COEN-4720 Embedded Systems Design
Lecture 3
Intro to ARM Cortex-M3 (CM3) and LPC17xx MCU

Cristinel Ababei
Dept. of Electrical and Computer Engineering
Marquette University

Outline

* Overview of ARM Cortex-M3 processor
* NXP LPC17xx microcontroller unit (MCU)




Cortex-M3 Processor

RISC general purpose 32-bit microprocessor
Released in 2006
Cortex-M3 differs from previous generations of ARM

processors by defining a number of key peripherals as
part of the core:

— interrupt controller

— system timer

— debug and trace hardware (including external interfaces)
This enables for real-time operating systems and
hardware development tools such as debugger
interfaces be common across the family of processors

Various Cortex-M3 based microcontroller families differ
significantly in terms of hardware peripherals and
memory

Cortex-M3 Processor

Greater performance efficiency: more work to be done
without increasing the frequency or power requirements
— Implements the new Thumb-2 instruction set architecture

* 70% more efficient per MHz than an ARM7TDMI-S processor
executing Thumb instructions

* 35% more efficient than the ARM7TDMI-S processor executing ARM
instructions for Dhrystone benchmark

Low power consumption: longer battery life, especially
critical in portable products including wireless networking
applications

Improved code density: code fits in even the smallest
memory footprints

Core pipeline has 3 stages

— Instruction Fetch

— Instruction Decode

— Instruction Execute




Simplified Cortex-M3 Architecture

e e e e —

1
1
Cortex-M3 i
1

1 1
1 1
1 1
1
i | CM3 Core |, NVIC |,
! ¢ I Interrupts
! ! SysTick ; !
i | Inst Data e
1 FY Fy 1
1 1
1 1
1 1
1 1
1 1
| —_— |
1 1
1 - 1
i E ey (o0
=
i p (_i_p DCode
: M MI S‘_‘,’Srﬂl’l’l
—
1
1
1
1
1

Simplified Cortex-M3 Architecture

Interrupts

Cortex-M3 !
Processor Core System
5 _ Register | &
N| B ST s Bank e
= ] 2 g g AN ",
S8 26 e =1t Debug | } Trace
== 2@ a ST system [
g= = ALU |2
o
=
= y 1}
Memory Interface b
Memory
Instruction Bus === Protection M= Data Bus
Unit
Debug
Bus Interconnect l—  Debug + »>
Interface
= = = = _ = !
d B d B d N
Code Memory System Private )
Memory and Peripherals Peripherals Optional




Cortex-M3 Processor Architecture

* Harvard architecture: it uses separate interfaces to
fetch instructions (Inst) and (Data)

* Processor is not memory starved: it permits accessing
data and instruction memories simultaneously
* From CM3 perspective, everything looks like memory
— Only differentiates between instruction fetches and data
accesses
* Interface between CM3 and manufacturer specific
hardware is through three memory buses:

— ICode, DCode, and System (for peripherals), which are
defined to access different regions of memory

Cortex-M3 Processor

* Cortex-M3 is a load/store architecture with
three basic types of instructions

1. Register-to-register operations for
processing data

2. Memory operations which move data
between memory and registers

3. Control flow operations enabling
programming language control flow such as
if and while statements and procedure calls




Cortex-M3 Pipeline

* The Cortex-M3 Uses the 3-stage pipeline for instruction
executions

— Fetch = Decode = Execute

— Pipeline design allows effective throughput to increase to one
instruction per clock cycle

— Allows the next instruction to be fetched while still decoding or
executing the previous instructions

1st

2nd

3rd

i i i f } time

Cortex-M3 Pipeline

= Cortex-M3 has 3-stage fetch-decode-execute pipeline

= Similar to ARM7
= Cortex-M3 does more in each stage to increase overall
performance

1st Stage - Fetch 2 Stage - Decode 3™ Stage - Execute

Add Data Phase
AGU Phase :swsrle { Load/Store &
Back Branch
—— Instruction
EERILE L >  Multiply & Divide Write
(Prefetch) Register Read
e T mecu—mﬁ[ — shift ]{uumm»

=
Execute stage branch (ALU branch & Load Store Branch)

This is Slide #27 of “ARM Cortex-M3 Introduction, ARM
University Relations”. Download from:
http://www.arm.com/files/pdf/CortexM3_Uni_Intro.pdf

10


http://www.arm.com/files/pdf/CortexM3_Uni_Intro.pdf

Processor Register Set

* Cortex-M3 core has 16 user-visible registers
— All processing takes place in these registers

* Three of these registers have dedicated functions

— program counter (PC) - holds the address of the next
instruction to execute

— link register (LR) - holds the address from which the
current procedure was called

— “the” stack pointer (SP) - holds the address of the
current stack top (CM3 supports multiple execution
modes, each with their own private stack pointer).

