
1

Lecture 12
RTOS

Cris Ababei
Dept. of Electrical and Computer Engineering

COEN-4720 Embedded Systems

1

Some Preliminary Notes
• We will talk about processes, tasks, and threads

 Some say processes are also called tasks; that they mean the same thing
 Others say treads are tasks (a lot of RTOS terminology uses “task” to refer to thread)
 Usually, one should be able to tell from the context if “task” is meant to refer to process or thread

• Processes have one relevant characteristic:
 Memory space of a process is physically insulated from other processes, thanks to features offered by the Memory

Management Unit (MMU) inside a general-purpose CPU.

• True embedded architectures (like STM32) do not provide a MMU (only a feature-
limited Memory Protection Unit, MPU, is available in some of them).
 Absence of this unit does not allow to have separated address spaces (not possible to alias physical addresses to

logical ones).
 This means that they can carry out just one single application (one process), which can be eventually split in several

tasks as threads sharing the same memory address space.
 For this reason, it is preferable to use “task” to mean thread, because in the type of embedded systems we look at,

we deal with threads mainly

• To make things worse/more-confusing, actually, one can talk about embedded
systems using Linux like OS running on general-purpose processors (not necessarily
MCUs). In that case, one can talk about systems with more than one process.
However, in this course we deal with STM32 MCU.

2

1

2

2

Outline
•What is an Operating System?

•Processes or Tasks, Scheduling

•Threads

•RTOS

•Cortex-M

3

What is an Operating System (OS)?
•A software layer between the application software

and the hardware

Application Software

Operating System

Core | Core | Core | Core

External Circuits

Application Software

Operating System

Microcontroller

External Circuits

Application Software

Microcontroller

External Circuits

Software

Hardware

Basic System Complex System Future Systems

3

4

3

Embedded Operating System
•Embedded Operating System provides an
environment within which firmware pieces, the
tasks that make up the embedded application,
are executed
•Generally, an OS provides or supports three
main control functions:

1. Schedule task execution
2. Dispatch a task to run
3. Ensure communication and synchronization among tasks

Real Time Operating System
•Typical embedded system (ES) solves a problem by

decomposing it into smaller pieces called tasks that work
together in an organized way

•System is called multitasking system and design aspects
include:
 Exchanging/sharing data between tasks
 Synchronizing tasks
 Scheduling tasks

•When the control must ensure that task execution satisfies
a set of specified time constraints, the OS is called a real-
time operating system (RTOS)

5

6

4

The Kernel
•The Kernel is the smallest portion of the OS that

provides these functions

1. Scheduler
 Determines which task will run and when it will do so

2. Dispatcher
 Performs the necessary operations to start the task

3. Intertask or interprocess communication
 Mechanism for exchanging data and information between tasks and

processes on the same machines or different ones

Services
•The above functions are captured in the following types of

services:
 Process or task management

• Creation and deletion of user and system processes

 Memory management
• Includes tracking and control of which tasks are loaded into memory, monitoring memory,

administer dynamic mem

 I/O System management
• Interaction with devices done through a special piece of software called a device driver

• The internal side of that software is called a common calling interface (an application
programmer's interface, API)

 File system management
 System protection
 Networking
 Command interpretation

7

8

5

Process (or Task)
• Embedded program (a static entity) = a collection of firmware

modules
•When a firmware module is executing, it is called a process or task
•A task is usually implemented in C by writing a function
•A task or process simply identifies a job that is to be done within an

embedded application
•When a process is created, it is allocated a number of resources by

the OS, which may include:
 Process stack
 Memory address space
 Registers (through the CPU)
 A program counter (PC)
 I/O ports, network connections, file descriptors, etc.

• These resources are generally not shared with other processes

Types of Tasks
•Periodic tasks

 Found in hard real-time applications
 Examples: control, every 10 ms; multimedia, every 22.727us;

•Intermittent tasks
 Found in all types of applications
 Examples: send email every night at 4am; calibrate a sensor on startup;

save all data when power goes down;

•Background tasks
 A soft real-time or non real-time task
 Will be accomplished only if CPU time is available

•Complex tasks
 Found in all types of applications
 Examples: Microsoft Word; Apache web server;

9

10

6

Single Process
• Traditional view of computing: focuses on program. One says that the

program (or task within the program) runs on the computer
• In embedded applications, we change the p.o.v. to that of

microprocessor: CPU is used to execute the firmware. CPU is just
another resource

• The time it takes a task to complete is called execution time

Status

Stack

Resources

CPU

Firmware
(Address Space)

Data
(Address Space)

Single Process

Multiple Processes

•If another task is added to the system, potential resource
contention problems arise

