
1

Lecture 4
STM32CubeIDE, HAL

Cris Ababei
Dept. of Electrical and Computer Engineering

COEN-4720 Embedded Systems

1

Outline

•STM32CubeIDE

•ST HAL

•CMSIS

•STM32CubeMX

2

1

2

2

New Project in STM32CubeIDE
•When a new project is created in
STM32CubeIDE, it downloads the corresponding
Cube Firmware Package for the selected Nucleo
board
•This includes several components, including:

 Complete HAL for given STM32 family: Hardware Abstraction
Layer (HAL)
• Set of libraries that allow to drive the microcontroller peripherals and core

features without dealing with the details of the given MCU

Additional Middleware packages
 Examples projects for development boards

3

Hardware Abstraction Layer (HAL)

4

HAL (Defined by ST)
CMSIS (Defined by ARM)

User Program

3

4

3

Cortex Microcontroller Software Interface Standard (CMSIS)

•ARM - actively working on a way to standardize the
software infrastructure among MCUs vendors

•This is an evolving effort

•Cortex Microcontroller Software Interface Standard (CMSIS)
is a vendor-independent hardware abstraction layer for
Cortex-M processors

•CMSIS consists of many components, including:
 CMSIS-CORE: API for the Cortex-M processor core and peripherals
 CMSIS-Driver: Defines generic peripheral driver interfaces for middleware
 CMSIS-RTOS API: Common API for Real-Time Operating Systems
 ... many more

5

6

Cortex Microcontroller Software Interface Standard (CMSIS)

• CMSIS contains definitions for the
various registers

• Allows easy access to MCU's registers
• One can then implement his/her

own HAL
• CMSIS is defined by ARM and not ST

• Greatly aids in portability
• HAL may have more bugs

• CMSIS cleaner and more stable
• One can code by using HAL and

CMSIS

5

6

4

7

STM32CubeMX Tool
•A fundamental tool integrated inside STM32CubeIDE.

•Upon creation of new project, it can be used for
Peripheral Configurations.
 It makes it easy for programmers; otherwise, one needs to dig into

datasheets and user manuals

 Programmer can ignore specific implementation details underlying a
peripheral configuration

•Used both to:
1. Choose the right hardware connections

2. Generate the code necessary to configure the ST HAL

8

7

8

5

STM32CubeMX Tool
•Once a new project has been created, STM32CubeIDE

automatically opens a file in the project folder named
<project-name>.ioc

•This file is the CubeMX main project file, containing all
the configurations performed in CubeMX

•Starting from them, CubeMX will generate the
corresponding project structure, with all source files and
libraries needed to use the selected peripherals and
Middleware components

9

STM32CubeMX Tool
•Example of usage:

 Most of MCU pins can have alternate functionalities

 CubeMX can be used to select desired functionality for a pin

10

9

10

6

STM32CubeMX Tool - Clock Configuration View

•Clock Configuration
view is the pane
where all
configurations related
to clocks management
take place

11

Project Structure

•After all configurations
with CubeMX are done,
the <project-name>.ioc
file is saved and the
skeleton files for the
project are created;
including main.c

12

11

12

7

main.c Automatically Created
•The project generated by CubeIDE automatically contains all

the necessary code to build a self-consistent application

•main.c includes already a template, which includes code
that takes care of default configurations
 One can then add code to this file to implement desired functionality

 For example, the blink LED example needs just a few additional lines of code

13

main.c
•HAL_Init()

 Initializes the CubeHAL framework.
 Responsible of the very first MCU initialization.

•SystemClock_Config()
 Configures the MCU to work with one of the possible clock sources.

•MX_GPIO_Init()
 Initializes I/O pins, according to the graphical configuration done in

STM32CubeMX.

•MX_USART2_UART_Init()
 Initializes the UART2 peripheral, which is wired to the ST-LINK interface in

all Nucleo boards.

14

13

14

8

Blink LD2 LED Example
•HAL_GPIO_TogglePin() function inverts the logical state of

the PIN connected to the LD2 LED (corresponds to PIN 5 of
the GPIO port A in all Nucleo-64 boards)

•HAL_Delay() introduces a delay of 500ms (LD2 will blink at
1Hz rate)

•PA5 is shorthand for PIN5 of GPIO port A, which is the
standard way to indicate a GPIO in STM32 world.

•STM32CubeMX automatically defines the macro
LD2_GPIO_Port and LD2_Pin so that their expansion
corresponds to GPIOA port and PIN5.

15

Schematic Diagram of Board
•See Schematic Diagram of Nucleo board to check

connection of PA5:

16

15

16

9

Core/Inc/stm32XXxx_hal_conf.h
• File where HAL configurations are translated into C code, using several macros.

• These macros are used to “instruct” the HAL about enabled MCU functionalities.

• They are used to selectively include HAL modules at compile time.

• When you need a module, you can simply uncomment the corresponding macro.

17

Core/Inc/stm32XXxx_it.h and Core/Src/stm32XXxx_it.c

•Where all the Interrupt Service Routines (ISR)
generated by CubeMX are stored
•For example, in the case of Blink LED LD2 project:

 void SysTick_Handler(void)
 This function is the ISR of the SysTick timer - the routine

invoked when the SysTick timer reaches 0. But where is this ISR
invoked?
• A: Nested Vectored Interrupt Controller (NVIC)

 Cortex-M defines the SysTick_Handler to be the fifteenth
exception in the NVIC vector array. But where is this array
defined?
• A: Inside the Core/Startup folder, a special assembly file: Core/Startup/startup_stmXXxx.s

18

17

18

10

19

Core/Src/stm32XXxx_hal_msp.c

•“MSP” stands for MCU Support Package

•Defines all initialization functions used to
configure the on-chip peripherals according to
the user configuration
 PIN allocation
 Enabling of clock
Use of DMA and Interrupts

20

19

20

11

•Example: A peripheral is essentially composed of
two things:

1. Peripheral itself (for example, the SPI2 interface)
2. Hardware pins associated with this peripheral
 ST HAL is designed so that the SPI module of the HAL is

generic and abstracted from the specific I/O settings - which
may differ due to the MCU package and the user-defined
hardware configuration

 ST developers left to the user the responsibility to “fill” this
piece of the HAL with the code necessary to configure the
peripheral - using a sort of callback routines.
• This code resides inside Core/Src/stm32XXxx_hal_msp.c

21

22

21

22

12

23

Call Hierarchy

•main.c → MX_USART2_UART_Init() →
HAL_UART_Init() → HAL_UART_MspInit()

24

23

24

	Slide 1: Lecture 4 STM32CubeIDE, HAL
	Slide 2: Outline
	Slide 3: New Project in STM32CubeIDE
	Slide 4: Hardware Abstraction Layer (HAL)
	Slide 5: Cortex Microcontroller Software Interface Standard (CMSIS)
	Slide 6: Cortex Microcontroller Software Interface Standard (CMSIS)
	Slide 7
	Slide 8: STM32CubeMX Tool
	Slide 9: STM32CubeMX Tool
	Slide 10: STM32CubeMX Tool
	Slide 11: STM32CubeMX Tool - Clock Configuration View
	Slide 12: Project Structure
	Slide 13: main.c Automatically Created
	Slide 14: main.c
	Slide 15: Blink LD2 LED Example
	Slide 16: Schematic Diagram of Board
	Slide 17: Core/Inc/stm32XXxx_hal_conf.h
	Slide 18: Core/Inc/stm32XXxx_it.h and Core/Src/stm32XXxx_it.c
	Slide 19
	Slide 20: Core/Src/stm32XXxx_hal_msp.c
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Call Hierarchy

