
1

Lecture 6
UART, SPI

Cris Ababei
Dept. of Electrical and Computer Engineering

COEN-4720 Embedded Systems

1

Communication Systems – the Layered View
1) Address information field

physical address specifying the destination/source computers

logical address specifying the destination/source processes (e.g., users)

2) Synchronization or handshake field
Physical synchronization like shared clock, start and stop bits

OS synchronization like request connection or acknowledge

Process synchronization like semaphores

3) Data field
ASCII text (raw or compressed)

Binary (raw or compressed)

4) Error detection and correction field
Vertical and horizontal parity

Checksum

Logical redundancy check (LRC)

Block correction codes (BCC)

1

2



2

Outline

•UART (Serial)

•SPI

3

DTE and DCE

• DTE: Data Terminal Equipment

• DCE: Data Communications Equipment

• PC with a modem:

computer
 terminal

modem

serial
 cable

phone
 wire

Data
Terminal
Equipment
(DTE)

Data
Communications
Equipment
(DCE)

4

3

4



3

UART
• Original purpose of the UART was for PCs to communicate via 

the telephone network
• Telephones were for voice communication (analog signals) 

whereas computers need so exchange discrete data (digital 
signals)

• Special ‘communication equipment’ was  needed for doing the 
signal conversions (i.e., a modulator/demodulator, or modem)  

5

Normal 9-wire Serial Cable

1

5

6

9

1
6

9

Carrier Detect

Rx data

Tx data

Data Terminal Ready

Signal Ground

Data Set Ready

Request To Send

Clear To Send

Ring Indicator

5

6

5

6



4

Signal Functions
• CD: Carrier Detect The modem asserts this signal to indicate that it successfully 

made its connection to a remote device 

• RI: Ring Indicator The modem asserts this signal to indicate that the phone is 
ringing at the other end of its connection

• DSR: Data Set Ready Modem to PC 

• DTR: Data Terminal Ready PC to Modem

• RTS: Request To Send PC is ready for the modem to relay some received data 

• CLS: Clear To Send Modem is ready for the PC to begin transmitting some data 

7

9-wire Null-Modem Cable

CD

RxD

TxD

GND

DSR

DTR

RTS

CTS

RI

CD

RxD

TxD

GND

DSR

DTR

RTS

CTS

RI

Data
   Terminal
Equipment

Data
Terminal
Equipment

no modems
8

7

8



5

Basics
• The most basic method for communication with an embedded 

processor is asynchronous serial. 
• It is implemented over a symmetric pair of wires connecting two 

devices (referred as host and target, though these terms are 
arbitrary).

•Whenever the host has data to send to the target, it does so by 
sending an encoded bit stream over its transmit (TX) wire. This data is 
received by the target over its receive (RX) wire. 

• The communication is similar in the opposite direction. 

9

Basics

•This mode of communications is called asynchronous 
because the host and target do not share a time reference 
(no clock signal). 

•Instead, temporal properties are encoded in the bit stream 
by the transmitter and must be decoded by the receiver.

•A commonly used device for encoding and decoding such 
asynchronous bit streams is a Universal Asynchronous 
Receiver/Transmitter (UART). 

10

9

10



6

UART
•UART is a circuit that sends parallel data through a serial 

line. 

•UARTs are frequently used in conjunction with the RS-232 
standard (or specification), which specifies the electrical, 
mechanical, functional, and procedural characteristics of 
two data communication equipment.

•Other used standards: EIA, RS-422, RS-485

•A UART includes a transmitter and a receiver. 
 The transmitter is a special shift register that loads data in parallel and then 

shifts it out bit by bit at a specific rate. 
 The receiver shifts in data bit by bit and reassembles the data. 

11

UART

15

Vss

5

4

3

1

2

9

8

7

6

DB9 female

Sin

Sout

U0Rx

U0Tx

Microcontroller

UART
89

710

6

0.1F

2

0.1F

0.1F
5

4

0.1F
3

1

0.1F
16

+3.3V

MAX
3232

+5.5V

-5.5V

TxD

RxD

DB25 

Pin 

RS232 

Name 

DB9 

Pin 

EIA-574 

Name 

Signal Description True DTE DCE 

2 BA 3 103 TxD Transmit Data  -5.5V out in 

3  BB 2 104 RxD Receive Data  -5.5V in out 

7  AB 5 102 SG Signal Ground    

 

Level converter

12

11

12



7

UART System Block Diagram
• UARTs are useful in applications where a lower cost connection 

is desired. 
• A UART takes a parallel data stream and funnels it down to a 

serial data stream at the transceiver end and then returns the 
data stream to a parallel signal at the receiver end.  

• This lowers the cost of connection by
– Decreasing the number of transceivers that are necessary. 
– Enabling the connecting cable to be less costly and less bulky.