•This is resolved by carefully managing how the resources
are allocated to each task and by controlling how long
each can retain the resources

•The main resource, CPU, is given to tasks in a time
multiplexed fashion (i.e., time sharing); when done fast
enough, it will appear as if both tasks are using it at the
same time

•The execution time of the program will be extended, but
operation will give the appearance of simultaneous
execution. Such a scheme is called multitasking

11

12

7

Multiple Processes

Status

Stack

Resources

CPU

Firmware
(Address Space)

Data
(Address Space)

Process

Status

Stack

Resources

CPU

Firmware
(Address Space)

Data
(Address Space)

Process

Status

Stack

Resources

CPU

Firmware
(Address Space)

Data
(Address Space)

Process

Sequence Diagram

•At any instant in time, only one process is actively executing; it
said to be in Run state

•The other processes are in Ready waiting state

Task 0 Task 1 Task 2

13

14

8

Task Scheduling
•A schedule is set up to specify when, under what

conditions, and for how long each task will be given
the use of the CPU (and other resources)
•The criteria for deciding which task is to run next are

collectively called a scheduling strategy, which
generally falls into three categories:
 Multiprogramming

• each task continues until it performs an operation that requires waiting for an external event

 Real-Time
• tasks with specified temporal deadlines are guaranteed to complete before those deadlines

expire

 Time sharing
• running task is required to give up the CPU so that another task may get a turn

Task States
•Primarily 4 states

1. Running or Executing
2. Ready to Run (but not running)
3. Waiting (for something other than the CPU)
4. Inactive

•Transition between states is referred to as context switch
•Only one task can be Running at a time, unless we use a

multicore CPU
•Task waiting for CPU is Ready to Run
•When a task has requested I/O or put itself to sleep, it is

Waiting
•An Inactive task is waiting to be allowed into the schedule

15

16

9

Address Space of a Process
•When a process is created by the OS, it is given a portion of

the physical memory in which to work
•The set of addresses delimiting that code and the data

memory, proprietary to each process, is called its address
space

•Processes are segregated
 Supervisor mode
 User mode – limited to a subset of instructions

•A process may create or spawn child processes (each with
its own data address space, data, status, and stack)

•A process may create multiple Threads (each with its own
stack and status information)

Outline
•What is an Operating System?

•Processes or Tasks, Scheduling

•Threads

•RTOS

•Cortex-M

18

17

18

10

Threads
•A process is characterized by a collection of resources that

are utilized to execute a program

•The smallest subset of these resources (a copy of the CPU
registers including the PC and a stack) that is necessary for
the execution of the program is called a Thread

•A thread is a unit of computation with code and context,
but no private data

•A thread can be in only one process; a process without a
thread can do nothing!

Single-process single-thread
•The sequential execution of a set of instructions through a task

or process in an embedded application is called a thread of
execution or thread of control

•This model is referred as single-process single-thread

Status

Stack
Resources

CPU

Firmware
(Address Space)

Data
(Address Space)

Thread

19

20

11

Multiple Threads

•During partitioning and functional decomposition of the
function intended to be performed by an ES → identify which
actions would benefit from parallel execution
 For example, allocate a sub-job for each type of I/O

•Each of the sub-jobs has its own thread of execution
 Such a system is called a single-process multithread design

•Threads are not independent of each other (unlike processes
or tasks)
 Threads can access any address within the process, including other threads’

stacks

•An OS that supports tasks with multiple threads is called a
multithreaded operating system

Multithreading

•Multithreading extends the idea of multitasking into
single processes, so that you can subdivide specific
operations within a single application into individual
threads.

•Threads can run in parallel.

•The important trait of threads it that they share the
same memory address space.

22

21

22

12

Single-Process Multiple-Threads

Status

Stack Resources

CPU

Firmware
(Address Space)

Data
(Address Space)

Thread

Status

Stack

Thread

Status

Stack

Thread

• All four categories of multitasking operating system:
 Single process single thread
 Multiprocess single thread
 Single process multiple threads
 Multiprocess multiple threads

•At the minimum, a process or task needs
the following:

1. The code or firmware, the instructions
• These are in the memory and have addresses

2. The data that the code is manipulating
• The data starts in the memory and may be moved to registers.

The data has addresses

3. CPU and associated physical registers

4. A stack

5. Status information

Processes vs. Threads

Proprietary to
each Thread

Shared among
member Threads

23

24

13

Example: complete software system
with two processes

Operating System:
- Scheduler
- Memory MGT
- I/O Drivers

Process 1

Threads

Process 2

Threads

Software System

Reentrant Code

•Child processes (and their threads) share the same
firmware memory area → two different threads can
execute the same function
•Functions using only local variables are inherently

reentrant
•Functions using global variables, variables local to the

process, variables passed by reference, or shared
resources are not reentrant
•Any shared functions must be designed to be reentrant

25

26

14

Outline
•What is an Operating System?

