COEN-4720 Embedded Systems

Lecture 4
STM32CubelDE, HAL

Cris Ababei
Dept. of Electrical and Computer Engineering

[fﬂrﬂ MARQUETTE
iEM UNIVERSITY

BE THE DIFFERENCE.

Outline

eSTM32CubelDE
oST HAL
oCMSIS
eSTM32CubeMIX

New Project in ST\VIZ2CubelDE
e\When a new project is created in
STM32CubelDE, it downloads the corresponding

Cube Firmware Package for the selected Nucleo
board

eThis includes several components, including:

° Complete HAL for given STM32 family: Hardware Abstraction
Layer (HAL)

* Set of libraries that allow to drive the microcontroller peripherals and core
features without dealing with the details of the given MCU

° Additional Middleware packages
° Examples projects for development boards

Hardware Abstraction Layer (HAL)

7 while (1)

9
o8 {
99 /* USER CODE END WHILE */
User Program 100 /* USER CODE BEGIN 3 */
1

HAL_6PI0_TogglePin(LD2_GPIO_Port, LD2_Pin);

o1 _
102 HAL_Delay(500) ;
103 ¥

o T4 /# Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL (Defined by ST) w0,
CMSIS (Defined by ARM) [EEEtier i
\ :

SystemClock_Config();

Cortex Microcontroller Software Interface Standard (CI\VISIS)

e ARM - actively working on a way to standardize the
software infrastructure among MCUs vendors

eThis is an evolving effort

e Cortex Microcontroller Software Interface Standard (CMSIS)
is a vendor-independent hardware abstraction layer for
Cortex-M processors

e CMSIS consists of many components, including:
° CMSIS-CORE: API for the Cortex-M processor core and peripherals
° CMSIS-Driver: Defines generic peripheral driver interfaces for middleware
° CMSIS-RTOS APIl: Common API for Real-Time Operating Systems
° ... many more

Cortex Microcontroller Software Interface Standard (CMSIS)

¢ CMSIS contains definitions for the

Software

[Application code j [Third parties software] [Embedded OS) various regISterS

| e e vy — * Allows easy access to MCU's registers
N e % v ¥ * One can then implement his/her
N — E CMSIS-Core : own HAL

L |
L-i | Peripheral Access Functions
. |

‘ : * CMSISis defined by ARM and not ST
* Greatly aids in portability
* HAL may have more bugs
* CMSIS cleaner and more stable
Microcontrolle * One can code by using HAL and
Figure 3.17 CMSIS

CMSIS-CORE provides standardized access funcrions for processor features.

!
‘ Microcontroller Device Driver Libraries

Application code

—

Middleware

(ARM / 3™ partyl

CMSIS-Driver CMSIS-DSP CMSIS-RTOS
API specification DSP library API specification

Device specific

HAL (Hardware RealTime OS
Abstraction Layer) (ARM / 3" party)
(Silicon vendor)

CMSIS-CORE
Core Access Functions, Intrinsic functions, Peripherals and Interrupt CMSIS-DAP
Definitions

NVIC
Processor RE‘%:";C"I Nested Vectored [l Debug/Trace
Core S Interrupt Interface
Contraller

Figure 3.18 7

Interactions between different CMSIS projects.

STM32CubeMX Tool
oA fundamental tool integrated inside STM32CubelDE.

eUpon creation of new project, it can be used for
Peripheral Configurations.

° It makes it easy for programmers; otherwise, one needs to dig into
datasheets and user manuals

° Programmer can ignore specific implementation details underlying a
peripheral configuration

eUsed both to:

1. Choose the right hardware connections
2. Generate the code necessary to configure the ST HAL

STM32CubeMX Tool

eOnce a new project has been created, STM32CubelDE
automatically opens a file in the project folder named
<project-name>.ioc

oThis file is the CubeMX main project file, containing all
the configurations performed in CubeMX

eStarting from them, CubeMX will generate the
corresponding project structure, with all source files and
libraries needed to use the selected peripherals and
Middleware components

STM32CubeMX Tool

eExample of usage:
° Most of MCU pins can have alternate functionalities
° CubeMX can be used to select desired functionality for a pin

VKEF..

USART_TX

Reser_State
ADCI1_IN3
TIM2_CH4
TIM5_CH4
TIMI_CH2
USARTZ _RX
GPIO_Input
GPIO_Qutput
GPIO_Analog
EVENTOUT
GPIO_EXTI3

ndino 0IdD

10

10

STM32CubeMX Tool - Clock Confi

[heto-mcsaioc 12

Clock Configuration

guration View

Project Manager Tools

e Clock Configuration
view is the pane
where all
configurations related o
to clocks management -y
take place

-
| - -

11

11

~ Ihello-nucleo
~ # Binaries
> #shello-nucleo.elf - [arm/le]

Project Structure i

Binaries and Includes are auto-generated folders
containing the object file created by the compiler (in the
ELF format) and the list of all include paths where the
compiler (GCC) looks for header files.

v &Core
v lnc
>[5 main.h
> [8 stm3210xx_hal_confh
> [Bstm3210xx_it.h

eAfter all configurations oo .
with CubeMX are done, t--mens rmce-

msp.c

the <pr0ject-name>_ioc > [35tm3210xx_it.c

> [e syscalls.c

file is saved and the > Bsysmem.c

> lg system_stm32I0xx.c

The Core folder contains all application specific source
files. Those files are strictly connected with the project
and MCU settings in CubeMX(including Middleware
components).

