COEN-4720 Embedded Systems Design
Lecture 4
Interrupts (Part 1)

Cristinel Ababei
Dept. of Electrical and Computer Engineering
Marquette University

Outline

Introduction

NVIC and Interrupt Control
Interrupt Pending
Examples

Interrupt Service Routines

How does it work?

Something tells the processor core (which is
running the main execution flow) there is an
interrupt/exception

Core transfers control to code that needs to be
executed to address the interrupt

Said code “returns” to the main (old) program

Some questions

How do you figure out where to branch/jump to?

— If you know number the possible interrupt cases, and an
interrupt comes in, you can just branch to a location, using that
number as an offset

How to you ensure that you can get back to where you
started?

— Store return address to stack or dedicated register?

Don’t we have a pipeline? What about partially executed
instructions?

— Complex architectures
What if we get an interrupt while we are already
“processing” an interrupt?

— Nested interrupts: handle directly, ignore, prioritize
What if we are in a “critical section?”

— Prioritization

Interrupts

An interrupt is the automatic transfer of software
execution in response to a hardware event that is
asynchronous with the current software
execution

This hardware event is called a trigger and it
breaks the execution flow of the main thread of
the program

The event causes the CPU to stop executing the
current program and begin executing a special
piece of code called an interrupt handler or
interrupt service routine (ISR)

Typically, the ISR does some work and then
resumes the interrupted program

Interrupts

The hardware event can either be:

1) A busy-to-ready transition in an external I/O device.
Caused by the external world

— Peripheral/device, e.g., UART input/output device

— Reset button, Timer expires, Power failure, System error
— Names: exception, interrupt, external interrupt

2) An internal event

— Bus fault, memory fault

— A periodic timer

— Div. by zero, illegal/unsupported instruction

— Names: exception, trap, system exception

When the hardware needs service, signified by a busy

to ready state transition, it will request an interrupt by
setting its trigger flag

Cortex-M3 Interrupts

* Exceptions:
— System exceptions: numbered 1 to 15
— External interrupt inputs: numbered from 16 up

* Different numbers of external interrupt inputs

(from 1 to 240) and different numbers of priority
levels

* Value of the current running exception is
indicated by:

— The special register Interrupt Program Status Register
(IPSR) or

— From the NVIC’s Interrupt Control State Register (the
VECTACTIVE field)

List of system exceptions

Exception | Exception Type Priority Description

Number

1 Reset —3 (Highest) Reset

2 NMI -2 Nonmaskable interrupt (external NMI input)

3 Hard Fault -1 All fault conditions, if the corresponding fault
handler is not enabled

4 MemManage Fault | Programmable Memory management fault; MPU violation or access
to illegal locations

5 Bus Fault Programmable Bus error; occurs when AHB interface receives an
error response from a bus slave (also called prefetch
abort if it is an instruction fetch or data abort ifitis a
data access)

6 Usage Fault Programmable Exceptions due to program error or trying to access
coprocessor (the Cortex-M3 does not support a
COprocessor)

7-10 Reserved NA -

11 SviCall Programmable System Service call

12 Debug Monitor Programmable Debug monitor (breakpoints, watchpoints, or
external debug requests)

13 Reserved NA -

14 PendSV Programmable Pendable request for system device

15 SYSTICK Programmable System Tick Timer

List of external interrupts

Exception Number

Exception Type

Priority

16 External Interrupt #0 Programmable
17 External Interrupt #1 Programmable
255 External Interrupt #239

Programmable

Interrupt Programming

* To enable (disable) means to allow interrupts
at this time (postponing interrupts until a later
time). On the ARM Coretx-M3 processor, there
is one interrupt enable bit for the entire
interrupt system. In particular, to disable
interrupts we set the interrupt mask bit, |, in
PRIMASK register.