RS-232
RS-485

Serial Signal
8 bit parallel

signal 

RS- 232
( SN75LV4737A)UART

(TL16C550C)

UART RS-232
RS-485 UART

(TL16C550C)
UART

8 bit parallel

signal 

Notations
•UART Registers

 RSR: Receive Shift Register

 RDR: Receive Data Register

 TDR: Transmit Data Register

 TSR: Transmit Shift Register

•SCCR: Serial Communications Control Register

•SCSR: Serial Communications Status Register

•UART Flags
 TDRE: Transmit Data Register Empty

 RDRF: Receive Data Register Full
14

13

14



8

UART Block Diagram

15

Transmitter Operation

• Microcontroller waits until TDRE = '1'

– Loads data into TDR

–Clears TDRE

• UART transfers data from TDR to TSR

– Sets TDRE

• UART outputs start bit ('0') then shifts TSR right 
eight times followed by a stop bit ('1')

16

15

16



9

Transmitter SM Chart

UART Transmission Details
•The serial line is ‘1’ when it is idle. 
•The transmission starts with a start-bit, which is ‘0’, followed 

by data-bits and an optional parity-bit, and ends with stop-
bits, which are ‘1’. 

•The number of data-bits can be 6, 7, or 8. 
•The optional parity bit is used for error detection. 

 For odd parity, it is set to ‘0’ when the data bits have an odd number of ‘1’s.
 For even parity, it is set to ‘0’ when the data-bits have an even number of ‘1’s. 

•The number of stop-bits can be 1, 1.5, or 2. 

18

17

18



10

UART “Agreement”

•No clock information is conveyed through the 
serial line. 
•Before the transmission starts, the transmitter 
and receiver must agree on a set of parameters 
in advance:

1. The baud-rate (i.e., number of bits per second),
2. The number of data bits and stop bits
3. The use of parity bit

19

Receiver Operation

• UART waits for start bit

– Shifts bits into RSR

• When all data bits and stop bit are received

–RSR loaded into RDR

– Set RDRF

• Microcontroller waits until RDRF is set

–Read RDR

–Clear RDRF

19

20



11

Receiver SM Chart

21

Data Extraction Details
• Assume the UART's receiver has a clock running at a multiple of the baud rate (e.g., 16x).  

• Starting in the idle state, the receiver “samples” its RX signal until it detects a high-low 
transition. 

• Then, it waits 1.5 bit periods (24 clock periods) to sample its RX signal at what it estimates to be 
the center of data bit 0. 

• The receiver then samples RX at bit-period intervals (16 clock periods) until it has read the 
remaining 7 data bits and the stop bit. 

• From that point this process is repeated. 

• Successful extraction of the data from a frame requires that, over 10.5 bit periods, the drift of 
the receiver clock relative to the transmitter clock be less than 0.5 periods in order to correctly 
detect the stop bit.

21

22



12

UART Use Example
•UARTs can be used to interface to a wide variety of 

other peripherals
 Widely available GSM/GPRS cell phone modems 
 Bluetooth modems can be interfaced to a microcontroller UART
 GPS receivers frequently support UART interfaces

23

Outline

•UART

•SPI

24

23

24



13

SPI Basics

•Serial Peripheral Interface (SPI) is a simple serial 
communication method/protocol using 4 wires
Also known as a 4-wire bus

•Used to communicate across small distances 

•Multiple Slaves, Single Master

•Synchronized

25

SPI
•Used to connect devices such as printers, cameras, 

scanners, etc. to a desktop computer; but it has largely 
been replaced by USB
•SPI can still be a useful communication tool for some 

applications

26

25

26



14

SPI
•Fast, Easy to use, Simple

•Everyone supports it

•Has some advantages over I2C
SPI can communicate at much higher data rates than 

I2C
Also, when multiple slaves are present, SPI requires no 

addressing to differentiate between these slaves

27

Capabilities of SPI

• Always Full Duplex 
–Communicating in two directions at the same time

• Multiple Mbps transmission speed

• Transfers data in 4..16 bit characters

• Multiple slaves
–Daisy-chaining possible (a wiring scheme in which 

multiple devices are wired together in sequence or 
in a ring)

28

27

28



15

Communication Method

•SPI runs using a master/slave set-up and can 
run in full duplex mode (i.e., signals can be 
transmitted between the master and the slave 
simultaneously). 