‘While it is strongly suggested to add application specific
files here, Eclipse allows you to rearrange the project
structure as you want, unless all include paths are
properly configured. However, by changing the project
structure, you will no longer able to perform changes to
CubeMX configurations without compromising the whole
project. Trust me: leave them as-is.

skeleton files for the e St

> [8startup_stm321073rztx.s

‘The Startup folder contains a source file coded in
assembler named startup file, which contains the very
first code executed after a Reset. We will analyze it later.

project are created; e
including main.c L eovsis

> = STM32L0xx_HAL_Driver

The Drivers folder contains both the CMSIS and
CubeHAL library related files. The content of these
folders is generated by CubeMX, and you should never
change it unless you exactly do what are you doing.

» =Debug
[Zhello-nucleo.ioc
[6 STM32L073RZTX_FLASH.Id

The Debug folder contains all files generated by the
compiler (relocatable, intermediate files, etc) and by
Eclipse to generate the final binary file. The name of this
folder is related to the active Build Profile. It is safe to
delete it, if needed.

The .ioc file is the CubeMX project file, while the .Id

file is a linker script used to define the\iCZs memories
layout (FLASH, RAM, CCM, etc.). We will€eal with these
filec later in the haglk

12

main.c Automatically Created

eThe project generated by CubelDE automatically contains all
the necessary code to build a self-consistent application

emain.c includes already a template, which includes code
that takes care of default configurations

° One can then add code to this file to implement desired functionality
° For example, the blink LED example needs just a few additional lines of code

97
98
99

100

101

102

103

while (1)

{

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
HAL_GPIO_TogglePin(LD2_GPIO_Port, LD2_Pin);
HAL _Delay(500);

13

13

eHAL_Init()

main.c

° Initializes the CubeHAL framework.

° Responsible of the very first MCU initialization.
e SystemClock_Config()

° Configures the MCU to work with one of the possible clock sources.
eMX_GPIO_Init()

° Initializes 1/0O pins, according to the graphical configuration done in
STM32CubeMX.

eMX_USART2_UART _Init()

° Initializes the UART2 peripheral, which is wired to the ST-LINK interface in
all Nucleo boards.

14

14

Blink LD2 LED Example

eHAL GPIO_TogglePin() function inverts the logical state of
the PIN connected to the LD2 LED (corresponds to PIN 5 of
the GPIO port A in all Nucleo-64 boards)

eHAL_Delay() introduces a delay of 500ms (LD2 will blink at

1Hz rate)

ePAS is shorthand for PIN5 of GPIO port A, which is the
standard way to indicate a GPIO in STM32 world.

eSTM32CubeMX automatically defines the macro
LD2 GPIO Portand LD2 Pin so that their expansion
corresponds to GPIOA port and PIN5.

15

15

Schematic Diagram of Board

eSee Schematic Diagram of Nucleo board to check
connection of PA5:

Extension connectors

LD2
kS

PAS SB42.—. 3

SB20,5824,5B829
Close only for F302R8

5B29.— PB13

PAG6 _ SB4l.— 2

SB24.—~ PB14

PA7 SB40.— 1

SB20.—~ PB15

—_

2 H 1 R
510°

Green

(9]
0~ O b= [P
o

Arduino Connector

MCU

SB21
CN5

1

b Avbp=_ Morpho connector
CN10
PCY
PBS D15 N
PBY D14 P
7 8

D713 g 10

o712 11 12

577 13 14

B6

010 3 T8

C7

E] 17 18

0
9
8
7
6
5
4
3
2
1 A9

D5 19 20

Header 10X1_Female

21 22

| - 16

16

Core/Inc/stm32XXxx_hal conf.h

¢ File where HAL configurations are translated into C code, using several macros.
e These macros are used to “instruct” the HAL about enabled MCU functionalities.
e They are used to selectively include HAL modules at compile time.

e When you need a module, you can simply uncomment the corresponding macro.