Outline

* Introduction

* NVIC and Interrupt Control
* Interrupt Pending

* Examples

* Interrupt Service Routines

Interrupt Programming

* Interrupts on the Cortex-M3 are controlled by the
Nested Vectored Interrupt Controller (NVIC)

* To activate an “interrupt source” we need to set
its priority and enable that source in the NVIC:

Activate = Set priority + Enable source in NVIC

* This activation is in addition to the “enable” step
discussed earlier

Nested Vectored Interrupt Controller (NVIC)

NVIC supports 1 to 240 external interrupt inputs
(commonly known as IRQs)

NVIC control registers are accessible as memory-mapped
devices

NVIC can be accessed as memory location 0OxEOOOEO0O
NVIC contains:

— control registers and control logic for interrupt processing

— registers for the MPU

— SYSTICK Timer

— debugging controls
In the LPC17xx, the NVIC supports 35 vectored interrupts

Simplified Cortex-M3 Architecture

Cortex-M3

==, Processor Core Slystem
4 N
/ N\ e
o] Reqister Qo
= c = (2]
) 0 g5 5 Bank 5
NOE —~ 'C;J - 3 = '
Interrupts 8¢ 256 8 =1 Debug) Trace
== Lo o o [System [T
=% =u @
\ s< AU |8
\ B
C
£ p—
N/ Memory Interface /
— \
Memory
Instruction Bus == Protection =1 Data Bus
Unit
Debug
Bus Interconnect — Debug + »
Interface
- P = == !
J L - =
Code Memory System Private .
Memory and Peripherals Peripherals Optional

NVIC Programmers Model

Table 6-1 NVIC registers

Address Name Type Reset Description

OxEQAOEGAL ICTR RO - Interrupt Controller Tvpe Register, ICTR
OxEQDOELIDG - NVIC_ISER0- ERW 9x00000000 Interrupt Set-Enable Registers
OxE@RRELLC NVIC_ISER7

OxEQDAELRD - NVIC_ICERO- ERW @x00000000 Interrupt Clear-Enable Registers
AEM@AXELIC NVIC_ICER7

OxEQDOE2DD - NVIC_ISPRO - EW 9x00000000 Interrupt Set-Pending Registers
OxE@RREZ1C NVIC_ISPR7

OxEQBAE280 - NVIC_ICPRO- ERW 0x00000000 Interrupt Clear-Pending Registers
OxE@BAEZ9C NVIC_ICPR7

OxEQDAE3NG - NVIC_IABRO- RO 9x00000000 Interrupt Active Bit Register
AxE@BRE3LC NVIC_IABR7

AxEQDOE4R0 - NVIC_IPRO - W 0x00000000 Interrupt Prionity Register
BxEGRAEAEC NVIC_IPR59

[From Cortex-M3 Technical Reference Manual]

Memory
Map

OxXEOOFFFFF OxFFFFFFFF
OxXEOOFF000 BOM:table N\
0xE0042000 External PPB Rendeopectiic
ETM
i : Private Peripheral Bus - External |o,r0040000¢
OxE! TPIU B < 0xE003FFFF
oA Private Peripheral Bus - Internal |, 20000000
/ OxDFFFFFFF
OxE003FFFF
0xE000F000 Seoeced
0xEQ00E000 CNVIC) External Device 1GB
0xE0003000 Reserved
0xE0002000 FPB
OxE0001000 DWT Ox9FFFFFFF
0xE0000000 Lk
External RAM 1GB
Ox43FFFFFF
Bit band alias
0x42000000 0x60000000
OxMFFFFFF Ox5FFFFFFF
0x40100000 = . Peripheral 0.5GB
0x40000000 Bit band region
0x40000000
Ox3FFFFFFF
0x23FFFFFF N
- SRAM 0.5GB
Bit band alias
0%22000000 0x20000000
Ox21FFFFFF A sl
0x20100000 | Code 05GB
it band region
0x20000000 esioeiiise

Basic Interrupt Configuration

* Each external interrupt has several registers
associated with it:
— Enable and clear enable registers
— Set-pending and clear-pending registers
— Active status
— Priority level

* In addition, a number of other registers can also
affect the interrupt processing:

— Exception-masking registers (PRIMASK, FAULTMASK,
and BASEPRI)

— Vector Table Offset register
— Software Trigger Interrupt register
— Priority Group

Interrupt Enable and Clear Enable

* The Interrupt Enable register is programmed via two addresses
— To set the enable bit, we write to the SETENA register address
— To clear the enable bit, you need to write to the CLRENA register address
« Interrupt Set Enable and Clear Enable
- OxEOO0OE100-0xEOOOE11C, OXEOQOE180-0xE000E19C

0xEO0OET00 SETENAO 0 Enable for external interrupt #0-31

bit[0] for interrupt #0 (exception #16)

SETENAO/1 is a general name to refer to this
register. Consult the MCU User Manual for your
particular MCU to see what they are actually called.
For example, in the case of LPC17xx these registers
are called ISERO and ISER1. See page 77-78 of

LPC17xx user manual 4
OxEODOE180 CLRENAO R/W 0 Clear enable for external interrupt #0-31

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)

Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

bit[0] for interrupt #0

bit[1] for interrupt #1

bit[31] for interrupt #31

Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current enable status

See page 77-80 of LPC17xx user manual for description of ISERO,ISER1 and ICERO,ICER1!