* Processor Status Register (PSR) which is implicitly
accessed by many instructions

11

Processor Register Set

r0
rl
r2
3
rd
rH
6
r7
r8
9
rl0
rll
rl2
rl3 (SP) | PSP | | MSP |
rl4 (LR)
rl5 (PC)

PSR

12



Cortex-M3 Memory Address Space

OXFFFFFFFF
W
* ARM Cortex-M3 processor has | ,~/R
a single 4 GB address space 0%60000000
. 0x5
¢ The SRAM and Peripheral HOFFFFEEE
Peripheral
areas are accessed through 0.5GB
the System Bus 0x40000000
. 0x3FFFFFFF
* The “Code” region is accessed CRAM *
through the ICode 0.5CB
(instructions) and DCode 0%20000000
(constant data) buses Ox1FEFFFER
Code
0.5GB
0x00000000
13
OxEOOFFFFF OxFFFFFFFF
0xE00FF000 ROM table .
M e m O ry 0xE0042000 External PPB Vendor Specific
M i ETM Private Peripheral Bus - External |o,r0040000¢
d p g TrI q / Private Peripheral Bus - Internal :gg::::::
P & / 0xDFFFFFFF
OxEOO03FFFF /
0xE000F000 Beseaved
0xE000E000 DylC External Device 1GB
0xE0003000. Reserved
0xE0002000 FPB
0xE0001000 DWT OXOFFFFFFF
0xE0000000 1™
External RAM 1GB
Ox43FFFFFF ‘
Bit band alias Y
0x42000000 0x60000000
0x41FFFFFF Ox5FFFFFFF
0x40100000 - " Peripheral 0568
0x40000000 Bit band region Sl
Ox3FFFFFFF
0x23FFFFFF 4
Bit band alias o iy
0%22000000 ; 0x20000000
Ox21FFFFFF 27 Ox1FFFFFFF
020100000 4 Code 0.5GB
0x20000000 Bit band region o —

14



Program Memory Model

* RAM for an executing program is divided into three regions

1. Datain RAM are allocated during the link process and initialized by
startup code at reset

2. The (optional) heap is managed at runtime by library code
implementing functions such as the malloc and free which are part
of the standard C library

3. The stack is managed at runtime by compiler generated code which
generates per-procedure-call stack frames containing local
variables and saved registers

RAM End (high) —
Main Stack .
l —SP
T «— Heap End
«— Heap Start
Data
RAM Start (low) —

15

Operating Modes

* Cortex-M3 processor has two modes and two privilege
levels

* The operation modes - determine whether the
processor is running a normal program or running an
exception handler
— thread mode
— handler mode

* The privilege levels - provide a mechanism for
safeguarding memory accesses to critical regions as
well as providing a basic security model
— privileged level
— user level

Privileged User

When running an exception handler | Handler mode

When not running an exception
handler {e.g., main program)

Thread mode | Thread mode

16



Nested Vector Interrupt Controller (NVIC)

A programmable device that sits between the CM3 core
and the microcontroller

CM3 uses a prioritized vectored interrupt model — the
vector table is defined to reside starting at memory
location 0

First 16 entries in this table are defined for all Cortex-M3
implementations while the remainder, up to 240, are
implementation specific

NVIC supports dynamic redefinition of priorities with up

to 256 priority levels

Two entries in the vector table are especially important:
— address 0 contains the address of the initial stack pointer

— address 4 contains the address of the “reset handler” to be
executed at boot time

17

Nested Vector Interrupt Controller (NVIC)

