wiki.codeblocks.org/index.php/Installing_a_supported_compiler

2

A few notes about this first program:

• The #include command is a preprocessor directive to load the stdio library.

• Execution starts in a function (method) called main:

• There are other signatures for main as we will see.

• Although a return type is declared, nothing needs to be returned.

• The printf method is used for screen output.

• The "newline" character \n is explicitly required.

3. Example1: Working on Linux/Unix

If you have a Linux machine, then you can simply use the GNU compiler. You do not need to install

anything else. Use your favorite text editor to create and save the hello.c file in a new directory, say hello/.

To compile it:
$ gcc -Wall hello.c -o hello

This produces an executable called hello which can be executed as:
$ hello

or, if you don't have the current directory in your path:
$./hello

Which should print at the prompt “Hello World!”

One can also work in Linux-like environments on Windows. For example, cygwin is a collection of tools

which provide a Linux look and feel environment for Windows. If you want, you can install cygwin and use

it for your C programming projects. There is lots of online information that describes how cygwin can be

used. Google and search for it. You can download cygwin here: http://www.cygwin.com/

4. Example2: Working on Windows

A program can be split up into multiple files. This makes it easier to edit and understand, especially in the

case of large programs. In addition, it also allows the individual parts to be compiled independently.

In our second program, we split up the program into three files, which we create and store in a new project

directory in M:\CodeBlocks\cristinel\newhello:

main.c

my_utils.c

my_utils.h

For the purposes of this example (which will become clear when you will read the main.c source file), also

create a simple text file (using any text editor you would like, such as NotePad) called age.txt with only one

integer in one line. Store this file into: in M:\CodeBlocks\cristinel\newhello\bin\Release, because that’s

where the executable will be created; note that this folder will be created only after you Build for the first

time your new project.

The listing of main.c is:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "my_utils.h"

http://www.cygwin.com/

3

#define NUM_TIMES_TO_PRINT 3

int main(int argc, char *argv[])

{

 // (1) declare variables;

 struct USER_RECORD myself;

 char temp_last_name[50];

 FILE *fp; // file pointer; used to read from pre-saved age.txt;

 // (2) ask user to type in her first name; read from standard input

 // what the user types and store up to 100 characters in member "first_name"

 // of object "myself";

 printf("Type your first name please and press Enter: \n");

 // read 100 bytes from standard input;

 fgets(myself.first_name, sizeof(myself.first_name), stdin);

 // remove the newline character from the end of the string;

 remove_newline(myself.first_name);

 // (3) ask user to type in her last name; read from standard input

 // what the user types and store what the user types in member "last_name"

 // of object "myself";

 printf("Type your last name please and press Enter: \n");

 fgets(temp_last_name, sizeof(temp_last_name), stdin);

 // remove the newline character from the end of the string;

 remove_newline(temp_last_name);

 // allocate memory to store the last name; needed because last_name

 // variable inside the USER_RECORD structure is declared as a pointer only;

 myself.last_name = malloc((strlen(temp_last_name) + 1) * sizeof(char));

 strcpy(myself.last_name, temp_last_name);

 // (4) ask user the gender;

 printf("What's your gender? Type F or M. \n");

 myself.gender = getc(stdin);

 // (5) in this example's directory we have created a text file

 // that contains only one line with an integer number; we mean for

 // this number to be the age of the user; we do this only to

 // also illustrate reading from a file;

 fp = fopen("age.txt", "r"); // you should error-check this; not done here;

 fscanf(fp, "%d", &myself.age);

 fclose(fp);

 // (5) entertain user;

 printf("--- \n");

 long i;

 for (i=0; i < NUM_TIMES_TO_PRINT; i++) {

 print_hello_message(&myself);

 }

 // (6) clean up and return;

 free(myself.last_name);

 return 0;

}

The listing of my_utils.c is:

#include <stdio.h>

#include <string.h>

#include "my_utils.h"

void print_hello_message(struct USER_RECORD *this_user)

{

 if (this_user->gender == 'F') {

 printf("Hello MRS. %s %s, you are %d years old! \n",

 this_user->first_name, this_user->last_name, this_user->age);