Interrupt Pending and Clear Pending

If an interrupt takes place but cannot be executed immediately (e.g., if another
higher-priority interrupt handler is running), it will be pended

The interrupt pending status can be accessed through the Interrupt Set Pending
(SETPEND) and Interrupt Clear Pending (CLRPEND) registers

* Set Pending & Clear Pending
- OxEOOOE200-0xEO00E21C, OXEOOOE280-0xEO00E29C

0xEO000E200 SETPENDO R/W

0

Pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Werite 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

0xEO00E280 | CLRPENDO R/W

Clear pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)

Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current pending status

See page 81-84 of LPC17xx user manual for description of ISPRO,ISPR1 and ICPRO,ICPR1!

Active Status

* Each external interrupt has an active status bit.

* When the processor starts the interrupt handler, the bit
is set to 1 and cleared when the interrupt return is
executed.

* Interrupt Active Bit Status registers

— OxEOOOE300-OxEOOOE31C

Address Name Type Reset Value Description

0xEO0OE300 ACTIVEOD R 0 Active status for external interrupt #0-31
bit[0] for interrupt #0
bit[1] for interrupt #1
bit[31] for interrupt #31

0xEOQOE304 ACTIVET R 0 Active status for external interrupt #32-63

See page 85-86 of LPC17xx user manual for description of IABRO,IABR1!

10

Priority Levels

* Each external interrupt has an associated priority-
level register, which has a maximum width of 8
bits and a minimum width of 3 bits

* Interrupt Priority Level registers
— OxEOOOE400-OxEOOOEA4EF

Address Name Type Reset Value Description

0xEO00E400 PRI_O R/W 0 (8-bit) Priority-level external interrupt #0

0xEO00E401 PRI_1 R/W 0 (8-bit) Priority-level external interrupt #1

0xEOOOE41F PRI_31 R/W 0 (8-bit) Priority-level external interrupt #31

See page 87-89 of LPC17xx user manual for description of IPRO..IPR8!

Interrupt Priority

* A higher-priority (smaller number in priority
level) exception can preempt a lower-priority
(larger number in priority level) exception

* Cortex-M3 supports three fixed highest-
priority levels and up to 256 levels of
programmable priority

* Most Cortex-M3 chips have fewer supported
levels - for example, 8, 16, 32, ...

11

Levels of priority

* Reduction of levels is implemented by cutting out
the LSB part of the priority configuration
registers. Example of 3-bit implemented:

Bit¥ | Bitd | Bics | Bitd | Bit3 | Bic2 |Bic1 Bic 0

Implemented Mot implemented, read as zero

* In this example, we have possible priority levels:
— 0x00 (high priority), 0x20, 0x40, 0x60, 0x80, OXAO,
0xCO, and OxEO (the lowest)
e LPC17xx has 32 programmable interrupt priority
levels

Interrupt priority

* Priority can be sub-divided into priority groups
 Splits priority register into two halves:

— Preempt priority — indicates if an interrupt can
preempt another

— Sub priority — used if 2 interrupts of the same
group arrive at the same time

12

Vector Tables

When an exception takes place and is being
handled by the Cortex-M3, the processor will
need to locate the starting address of the
exception handler

This information is stored in the vector table

Each exception has an associated 32-bit vector
that points to the memory location where the
ISR that handles the exception is located

Vectors are stored in ROM at the beginning of
the memory

Vector Table

Exception vector table after power-up is located at address
0x00000000:

Address Exception Number Value (Word Size)
0x00000000 - MSP initial value
0x00000004 1 Reset vector (program counter initial value)
0x00000008 2 NMI handler starting address
0x0000000C 3 Hard fault handler starting address
Other handler starting address

ROM location 0x00000000 has the initial stack pointer

Location 0x00000004 contains the initial program counter (PC),
which is called the reset vector