* Provides key system control registers including the

System Timer (SysTick) that provides a regular timer
interrupt

* Provision for a built-in timer across the Cortex-M3

family has the significant advantage of making
operating system code highly portable — all operating
systems need at least one core timer for time-slicing

* Registers used to control the NVIC are defined to reside

at address OxEOOOEOQO and are defined by the Cortex-
M3 specification

* These registers are accessed with the system bus

18




Thumb-2 Instruction Set
Thumb-2 instruction set is a superset of the previous 16-bit Thumb
instruction set
* Provides
— A large set of 16-bit instructions, enabling 2 instructions per memory fetch
— A small set of 32-bit instructions to support more complex operations
Specific details of this ISA not our focus (we’ll mostly program in C)

T Thumb2
Instruction Set
(32-bit and 16-bit)

) Cortex-M3

— R
/ Thumb \ 4 J'l

| Instructions

\ (16-bit) / )

19
Outline
* Overview of ARM Cortex-M3 processor
e NXP LPC17xx microcontroller unit (MCU)
20

10



Cortex-M3 Processor vs.
CM3-based Microcontroller Units

o

~
a/ by
groonnoonnnonoooNo

O Y 4 .
/ Cortex-M3 Chip \ b
5| O A
a - = Cortex-M3 L Debug 0 Developed by
] : d M Core System ——P——= ARM
o B O _Ij___ - S
| -] O m]
o B d s d o
- B d | ~inggmalBuss = |
:1 = - L J T H
= |
O A
d Peripherals Memory b Developed by
'é B E“ g 5 chip
L S = a manufacturers
| ; ] Clock and i
3 ' ock an:
E > 5 E g Reset o ]
sopunoopo = =
OO0 00000000 0O0oOoO0OoOoOnO

ARM NXP, Tl, ST, etc.
21
While there is significant overlap between the families and
their peripherals, there are also important differences
In the lab of this course we focus on the NXP’s LPC17xx family
- PActel AIMEL
LPUWER MATTERS — ©
%NETWORKS
i3 TEXAS
INSTRUMENTS
22

11



LPC17xx
LPC17xx (of NXP) is an ARM Cortex-M3 based microcontroller

The Cortex-M3 is also the basis for microcontrollers from other
manufacturers including Tl, ST, Toshiba, Atmel, etc.

LPC1768 operates at up to a 100 MHz CPU frequency
Sophisticated clock system
Peripherals include:
— up to 512 kB of flash memory, up to 64 kB of data memory
— Ethernet MAC
— a USB interface that can be configured as either Host, Device, or OTG
— 8 channel general purpose DMA controller
— 4 UARTs, 2 CAN channels, 2 SSP controllers, SPI interface
— 3 12C interfaces, 2-input plus 2-output 12S interface
— 8 channel 12-bit ADC, 10-bit DAC, motor control PWM
— Quadrature Encoder interface, 4 general purpose timers,
— 6-output general purpose PWM
— ultra-low power RTC with separate battery supply
— up to 70 general purpose I/0 pins

Trece usa 3
Fod rherface | 5 #
1
- |Eeia=== Clock Genar
- Cecln Power Canbol,
& | ARM Cortex-M3 nd 4| Ercancut Detect
= Contro nd ofrer
— = ayzbern Fumcioe:
gE |z
T
Flash Flash
—
High Speed GRIO Muitilayer AHE Matrix SRAM
YT
ROM
BkB
AHE o AHB to
APE briggs brioge|
APB slave group [] APS slave ‘group 1
UARTE0&1 ARTSZ &3
PN S PR,
Timer
[ capureicompare |
Timers 0 & 1 '—|
Tmers243
L_tmes2es f
N R —
[ ewwi ]
'\'x Real Time Clock
= Note: shaded peripharsl biocks
20 bytes of Dackup support General Pumoss DMA
registen
RTC Power Domaln

12



Abstract Representation of a Development Board
(such as LandTiger 2.0)

User I/O
Analog _..{ LCD Display
Input |
- Dual RS232
Configuration et Dual CAN
L
LPC17xx Reset & Interrupt
(Or variant) T Buttons
o]
[=4 Port LEDs
=
Power & COM
ket Ethemet Recall from lecture#l:

