
1

1

COEN-4720 Embedded Systems Design
Lecture 1

Introduction

Cristinel Ababei
Dept. of Electrical and Computer Engineering

Marquette University

• What is an Embedded System (ES)

• Examples of embedded systems

• Embedded systems characteristics

• How to design an embedded system

• ARM Cortex-M3

2

Outline

1

2

2

What is an Embedded System?

• Any electronic system that uses a computer chip,
but that is not a general-purpose workstation,
desktop or laptop computer

• An embedded system is some combination of
computer hardware and software, either fixed in
capability or programmable, that is specifically
designed for a particular function

• An embedded system is a multi-agent system and
computer system designed for specific control
functions within a larger system, often with real-
time computing constraints

• Many other definitions…

3

4

Embedded Systems

• Systems that are part of a larger
system
– Application-specific

• Diverse application areas

• Tight constraints
– Real-time, performance, power, size

– Cost, time-to-market, reliability

• Ubiquitous
– Far bigger market than general purpose

computing (PCs, servers)
• $46 billion in ‘04, >$90 billion by 2010,

14% annual growth

• 4 billion devices in ‘04

• 98% of all processors sold

3

4

3

Where are Embedded Systems Used?

• Everywhere

– industrial machines

– automobiles, trains

– airplanes, space vehicles

– medical equipment

– video games, cameras, MP3 players, TVs

– cell phones

– vending machines, household appliances, toys

– etc.

5

General Types of Embedded Systems
• General

– similar to traditional computer systems, in a smaller
package

– PDA’s
– portable games

• Communications
– cell phones

• Signal Processing
– video and audio

• Control
– real time feedback control
– automotive
– aerospace
– appliances

6

5

6

4

Example of Embedded System: Digital Camera

• Single functionality - always a digital camera
• Tightly constrained - low cost, low power, small, fast
• Reactive and real time - only to a small extent

7

Microcontroller

CCD preprocessor Pixel coprocessor
A2D

D2A

JPEG codec

DMA controller

Memory controller ISA bus interface UART LCD ctrl

Display ctrl

Multiplier/Accum

Digital camera chip

Lens

CCD

8

Example of Embedded System: Mobile Phone

7

8

5

Mobile phones: the most successful technology ever?

9

10

• What is an Embedded System (ES)

• Examples of embedded systems

• Embedded systems characteristics

• How to design an embedded system

• ARM Cortex-M3

Outline

9

10

6

Embedded Systems Characteristics

11

Embedded Systems Characteristics
• Part of a larger system (system within system)
• Computational
• Interact (sense, manipulate, communicate) with the external world:

sensors, actuators
• Reactive: at the speed of the environment
• Heterogeneity: hardware/software blocks, mixed architectures
• Networked: shared, adaptive, sensor networks (buildings,

environmental monitoring), smart products, wearable computing
• Flexibility: can run/implement multiple applications sequentially or

concurrently - concurrency
• Reprogrammability/reconfigurability: flexibility in upgrading, bug

fixing, product differentiation, product customization
• Performance and constraints:

– Timing (frequency, latency, throughput)
– Power consumption, area, temperature
– Weight, size, cost (hardware & software), time to market
– Real time critical, safety, reliability

12

11

12

7

Key Recent Trends

• Difficult to design
– Planes still crash

– Car recalls…

• Getting even harder to design:
– Increasing computation demands, increasing complexity

• e.g. multimedia processing in set-top boxes, HDTV

– Increasingly networked and distributed

– Increasing need for flexibility
• programmable & customizable

• time-to-market under ever changing standards

– Reaching physical limits of technology scaling
• Power walls (and dark silicon)

• Efficiency/optimality vs. flexibility/generality

13

14

Key Recent Trends

• Technological advances
– Higher integration: more blocks on the same chip
– Multi-Processor System-On-Chip (MPSoC)

• Embedded systems evolve toward
– System-on-Chip (SoC)
– Cyber Physical Systems (CPS)

• IP reuse, platform based design, NoC vs. Bus
• HW-SW co-design
• Diversity in design methodologies, platform dependent,

lack of standards, quality risks, customer confusion
• Systems are designed and built as “systems of systems”
• Opportunity and need for specialization

– Heterogeneous multi-core / Asynchronous CMP
– GP-GPUs

13

14

8

15

SoC and IoT Market Size

16

• What is an Embedded System (ES)

• Examples of embedded systems

• Embedded systems characteristics

• How to design an embedded system

• ARM Cortex-M3

Outline

15

16

9

17

Design Process

18

Challenges: Complexity and Heterogeneity
• Complexity

• High degree of parallelism at various levels

• High degree of design freedom

• Multiple optimization objectives design constraints

• Handled by working at higher levels of abstraction, hierarchy

17

18

10

19

Abstraction Layers

Object code

Gate-level models
Switch-level models
Circuit-level models
Device-level models
Layout models

System

Task

Instruction

Component

Logic

RTL
ISA

uArch Gate

Architecture

System Level Design
• From specification

– Functionality, behavior
• Application algorithms
• Constraints

• To implementation
– Architecture

• Spatial and temporal order
• Components and

connectivity
• Across hardware and

software

• Design automation at the
system level
– Modeling & simulation
– Synthesis & exploration
– Verification

20

19

20

11

System Specification
• Capture requirements (what)