4

 } else if (this_user->gender == 'M') {

 printf("Hello MR. %s %s, you are %d years old! \n",

 this_user->first_name, this_user->last_name, this_user->age);

 } else {

 printf("Hello %s. No soup for you! \n", this_user->first_name);

 }

}

char *remove_newline(char *s)

{

 int len = strlen(s);

 // if there's a newline truncate the string

 if (len > 0 && s[len-1] == '\n') {

 s[len-1] = '\0';

 }

 return s;

}

The listing of my_utils.h is:

struct USER_RECORD {

 char first_name[100];

 char* last_name;

 char gender;

 int age; // in years;

};

void print_hello_message(struct USER_RECORD *this_user);

char *remove_newline(char *s);

The file my_utils.c contains the source of two functions, which we utilize by calling them from within the

main.c file. Our program also includes the header file my_utils.h, which contains the declaration of the two

functions defined in my_utils.c. These declarations are used to ensure that the types of the arguments and

return value match up correctly between the function calls and the function definitions.

The difference between the two forms of the include statement #include "FILE.h" and #include <FILE.h> is

that the former searches for FILE.h in the current directory before looking in the system header file

directories. The include statement #include <FILE.h> searches the system header files, but does not look in

the current directory by default.

Now, start CodeBlocks and create a new project called newhello in cristinel/ directory. Add the above

three files to the project and build. Do not forget to also create the age.txt file and store it in newhello/

before executing the program. Start a command prompt window, then navigate to

M:\CodeBlocks\cristinel\newhello\bin\Release and execute newhello.exe. Observe and study.

5. Example2: Working on Linux/Unix

Create a new directory, say project2/ (it does not necessarily need be called newhello/), where you should

copy the three files:

main.c

my_utils.c

my_utils.h

Do not forget to also create the age.txt file and store it in project2.

To compile these source files with gcc, we use the following command:

$ gcc -Wall main.c my_utils.c -o newhello

5

This produces an executable called newhello which can be executed as:
$ newhello

or, if you don't have the current directory in your path:
$./newhello

6. Lab Assignment

Part 1:

Read the source code of the second example. Identify the lines of code inside the main() function that you

did not know before what they would do. Search more about them (you can start with the resources from

[1]), get an understanding of what they do, and briefly explain those lines of code only in your lab report. If

you claim that you knew everything, then, just state that in this Part 1 of your report.

Part 2:

Write a new C program that reads two matrices from two different text files (matrixA.txt, matrixB.txt),

multiplies the two matrices, and writes the result into a third text file (matrixC.txt).

The listing of file matrixA.txt is:
1 2 3 4

8 7 6 5

The listing of file matrixB.txt is:
1 1

1 1

1 1

1 2

Part 3 (optional but recommended):

Search online for simple examples C programs and verify them. Learn via examples found online and/or

discussed in the above C Programming pointers.

You must write (typed, not handwritten!) a report to describe what you did, what problems you faced and

how you solved them. Upload the report on D2L using the file naming convention:

lab2_report_lastname.pdf.

7. Others

CodeBlock is only one example of “C compiler + IDE (integrated development environment)” that one can

use on Windows. There are many others out there. You can search for others, read online about them

(advantages, disadvantages) and select to work with whichever you feel more comfortable. Some examples

include those listed in [2].

The compiler of choice for most users of the Linux operating system is the GNU C++ Compiler (GCC),

although many others are available too. Linux is primarily a console-based environment. So GCC is a

command-line compiler rather than a point-and-click GUI.

Most Mac users recommend the G++ compiler which is part of the free Xcode package. There is also a

version of Eclipse for the Mac.

6

8. Credits and References

[1] C Programming pointers:

--C Tutorial, http://www.cprogramming.com/tutorial/c-tutorial.html

--Teach Yourself C in 21 Days, http://kldp.org/files/c+in+21+days.pdf

[2] Additional IDEs:

--Eclipse http://www.eclipse.org/cdt/

--Visual C++ Express http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products

--See many more on the list(s) at https://www.bloodshed.net/

http://www.cprogramming.com/tutorial/c-tutorial.html
http://kldp.org/files/c+in+21+days.pdf
http://www.eclipse.org/cdt/
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products
https://www.bloodshed.net/