25

LPC1768

LPC1768 microcontrollers are based on the Cortex-M3
processor with a set of peripherals distributed across three
buses — Advanced High-performance Bus (AHB) and its two
Advanced Peripheral Bus (APB) sub-buses APB1 and APB2.
These peripherals:

— are controlled by the CM3 core with load and store instructions
that access memory mapped registers

— can “interrupt” the core to request attention through peripheral
specific interrupt requests routed through the NVIC

Data transfers between peripherals and memory can be
automated using DMA

Labs cover among others:

— basic peripheral configuration

— how interrupts can be used to build effective software

— how to use DMA to improve performance and allow processing
to proceed in parallel with data transfer

26

13



LPC1768

e Peripherals are “memory-mapped”

— core interacts with the peripheral hardware by reading and writing peripheral
“registers” using load and store instructions

* The various peripheral registers are documented in the user and reference
manuals

— documentation include bit-level definitions of the various registers and info on
how to interpret those bits

— actual physical addresses are also found in the reference manuals

* Examples of base addresses for several peripherals (see page 14 of the
LPC17xx user manual):
0x40010000 UART1
0x40020000 SPI
0x40028000 GPIO interrupts
0x40034000 ADC

* Noreal need for a programmer to look up all these values as they are
defined in the library file Ipc17xx.h as:
LPC_UART1_BASE
LPC_SPI_BASE
LPC_GPIOINT BASE
LPC_ADC_BASE

27

LPC1768

* Typically, each peripheral has:
1. Control registers to configure the peripheral

2. Status registers to determine the current
peripheral status

3. Data registers to read data from and write
data to the peripheral

28

14



peripheral
* For example,

typedef struct
{

_ IO uint32_t

I uint32_t

IO uint32_t

IO uint32_t

uint32_t

IO uint32_t

LPC1768

* In addition to providing the addresses of the
peripherals, Ipc17xx.h also provides C language
level structures that can be used to access each

the SPl and GPIO ports are defined

by the following register structures:

SPCR;

SPSR;

SPDR;

SPCCR;
RESERVEDO [3] ;
SPINT;

} EC_SPI_TypeDef;

29

IO uintl6é_t FIODIRL;
__I0 uintl6é_t FIODIRH;

struct {

IO uint8_t FIODIRO;
IO uint8_t FIODIRL;
IO uint8_t FIODIR2;
__IO uint8_t FIODIR3;

}i
uint32_t RESERVEDO[3];

IO uint8_t FIOMASKO;
I0 uint8_t FIOMASKI;
IO uint8_t FIOMASK2;
__I0 uint8_t FIOMASK3;

LPC1768

typedef struct union { union {
( __I0 uint32_t FIOPIN; 0 wuint32_t FIOCLR;
anion { struct { ;Eruct { -
) __I0 uintl6_t FIOPINL; 0 uintl6é_t FIOCLRL;
__IO uint32_t FIODIR; I0 uintlé_t FIOPINH; "0 uintl6_t FIOCLRH;
struct { - - J— — ’

}i }:

struct { struct {
__IO uint8_t FIOPINO; 0 uint8 t FIOCLRO;
__ IO uint8_ t FIOPIN1; "0 uint8 t FIOCLRL;
__ IO uint8_ t FIOPIN2; "0 uint8 t FIOCLR2;
__ IO uint8_ t FIOPIN3; "0 uint8 t FIOCLR3;
}; Y -
Y };
union { } LPC_GPIO TypeDef;
__ IO uint32_t FIOSET; - -
struct {

IO uintlé_t FIOSETL;

union { P

I0 uint32 t FIOMASK: " 10 uintl6_t FIOSETH;

struct { b
I0 uintl6é_t FIOMASKL; struct {

" I0 uintl6_t FIOMASKH; IO uint8_t FIOSETO;
Yo - " 10 uint8_t FIOSET1;
struct { " 10 uint8_t FIOSET2;

I0 uint8_t FIOSET3;

30

15



LPC1768

* The register addresses of the various ports are defined in the
library (see Ipc17xx.h):

#define LPC_APBO_BASE (0x40000000UL)
#define LPC_UART1 BASE (LPC_APBO_BASE + 0x10000)
#define LPC_ADC_BASE (LPC_APBO_BASE + 0x34000)
#define LPC_GPIO_BASE (0x2009C000UL)
#define LPC_GPIOl_ BASE (LPC_GPIO_BASE + 0x00020)
#define LPC_GPIOl ((LPC_GPIO TypeDef *) LPC_GPIOl_BASE)

* For example, to turn on the LED marked as D11 on the
LandTiger 2.0 board (which is driven by the pin P2.1 of the
MCU), the following code can be used:

LPC_GPIO1->FIOSET |= 1 << 1;

* CHECK the Datasheet of LPC1768, page #131, NOW!!!