•Processes or Tasks, Scheduling

•Threads

•RTOS

•Cortex-M

27

Real-Time Operating System (RTOS)
•An OS able to offer/support multitasking (or better,

multithreading) while ensuring response within specified
(rigid) time constraints, often referred to as deadlines.
•Commonly found in embedded applications
•Key characteristic of an RTOS is that it has deterministic

behavior = given the same state and the same state of
inputs, the next state (and associated outputs) will be the
same each time the control algorithm utilized by the
system is executed

27

28

15

Hard vs. Soft Real Time
•Real time

 A software system with specific speed or response time requirements

•Soft real time
 Critical tasks have priority over other tasks and retain that priority until

complete
 If performance is not met, performance is considered low

•Hard real time
 System delays are known or at least bound
 If deadlines are not met, the system has failed

•Super hard real time
 Mostly periodic tasks: OS system tick, task compute times, and deadlines are

very short

Architecture of Operating System

Microprocessor hardware
and

Hardware resources

(Embedded)
Application
Command Interface
System I/O
System and User
Memory Management
Inter-task
Communication
CPU and Resource
Scheduling/Dispatching
Thread
Management

29

30

16

Architecture of Operating System

•Organized like the onion model
 The hierarchy is designed such that each layer uses

functions/operations and services of lower layers → increased
modularity

•In some architectures, upper layers have access
to lower layers through system calls and
hardware instructions

Process or Task Control Block (PCB or TCB)

•An RTOS “orchestrates” the behavior of an application by
executing each of the tasks that comprise the design
according to a specified schedule

•Each task or process is represented by a Process or Task
Control Block (TCB)

•A TCB is a data structure in the operating system kernel
containing the information needed to manage a particular
process

•The TCB is “the manifestation of a process in an operating
system”

31

32

17

Task Control Block (TCB)

• TCB allocation
 Static: used typically in ES’s
 Dynamic

•A fixed number of TCBs is allocated at system
generation time and placed in dormant (unused) state

•When a task is initiated, a TCB is created and the
appropriate information is entered

• TCB is placed in Ready state by scheduler
• TCB will be moved to Execute state by dispatcher
•When task terminates, associated TCB is returned to a

dormant state
•With fixed number of TCBs, no runtime memory

management is necessary

Queue or Job Queue

•When a task enters the system, it will be
placed into a queue called the Entry Queue or
Job Queue

•May be implemented as a linked list or as an
array

33

34

18

A Simple Kernel

•For the description of several versions of a primitive
operating system kernel, read Ch. 11 of:

[BOOK] James K. Peckol, Embedded Systems, A
Contemporary Design Tool, John Wiley & Sons, Inc.,
2007.

Outline
•What is an Operating System?

•Processes or Tasks, Scheduling

•Threads

•RTOS

•Cortex-M

36

35

36

19

Recall: Hardware Abstraction Layer (HAL)

37

HAL (Defined by ST)
CMSIS (Defined by ARM)

User Program

Cortex Microcontroller Software Interface Standard (CMSIS)

•ARM - actively working on a way to standardize the software
infrastructure among MCUs vendors

•This is an evolving effort

•Cortex Microcontroller Software Interface Standard (CMSIS) is
a vendor-independent hardware abstraction layer for Cortex-
M processors

•CMSIS consists of many components, including:
 CMSIS-CORE: API for the Cortex-M processor core and peripherals
 CMSIS-Driver: Defines generic peripheral driver interfaces for middleware
 CMSIS-RTOS API: Common API for Real-Time Operating Systems
 ... many more

38

37

38

20

CMSIS-RTOS API

•Common API for Real-Time Operating Systems

•It provides a standardized programming interface
 Portable to many RTOS and therefore enables software

templates, middleware, libraries, and other components which
can work across supported RTOS systems.

39

40Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-M0 and Cortex-M0+ Processors, 2nd Ed., 2015. (Book 2).

39

40

21

Preemptive Multitasking Operating System
•A preemptive multitasking Operating System is a coordinator of

physical resources that allows the execution of multiple computing
tasks (threads), by assigning a limited quantum time (also called
slice time) to each task.

•Every task has a well-defined temporal window, usually about 1ms
in embedded systems, during which it performs its activities before
it is preempted.

•RTOS kernel decides the execution order of the tasks ready to be
executed using a scheduling policy: a scheduler is an algorithm that
characterizes the way the OS plans the execution of tasks.