– Functional
• Free of any implementation details

– Non-functional
• Constraints

• Formal representation
– Models of computation

• Objects & composition rules
• Concurrency & time
• Computation & communication

– Executable
• Semantics

• Application development
– Precise description of desired

system behavior
• Complete and unambiguous

21

System Architecture
• Architecture definition

– Processing elements (PEs)
• Processors, memories, FPGAs,

DSPs

– Communication elements
• Busses, Networks-on-Chip (NoCs),

transducers, bus bridges

• Virtual platform prototyping
– PE simulation (functional, full-

system) for computation
– Event-driven simulation,

transaction-level modeling (TLM)
for communication

22

• Design space exploration and system optimization
– Partitioning, mapping (allocation + binding), scheduling
– Estimation: Synthesis based on abstraction only makes sense if there are

powerful estimation methods available:
• Estimate properties of the next layer(s) of abstraction
• Design decisions are based on these estimated properties

21

22

12

System Implementation

23

• Hardware
– Microarchitecture models
– Register-transfer level (RTL)
– Layouts

• Software binaries
– Application object code
– Real-time operating system

(RTOS)
– Hardware abstraction layer (HAL)

• System netlist
– Pins and wires
– Arbiters, muxes, interrupt

controllers (ICs), etc.
– Bus protocol state machines

24

Hardware vs. Software Modules

• A significant part of the problem is deciding which parts
should be in software on programmable processors, and
which in specialized hardware

• Hardware = functionality implemented via a custom
architecture (datapath + FSM)

• Software = functionality implemented in software on a
programmable processor

• Key differences:
– Multiplexing

• software modules multiplexed with others on a processor
• hardware modules are typically mapped individually on dedicated

hardware

– Concurrency
• processors usually have one “thread of control”
• dedicated hardware often has concurrent datapaths

23

24

13

25

Concept Specification
HW/SW

Partitioning

Hardware Components

Software Components

Estimation -

Exploration

Hardware

Software

Validation and Evaluation (area, power, performance, …)

HW/SW Co-design

Co-simulation

OK?

26

HW/SW Co-design
• HW/SW Co-design means the design of a special-

purpose system composed of a few application-specific
ICs that cooperate with software procedures on
general-purpose processors (1994)

• HW/SW Co-design means meeting system-level
objectives by exploiting the synergism of hardware and
software through their concurrent design (1997)

• HW/SW Co-design tries to increase the predictability of
embedded system design by providing analysis
methods that tell designers if a system meets its
performance, power, and size goals and synthesis
methods that let designers rapidly evaluate many
potential design methodologies (2003)

• It moved from an emerging discipline (early ‘90s) to a
mainstream technology (today)

25

26

14

27

System Level Design Flow (Methodology)

• Past and present:

– Ad hoc approaches based on earlier experience with
similar products, and on manual design

– HW/SW partitioning decided at the beginning, and
then designs proceed separately

• Present and future:

– From HW/SW co-design to HW/SW co-synthesis

– Design automation (CAD) tools: very challenging

28

From HW/SW Co-design to HW/SW Co-synthesis!

• Early approaches: HW/SW partitioning would
be done first and then HW/SW blocks would
be synthesized separately

• Ideally system synthesis would do HW/SW
partitioning, mapping, and scheduling in a
unified fashion – very difficult

• Design space exploration (estimation and
refinement) would also be done in a unified
fashion; by working at the same time with
both HW and SW modules → Co-synthesis

• Key: communication models

27

28

15

29

HW/SW Co-synthesis

• Co-synthesis: Synthesize
the software, hardware
and interface
implementation in a
unified fashion. This is
done concurrently with
as much interaction as
possible between the
three implementations.

30

Outline

• What is an Embedded System (ES)

• Examples of embedded systems

• Embedded systems characteristics

• How to design an embedded system

• ARM Cortex-M3 (focus of this course)

29

30

16

Why study the ARM architecture
(Cortex-M3 in particular)?

• Very popular in industry
• Lots of manufacturers ship ARM based products

– What differentiates these products? Peripherals!

31

Summary

• Embedded systems are everywhere

• Big picture:

– Embedded systems → SoCs, CPSs

– System-level design is key

– Key challenge: optimization of design metrics (which
compete with one another)

– A unified view of hardware and software is necessary

• Focus of this course:

– We’ll focus on rather simple embedded systems;
using ARM Cortex-M3 based MCU

32

31

32

17

Embedded Systems and You
• As engineers, it is very likely that you will:

– Design microprocessors and other digital circuits (e.g., ASICs,
FPGAs, etc.) to be used in embedded applications

– Develop algorithms (control, signal processing, etc.) that will be
implemented on embedded microprocessors

– Develop software (e.g., design automation – CAD – tools, RTOS,
apps, etc.) for the embedded market

– Work in application fields that involve an embedded
microprocessor

– Design sensors/actuators (e.g., MEMS devices) that may be used
in embedded systems

– Design and implement complete systems that contain
embedded systems

• It is certain that you encounter embedded systems in all
aspects of your daily life!

33

34

Skills Needed

• An embedded system application involves a
diverse set of skills that extend across traditional
disciplinary boundaries, including
– computer hardware

– software

– algorithms

– interface electronics

– application domain

• Make engineering tradeoffs that extend across
these boundaries

33

34