31

Memory

* On-chip flash memory system
— Up to 512 kB of on-chip flash memory

— Flash memory accelerator maximizes performance for
use with the two fast AHB-Lite buses

— Can be used for both code and data storage
* On-chip Static RAM
— Up to 64 kB of on-chip static RAM memory

— Up to 32 kB of SRAM, accessible by the CPU and all
three DMA controllers are on a higher-speed bus

— Devices with more than 32 kB SRAM have two
additional 16 kB SRAM blocks

32

16



LPC17xx system memory map

APB1 peripherals

LPC1768 memory space

0x4010 0000 X .
0x400F cooo |31 system control r IUIF;;F FFEF
0x400C 000D 30 - 16 reserved reserved A
- o
5 aE
0x4008 COOD -
rivate peripheral bus
04008 £o0p | 4] motor conirol PYYM privarE pen 0xED00 0000
0x4008 4000 |13 _resenved z reserved =
0x400B 0g0p |12 |repetifive interupt Emer| 0x5020 0000
| Ere—
10 125 "
0x400A ED00 e
reserved z
0x400a s000 [° reseried = % a400 0000
0400 0000 (8 2c2 P peripheral bitband akias addressing || oo oo
4008 caoo | UART3 3 z p—— 2
ox4000 8000 |2 UARTZ ! 0x4010 0000
APB peripherals
De4008 4000 |2 Timer 3 4008 0000
Dx4009 0000 |4 Timer 2 1GB APBO peripherals B
c H reserved =
04008 CO00 |3 DAC = A p—
0x4008 8000 |2 3370 [AHE SRAM bit band alias addressing
04008 0000 1-0 reserved 0x2200 0000
- = reserved =
120104 0000
GFIO
0x2008 GO
= A
T reserved “ %2008 4000
05ca | AHESRAM Zblocksof 18k8) | oo oo
=z - -,
T e Zax1FFF 2000
8 kB boot ROM
i 00
z recerved Zax1000 8000
32 kB local static RAM
toodelD-code S 01000 0000
memory space
= reserved =
0x0000 0400 + 258 words
0x0000 0000 0x0002 0000
2es | [ 51268 on-chip flash 140000 0000

z 127- 4 reserved z
3 USE controlier
. 2 reserved
GPOMA controbier
o Ethernet cantroller
APED peripherals
31 - 24 reserved
2 2C1
22 - 19 reserved
13 CAN2
17 CAN1
18 CAN common
15 CAN AF registers
14 CAN AF RAM
13 ADC
12 SSP1
1 pin connest
1 GPIO interrupts
o | RTG + backup registers
g SP
7 12co
8 FWM
5 reserved
4 UART1
3 UARTD
2 TIMER1
1 TIMERD
0 wDT

AHE peripherals

Ox5020 0000

Ox5000 CO00
0x5000 BODD
Ox5000 4000

05000 DODD

0x4008 0000
124006 0000
0x4005 CO00
024004 COOD
024004 3000
124004 4000
124004 0000
0x4003 CO00
024003 2000
124003 4000
0x4003 0000
%4002 CO00
0x4002 8000
124002 4000
024002 0000
024001 CO00
0x4001 8000
024001 4000
0x4001 0000
%4000 CO00
024000 3000
1x4000 4000
024000 0000

33

References & Credits

* Joseph Jiu, The Definitive guide to the ARM
Cortex-M3, 2007

e LPC17xx microcontroller USER MANUAL

* Cortex-M3 Processor TECHNICAL REFERENCE
MANUAL

* Lab manual (G. Brown, Indiana)
e EECS-373, UMich

See website of class for links to download any of the above:

http://dejazzer.com/coen4720/index.html

34

17


http://dejazzer.com/coen4720/index.html