41

Context Switch
•A task is “moved” in/out from CPU by a context switch

operation.

•A context switch is performed by the OS, with hardware
support.

•Cortex-M core takes advantage of a dedicated hardware
timer, usually the SysTick: the RTOS uses the periodic
interrupt generated on the overflow event to perform the
context switch.

•This timer is configured to overflow (or underflow in case of
the SysTick, which is a down-counter timer) every 1ms.

42

41

42

22

SysTick
•Mainly used as time-base generator for CubeHAL and the RTOS (if

used).

•Every RTOS needs a timer to periodically interrupt the execution
of current code and to switch to another task.

•STM32 microcontrollers provide SysTick timer, internal to Cortex-
M core.

•Even if every other timer may be used to schedule system
activities, the presence of a dedicated timer ensures portability
among all STM32 families

•NOTE: Even if we do not use an RTOS in our firmware, it is
important to keep in mind that ST CubeHAL uses the SysTick timer
to perform internal time-related activities (and it assumes that the
SysTick timer is configured to generate an interrupt every 1ms).43

Context Switch Impact
•Context switches are usually computationally intensive (so, much of the

design of operating systems is to optimize the use of context switches).
• Take special care when you decide to change the underflow frequency of

SysTick timer (e.g., by increasing it) - affects the slice time of each
individual task, and hence the number of context switches per second.

44Source: [1] Carmine Noviello, Mastering STM32, Second Edition, 2022. (Book 1).

43

44

23

FreeRTOS
•ST Microelectronics has developed full support to one of

the most popular and free and Open Source RTOS:
FreeRTOS

•FreeRTOS is possibly the most widespread RTOS for
embedded systems on the market today

•CubeMX versions provide full integration of FreeRTOS
10.x for all STM32 microcontrollers

•FreeRTOS was acquired in 2017 by Amazon, and it is now
part of the AWS ecosystems

45

FreeRTOS
•ST built complete CMSIS-RTOS wrappers around

FreeRTOS
One for CMSIS-RTOS v1 and one for CMSIS-RTOS v2

•This allows to develop CMSIS-RTOS compliant
applications

•Textbook introduces FreeRTOS functionalities using as
much as possible the CMSIS-RTOS v2 API

46

45

46

24

The FreeRTOS Source Tree
•CMSIS-RTOS_V2/ folder contains the CMSIS-RTOS v2

compliant layer developed by ST on the top of FreeRTOS

47Source: [1] Carmine Noviello, Mastering STM32, Second Edition, 2022. (Book 1).

How to Configure FreeRTOS Using CubeMX
• Enable the FreeRTOS middleware by selecting the wanted CMSIS-RTOS

wrapper (V1 or V2) in the Middleware section of the Categories pane.

48

47

48

25

Thread Management
•Coding-wise, a thread is nothing more than a C function,

which FreeRTOS requires to be defined as follows:

49

•To start a new thread with the CMSIS-RTOS v2 API (or
simply CMSIS-RTOS2) use:

Example 1 (see demo in class)

50

49

50

26

Thread States
• A thread can have two major execution states: Running and Not Running.
• On a singlecore architecture, only one thread can be in running state at any

time

51Source: [1] Carmine Noviello, Mastering STM32, Second Edition, 2022. (Book 1).

Thread Priorities and Scheduling Policies

•Priorities impact the scheduling algorithm - allowing to
alter the execution order in case a thread with a higher
priority turns in ready state

•Priorities are a fundamental aspect of RTOSes and
provide the foundation blocks to achieve short
responses to deadlines.

•Important to underline: thread priority is not related to
priority of IRQs.

•FreeRTOS has a user-defined priority system, which
gives a great degree of flexibility in defining priorities.

52

51

52

27

53
Source: [1] Carmine Noviello, Mastering STM32, Second Edition, 2022. (Book 1).

Scheduling Algorithms

•FreeRTOS provides three different scheduling
algorithms
 Selected by the right combination of the symbolic constants

configUSE_PREEMPTION and configUSE_TIME_SLICING, both defined in
Core/Inc/FreeRTOSConfig.h file.

54Source: [1] Carmine Noviello, Mastering STM32, Second Edition, 2022. (Book 1).