Reset vector points to a function called reset handler, which is the
first thing executed following reset

Vector table can be relocated to change interrupt handlers at
runtime (vector table offset register)

13

Reset Sequence

Fetch initial
SP value

Fetch reset Instruction
vector

fetch
)

Address
‘ Rt 0x00000000

Address

Address 3 i
0x00000004 reset vector | '
[E——

0x20008000 7 0x20008000
0x20007 FFC 1st stacked item
0x20007 FF8 2nd stacked item
Stack grows
Stack downwards
memory
| M
0x20007 CO0

Flash
0x00000100 Boot code
Other exception] Reset
vectors vector
0x00000004 0x00000101
0x00000000 0x20008000 e —

Time

Other memory

Other memory

Initial SP value ~— e——

Vector Table

* Example of a few vectors as defined inside

startup_LPC17xx.s:

__Vectors
DCD __initial_sp
DCD Reset_Handler
DCD NMI_ Handler
DCD HardFault_Handler

; External Interrupts

; Top of Stack

; Reset Handler

; NMI Handler

; Hard Fault Handler

; 16: Watchdog Timer

DCD WDT_IRQHandler
DCD TIMERO_IRQHandler ; 17: TimerO
DCD UARTO_IRQHandler ; 21: UARTO

14

Special registers: PRIMASK, FAULTMASK, and BASEPRI

« What if we quickly want to disable all interrupts?

» Write 1 into PRIMASK to disable all interrupt except NMI
- MOV RO, #1
- MSR PRIMASK, RO

« Write 0 into PRIMASK to enable all interrupts

* FAULTMASK is the same as PRIMASK, but also blocks hard
fault (priority -1)

« What if we want to disable all interrupts below a certain
priority?

» Write priority into BASEPRI
- MOV RO, #0x60
- MSR BASEPRI, RO

Software interrupts

» Software interrupts can be generated in two
ways:
— Use the SETPEND register
— Use the Software Trigger Interrupt Register (STIR)

Software Trigger Interrupt Register (0xEOO0EF00)

Bits Name Type Reset Value Description

8:0 INTID w - Writing the interrupt number sets the pending
bit of the interrupt; for example, write 0 to
pend external interrupt #0

See page 90 of LPC17xx user manual for description of STIR!

15

The SYSTICK Timer

Often a hardware timer is used:

— To generate interrupts so that the OS can carry out task
management

— As an alarm timer, for timing measurement, etc.

Cortex-M3 processor includes a simple timer: 24-bit
down counter

Interrupts each 10 milliseconds

The SYSTICK Timer is integrated with the NVIC and
can be used to generate a SYSTICK exception
(exception type #15)

SYSTICK Timer is controlled by four registers

SYSTICK Timer Control and Status Regs

SYSTICK Control and Status Register (0xEO00E010)

Bits

Name Type Reset Value Description

16

COUNTFLAG R 0 Read as 1 if counter reaches 0 since last time
this register is read; clear to 0 automatically
when read or when current counter value is

cleared
2 CLKSOURCE R/W 0 0 = External reference clock (STCLK)
1 = Use core clock
1 TICKINT R/W 0 1 = Enable SYSTICK interrupt generation

when SYSTICK timer reaches 0
0 = Do not generate interrupt

ENABLE R/W 0 SYSTICK timer enable

See page 505 of LPC17xx user manual for description !

16

SYSTICK Reload Value Register (OxEOO0E014)

Bits Name Type Reset Value Description
23:0 RELOAD R/W 0 Reload value when timer reaches 0
SYSTICK Current Value Register (0xEO00E018)
Bits Name Type Reset Value Description
23:0 CURRENT R/Wc 0 Read to return current value of the timer.
Write to clear counter to 0. Clearing of
current value also clears COUNTFLAG in
SYSTICK Control and Status Register
SYSTICK Calibration Value Register (0xEO00E01C)
Bits Name Type Reset Value Description
3 NOREF R - 1 = No external reference clock (STCLK not available)
0 = External reference clock available
30 SKEW R - 1 = Calibration value is not exactly 10 ms
0 = Calibration value is accurate
23:0 TENMS R/W 0 Calibration value for 10 ms.; chip designer should
provide this value via Cortex-M3 input signals. If this
value is read as 0, calibration value is not available
* Introduction
* NVIC and Interrupt Control
* Interrupt Pending
e Examples
[]