29

Master and Multiple Independent Slaves

29

30



16

Master and Multiple Daisy-chained Slaves

31

Protocol
•Wires:

 Master Out Slave In (MOSI)
 Master In Slave Out (MISO)
 System Clock (SCLK)
 Slave Select 1…N

•Master Set Slave Select low

•Master Generates Clock

•Shift registers shift in and out data

32

31

32



17

Wires in Detail
•MOSI – Carries data out of Master to Slave
•MISO – Carries data from Slave to Master

 Both signals happen for every transmission

•SS_BAR – Unique line to select a slave
•SCLK – Master produced clock to synchronize data 

transfer

33

Shifting Detail

34

33

34



18

Clock Phase (advanced)

•Two phases and two polarities of clock

•Four modes

•Master and selected slave must be in same 
mode

•Master must change polarity and phase to 
communicate with slaves of different numbers

35

Pros and Cons
•Pros:

 Fast and easy
• Fast for point-to-point connections
• Easily allows streaming/Constant data inflow
• No addressing/Simple to implement

 Everyone supports it

•Cons:
 SS makes multiple slaves very complicated
No acknowledgement ability
No inherent arbitration 
No flow control

36

35

36



19

SPI Block Diagram – STM32L0x3 MCU

37Source: MCU User Manual

SPI Interrupts

38Source: MCU User Manual

37

38



20

Summary
Comm. 
method

Shar
es 
clock

Num. 
of 
wires

Speed Dist Pros Cons

UART No 2 115Kbits/
sec max

Medium, long Simple;
Widely supported; 
Large range of physical standard 
interfaces (TTL, RS-232, RS-422, 
RS-485);

It’s asynchronous;
Requires reasonable clock accuracy at both ends;

CAN No 3 1 
Mbits/sec

Long: 
40m (1Mbit/sec) 
up to 10km 
(5Kbits/sec) 

Highly reliable;
Reduces amount of wiring;
Multi-master capability;

Complex;

I2C Yes 2 100Kbits/
sec
400Kbits/
sec fast 
mode

Short, medium
(< 6”)

Simple;
Multi-master capability;
Only 2 wires to support multiple 
devices;
Robust in noisy or power-
up/down situations;

More complex protocol than SPI;
Harder to level-shift or opto-isolate due to 
bidirectional lines;
Need for pull-up resistors can reduce power 
efficiency in some cases;

SPI Yes 4 10-
20Mbits/s
ec

Short Fast, easy, simple;
A lot of support;
Self clocking;
Flexible data word sizes;

Multiple devices need multiple select lines;
No acknowledgement ability;
No inherent arbitration;
No flow control;
Single master only;

39

Credits and References
•[1] Carmine Noviello, Mastering STM32, Second Edition, 2022. 

(Required, Book 1). Available to purchase online.

•[2] Joseph Yiu, The Definitive Guide to ARM Cortex-M0 and 
Cortex-M0+ Processors, 2nd Ed., 2015. (Book 2). Can be found 
online.

•https://web.pa.msu.edu/people/edmunds/Disco_Kraken/SPI_
Documents/motorola_freescale_nxp_spi_manual_2000.pdf

•https://www.eecs.umich.edu/courses/eecs373/refs.html

•Jonathan W. Valvano, Embedded Systems: Introduction to 
Arm Cortex-M3 Microcontrollers, 2012. (Chapter 8)

40

39

40

https://leanpub.com/mastering-stm32-2nd
https://homepages.uni-regensburg.de/~erc24492/PDFs/ARM_Cortex_M0/The_Definitive_Guide_to_ARM_CortexM0_M0+.pdf
https://homepages.uni-regensburg.de/~erc24492/PDFs/ARM_Cortex_M0/The_Definitive_Guide_to_ARM_CortexM0_M0+.pdf
https://web.pa.msu.edu/people/edmunds/Disco_Kraken/SPI_Documents/motorola_freescale_nxp_spi_manual_2000.pdf
https://web.pa.msu.edu/people/edmunds/Disco_Kraken/SPI_Documents/motorola_freescale_nxp_spi_manual_2000.pdf
https://www.eecs.umich.edu/courses/eecs373/refs.html

	Slide 1: Lecture 6 UART, SPI
	Slide 2: Communication Systems – the Layered View
	Slide 3: Outline
	Slide 4
	Slide 5: UART
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Basics
	Slide 10: Basics
	Slide 11: UART
	Slide 12: UART
	Slide 13: UART System Block Diagram
	Slide 14: Notations
	Slide 15
	Slide 16
	Slide 17
	Slide 18: UART Transmission Details
	Slide 19: UART “Agreement”
	Slide 20
	Slide 21
	Slide 22: Data Extraction Details
	Slide 23: UART Use Example
	Slide 24: Outline
	Slide 25: SPI Basics
	Slide 26: SPI
	Slide 27: SPI
	Slide 28
	Slide 29: Communication Method
	Slide 30: Master and Multiple Independent Slaves
	Slide 31: Master and Multiple Daisy-chained Slaves
	Slide 32: Protocol
	Slide 33: Wires in Detail
	Slide 34: Shifting Detail
	Slide 35: Clock Phase (advanced)
	Slide 36: Pros and Cons
	Slide 37: SPI Block Diagram – STM32L0x3 MCU
	Slide 38: SPI Interrupts
	Slide 39: Summary
	Slide 40: Credits and References