53

54

28

1.Prioritized preemptive scheduling
with time slicing

•Every thread has a fixed priority, which is assigned during
its creation
 But, programmer is free to reassign a different priority

 Scheduler will immediately preempt a running thread if one with a higher
priority becomes ready to be executed

 Being preempted means being involuntarily (without explicitly yielding or
blocking) moved out of the running state into the ready state

•Time slicing (aka quantum time) is used to share CPU
processing time between threads with the same priority
 When a thread “consumes” its time slice, the scheduler will select the next

running thread in the scheduling list (if available) 55

2.Prioritized preemptive scheduling
without time slicing

•Similar to the previous algo
 Except that once a thread enters in running state, it will leave

the CPU only on a voluntary basis (by blocking, stopping or
yielding) or if a higher priority thread enters in ready state.

•This algorithm minimizes a lot the impact of the
context switch on the overall performance
 Because number of switches is dramatically reduced.

•However, a bad designed thread may
monopolize the CPU, causing unpredictable
behavior 56

55

56

29

3.Cooperative Scheduling

•A thread will leave the CPU only on a voluntary basis (by
blocking, stopping or yielding).
•Even if a higher priority thread becomes ready, the OS

will never preempt the current thread, and it will
reschedule it again in case of an external interrupt.
•Gives all responsibility to the programmer – who must

carefully design the threads as if designing a firmware
without using an RTOS!

57

Example 2 (see demo in class)
•Two threads

 One that blinks the LD2 LED
 One that constantly prints on the UART2 a message.
 UARTThread() is created with a priority higher than the blinkThread()

•Running this example, you can see that the LD2 LED never
blinks.

•This happens because UARTThread() is designed to
continuously do something and when its slice time expires,
it is still in ready state and, having a higher priority, it is
rescheduled for execution.

•This proves that priorities must be used carefully to
prevent other processes from starving.

58

57

58

30

Credits, References

•Ch.23 of: Carmine Noviello, Mastering STM32, Second Edition,
2022.

•Ch.3,10,20 of: Joseph Yiu, The Definitive Guide to ARM Cortex-M0
and Cortex-M0+ Processors, 2nd Ed., 2015. (Book 2)

•Ch.11,12 of: James K. Peckol, Embedded Systems, A
Contemporary Design Tool, John Wiley & Sons, Inc., 2007.

•Ch.3,4 of: Jonathan W. Valvano, Real-Time Operating Systems for
ARM Cortex-M Microcontrollers, 2012.

59

	Slide 1: Lecture 12 RTOS
	Slide 2: Some Preliminary Notes
	Slide 3: Outline
	Slide 4: What is an Operating System (OS)?
	Slide 5: Embedded Operating System
	Slide 6: Real Time Operating System
	Slide 7: The Kernel
	Slide 8: Services
	Slide 9: Process (or Task)
	Slide 10: Types of Tasks
	Slide 11: Single Process
	Slide 12: Multiple Processes
	Slide 13
	Slide 14: Sequence Diagram
	Slide 15: Task Scheduling
	Slide 16: Task States
	Slide 17: Address Space of a Process
	Slide 18: Outline
	Slide 19: Threads
	Slide 20: Single-process single-thread
	Slide 21: Multiple Threads
	Slide 22: Multithreading
	Slide 23: Single-Process Multiple-Threads
	Slide 24: Processes vs. Threads
	Slide 25: Example: complete software system with two processes
	Slide 26: Reentrant Code
	Slide 27: Outline
	Slide 28: Real-Time Operating System (RTOS)
	Slide 29: Hard vs. Soft Real Time
	Slide 30: Architecture of Operating System
	Slide 31: Architecture of Operating System
	Slide 32: Process or Task Control Block (PCB or TCB)
	Slide 33: Task Control Block (TCB)
	Slide 34: Queue or Job Queue
	Slide 35: A Simple Kernel
	Slide 36: Outline
	Slide 37: Recall: Hardware Abstraction Layer (HAL)
	Slide 38: Cortex Microcontroller Software Interface Standard (CMSIS)
	Slide 39: CMSIS-RTOS API
	Slide 40
	Slide 41: Preemptive Multitasking Operating System
	Slide 42: Context Switch
	Slide 43: SysTick
	Slide 44: Context Switch Impact
	Slide 45: FreeRTOS
	Slide 46: FreeRTOS
	Slide 47: The FreeRTOS Source Tree
	Slide 48: How to Configure FreeRTOS Using CubeMX
	Slide 49: Thread Management
	Slide 50: Example 1 (see demo in class)
	Slide 51: Thread States
	Slide 52: Thread Priorities and Scheduling Policies
	Slide 53
	Slide 54: Scheduling Algorithms
	Slide 55: 1.Prioritized preemptive scheduling with time slicing
	Slide 56: 2.Prioritized preemptive scheduling without time slicing
	Slide 57: 3.Cooperative Scheduling
	Slide 58: Example 2 (see demo in class)
	Slide 59: Credits, References