Interrupt Service Routines

17

Interrupt Pending

* The normal case

— Once Interrupt Request is seen, processor puts it in
“pending” state even if hardware drops the request

— IPS is cleared by the hardware once we jump to the ISR

[- Hardware cleared interrupt request

Interrupt
Request \
Interrupt
Pending Status
/ Handler Mode
Thread
Processor Mode
Mode

Interrupt pending

* If the pending status is cleared before the processor starts
responding to the pended interrupt (e.g., because pending
status register is cleared while PRIMASK/FAULTMASK is set to
1), the interrupt can be canceled

* The pending status of the interrupt can be accessed in the
NVIC and is writable, so you can clear a pending interrupt or
use software to pend a new interrupt by setting the pending

register
Interrupt

Request \

Interrupt

Pending Status r

Pending status
cleared by software

Thread

Processor Mode
Mode

18

Active status during interrupt handling

* When the processor starts to execute an
interrupt, the interrupt becomes active and the
pending bit will be cleared automatically

Interrupt request

~ cleared by software
Interrupt |‘(/
Request
q \‘\
v
Interrupt
Pending Status A
/
f
Interrupt |,
Active Status VA
\ \
\\|x Handler Mode > Interrupt returned
Processor Thread
Mode Mode

Interrupt source continues to hold

* If aninterrupt source continues to hold the interrupt
request signal active, the interrupt will be pended
again at the end of the interrupt service routine

Interrupt Interrupt request stay active

request

Interrupt [

pending status

Handler mode *

Interrupt
active statfs Interrupt retumn 4"L|J

Processor Thread
mode mode Interrupt reentered

19

Interrupt is pulsed several times

* If an interrupt is pulsed several times before
the processor starts processing it, it will be
treated as one single interrupt request

Muliiple interrupt pulses
Interrupt before entering ISR

request

Interrupt

pending status

Interrupt

active status

Handler mode

Processor Thread
mode mode Interrupt return

Interrupt de-asserted, then pulsed again

* If aninterrupt is de-asserted and then pulsed
again during the interrupt service routine, it will
be pended again

Interrupt request
pulsed again

Interrupt _,—I—,—I—
Request \

¥

Interrupt Inte réu Ejt
Pending Status pende:
again

Interrupt L

Active Status
Handler Mode
»k

Interrupt returned -~ V7

\

Thread J i

Processor Mode / Interrupt re-entered
Mode

20

Outline

Introduction
NVIC and Interrupt Control
Interrupt Pending

Examples

Interrupt Service Routines

Procedure for setting up an interrupt

1) When the system boots up, the priority group
register might need to be set up
— By default the priority group 0 is used (bit[7:1] of
priority level is the preemption level and bit[0] is the
subpriority level)
2) Copy the hard fault and NMI handlers to a new
vector table location if vector table relocation is
required

3) The Vector Table Offset register should also be
set up to get the vector table ready (optional)

21

Procedure for setting up an interrupt

4) Set up the interrupt vector for the interrupt

— Since the vector table could have been relocated,
we might need to read the Vector Table Offset
register, then calculate the correct memory
location for your interrupt handler

— This step might not be needed if the vector is
hardcoded in ROM

5) Set up the priority level for the interrupt
6) Enable the interrupt

Simplified procedure for setting up an
interrupt

 If the application is stored in ROM and there is no
need to change the exception handlers, we can have
the whole vector table coded in the beginning of
ROM in the Code region (0x00000000)
* This way, the vector table offset will always be 0 and
the interrupt vector is already in ROM
* The only steps required to set up an interrupt are:
1) Set up the priority group, if needed
2) Set up the priority of the interrupt
3) Enable the interrupt

22

#include "LPC17xx.h"