Filename: Core/ 32XXxx_hal_conf.h

55 #define HAL_UAR DULE_ENABLED

RT_MO
56 /*#define HAL_USART_MODULE_ENABLED
57 /*#define HAL_IRDA_MODULE_ENABLED
58 /*#define HAL_SMARTCARD_MODULE_ENABLED */
59 /##define HAL_SMBUS_MODULE_ENABLED
60 /*#define HAL_WWDG_MODULE_ENABLED

61 2
62
63

17

17

Core/Inc/stm32)00a¢_it.h and Core/Src/stm32XXxx_it.c

eWhere all the Interrupt Service Routines (ISR)
generated by CubeMX are stored

eFor example, in the case of Blink LED LD2 project:
°void SysTick_Handler(void)
°This function is the ISR of the SysTick timer - the routine
invoked when the SysTick timer reaches 0. But where is this ISR
invoked?
* A: Nested Vectored Interrupt Controller (NVIC)
° Cortex-M defines the SysTick_Handler to be the fifteenth

exception in the NVIC vector array. But where is this array

defined?
* A:Inside the Core/Startup folder, a special assembly file: Core/Startup/startup_sthXxxis

18

[8] startup_stm321053r8tx.s
R]

119 .section .isr_vector,"a",%progbits
120 .type g_pfnVectors, %object
.size g pfnVectors, .-g pfnVectors

.word _estack

.word Reset_Handler
.word MNMI_Handler

.word HardFault_Handler
.word @

.word
.word
.word
.word
.word
.word
word SVC_Handler
.word @

.word @

.word PendSV_Handler

D009 9o®

SysTick Handler

.word WWDG_IRQHandler /* Window WatchDog */ 5
.word PVD_IRQHandler /* PVD through EXTI Line detection */
19
Core/Src/stm32XXxx_hal msp.c
¢“MSP” stands for MCU Support Package
eDefines all initialization functions used to
configure the on-chip peripherals according to
the user configuration
°PIN allocation
°Enabling of clock
°Use of DMA and Interrupts
20
20

10

eExample: A peripheral is essentially composed of

two things:
1. Peripheral itself (for example, the SPI2 interface)

2. Hardware pins associated with this peripheral

°ST HAL is designed so that the SPI module of the HAL is
generic and abstracted from the specific I/O settings - which
may differ due to the MCU package and the user-defined
hardware configuration

° ST developers left to the user the responsibility to “fill” this
piece of the HAL with the code necessary to configure the
peripheral - using a sort of callback routines.

* This code resides inside Core/Src/stm32XXxx_hal _msp.c
21

21

HAL_SPI_MspInit HAL I2C_MspInit HAL UART MspInit HAL MspInit

Device HAL

(STCube HAL)

Figure 4.15: The relation between MSP files and the HAL

22

22

11

[€ main.c € stm3210wx_hal_msp.c =

85=void HAL_UART_MspInit(UART_HandleTypeDef* huart)
86 {

87 GPIO InitTypeDef GPIO InitStruct = {0};

88 if(huart->Instance==USART2)

89
90 /* USER CODE BEGIN USART2_MspInit @ */
91
92 /* USER CODE END USART2 MspInit @ */
93 /* Peripheral clock enable */
94 __HAL_RCC_USART2_CLK_ENABLE();
95
96 _ HAL_RCC_GPIOA CLK ENABLE():
g97e /**USART2 GPIO Configuration
98 PA2 ------ > USART2_TX
99 PA3 ------ > USART2_RX
100 i e e e e e e e e e e e e e e e e e e -
101 GPIO InitStruct.Pin = GPIO_PIN_2|GPIO PIN 3; !
100 GPIO_TRiTSEruct.Miode = GPTO. MODE AF. PP — —
103 GPIO_InitStruct.Pull = GPIO_MOPULL;
104 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ VERY_HIGH;
105 GPIO_InitStruct.Alternate = GPIO_AF4_USARTZ;
106 HAL_GPTIO_Init(GPIOA, &GPIO InitStruct);
107
108 /* USER CODE BEGIN USART2 MspInit 1 */
189
110 /* USER CODE END USART2_MspInit 1 */
111}
112 23
113 }
23
Call Hierarchy
emain.c 2 MX_USART2_UART _Init() 2
HAL_UART Init() & HAL UART Msplnit()
v o,\HAL_UART_MspInit(UART_HandleTypeDef *) : void
@, HAL_UART_Init(UART_HandleTypeDef *) : HAL _StatusTypeDef
< .
v @, MX_USART2_UART_Init() : void
@ main() : int
Figure 4.16: The Call Hierarchy of the function HAL_UART _MspInit()
24
24

12

	Slide 1: Lecture 4 STM32CubeIDE, HAL
	Slide 2: Outline
	Slide 3: New Project in STM32CubeIDE
	Slide 4: Hardware Abstraction Layer (HAL)
	Slide 5: Cortex Microcontroller Software Interface Standard (CMSIS)
	Slide 6: Cortex Microcontroller Software Interface Standard (CMSIS)
	Slide 7
	Slide 8: STM32CubeMX Tool
	Slide 9: STM32CubeMX Tool
	Slide 10: STM32CubeMX Tool
	Slide 11: STM32CubeMX Tool - Clock Configuration View
	Slide 12: Project Structure
	Slide 13: main.c Automatically Created
	Slide 14: main.c
	Slide 15: Blink LD2 LED Example
	Slide 16: Schematic Diagram of Board
	Slide 17: Core/Inc/stm32XXxx_hal_conf.h
	Slide 18: Core/Inc/stm32XXxx_it.h and Core/Src/stm32XXxx_it.c
	Slide 19
	Slide 20: Core/Src/stm32XXxx_hal_msp.c
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Call Hierarchy