.
ot v Example 1: Blink LED
{
// (1) Timer 0 configuration (see page 490 of user manual)
LPC_SC->PCONP |=1 << 1; // Power up Timer O (see page 63 of user manual)
LPC_SC->PCLKSELO |=1 << 2; // Clock for timer = CCLK, i.e., CPU Clock (see page 56 of user manual)
LPC_TIMO->MRO = 1 << 23; // Give a value suitable for the LED blinking
// frequency based on the clock frequency (see page 492 and 496 of user manual)
LPC_TIMO->MCR |=1 << 0; // Interrupt on Match 0 compare (see page 492 and 496 of user manual)
LPC_TIMO->MCR |=1 << 1; // Reset timer on Match 0 (see page 492 and 496 of user manual)
LPC_TIMO->TCR |=1 << 1; // Manually Reset Timer 0 (forced); (see page 492 and 494 of user manual)
LPC_TIMO->TCR &= ~(1 << 1); // Stop resetting the timer (see page 492 and 494 of user manual)
// (2) Enable timer interrupt; TIMERO_IRQn is 1, see Ipc17xx.h and page 73 of user manual
NVIC_EnablelRQ(TIMERO_IRQn); // see core_cm3.h header file

LPC_TIMO->TCR |=1<< 0; // Start timer (see page 492 and 494 of user manual)
LPC_SC->PCONP |=(1<<15);// Power up GPIO (see lab2)
LPC_GPIO1->FIODIR |=1 << 29; // Put P1.29 into output mode. LED is connected to P1.29

while (1) // Why do we need this?

{
// do nothing
}

return O;

Example 1: Blink LED

// Here, we describe what should be done when the interrupt on Timer 0 is handled;
// We do that by writing this function, whose address is “recorded” in the vector table
// from file startup_LPC17xx.s under the name TIMERO_IRQHandler;
void TIMERO_IRQHandler(void)
{
if ((LPC_TIMO->IR & 0x01) == 0x01) // if MRO interrupt
{
LPC_TIMO->IR |= 1 << 0; // Clear MRO interrupt flag (see page 492 and 493 of user manual)
LPC_GPIO1->FIOPIN A= 1 << 29; // Toggle the LED (see labl1)

23

Brief description of Example 1

Set up Timer 0 to run off the CPU Clock (CCLK)
Match O is set to 2”23

Ask Timer 0 to be reset on Match 0 and also an interrupt to
be generated when Match 0 occurs

The timer starts, counts from 0 to 2423. At this point, match
occurs. The timer is reset and the interrupt occurs

Inside the interrupt handler, we check for the source of the
interrupt (Timer O can produce interrupts from many
sources like Mat0, Mat1 etc.) and then toggle the LED

Note: Because the start up code gets the chip running at
100Mhz by default, 1 tick or period of the timer = 1/100Mhz
=10ns. Hence (2723 + 1) ticks = 0.08388609 seconds. You
should see the LED blinking every other 0.083 s.

Outline

Introduction

NVIC and Interrupt Control
Interrupt Pending
Examples

Interrupt Service Routines

24

Interrupt Service Routines (ISRs)

* When an interrupt/exception takes place, a number of
things happen:

1. Stacking (automatic pushing of eight registers’ contents to stack)
- PC, PSR (processor status register), R0—R3, R12, and LR (link register)
2. Vector fetch (reading the exception handler starting address
from the vector table)
3. Exception vector starts to execute. On the entry of the exception
handler, a number of regs are updated:
- stack pointer (SP) to new location
- IPSR (low part of PSR) with new exception number
- program counter (PC) to vector handler
- link register (LR) to special value EXC_RETURN

* Several other registers get updated
* Latency: as short as 12 cycles

Interrupt/Exception Exits

* At the end of the exception handler, an exception exit
(a.k.a. interrupt return in some processors) is required to
restore the system status so that the interrupted program
can resume normal execution

* There are three ways to trigger the interrupt return
sequence; all of them use the special value stored in the
LR in the beginning of the handler:

Instructions that Can be Used for Triggering Exception Return

Return Instruction Description

BX <reg= If the EXC_RETURN value is still in LR, we can use the BX LR instruction to
perform the interrupt return.

POP {PC}, or Very often the value of LR is pushed to the stack after entering the exception

POP{...., PC} handler. We can use the POP instruction, either a single POP or multiple POPs, to

put the EXC_RETURN value to the program counter. This will cause the processor
to perform the interrupt return.

LDR, or LDM It is possible to produce an interrupt return using the LDR instruction with PC as

the destination register.

25

Credits and references

* Joseph Jiu, The Definitive guide to the ARM
Cortex-M3, 2007 (Chapters 7,8,9 and
Appendices C,D)

* LPC17xx User’s Manual (Chapters 6,23)

26

