
1

COEN-4720 Embedded Systems Design
Lecture 9

Real Time Operating Systems (RTOS)
Part 1: Processes/Tasks and Threads

Cristinel Ababei
Dept. of Electrical and Computer Engineering

Marquette University

Overview

• What is an Operating System?

• Processes or Tasks, Scheduling

• Threads

• OS, RTOS

• The Kernel

• Cortex-M3

2

What is an Operating System?

• A software layer between the application
software and the hardware

Application Software

Operating System

Core | Core | Core | Core

External Circuits

Application Software

Operating System

Microcontroller

External Circuits

Application Software

Microcontroller

External Circuits

Software

Hardware

Basic System Complex System Future Systems

What is an Operating System?
• Typical embedded system (ES) solves a problem by

decomposing it into smaller pieces called tasks that
work together in an organized way

• System is called multitasking system and design aspects
include:
– Exchanging/sharing data between tasks
– Synchronizing tasks
– Scheduling tasks

• The piece of software that provides the required
coordination is called an operating system (OS)

• When the control must ensure that task execution
satisfies a set of specified time constraints, the OS is
called a real-time operating system (RTOS)

3

Process or Task
• Embedded program (a static entity) = a collection of

firmware modules
• When a firmware module is executing, it is called a process

or task
• A task is usually implemented in C by writing a function
• A task or process simply identifies a job that is to be done

within an embedded application
• When a process is created, it is allocated a number of

resources by the OS, which may include:
– Process stack
– Memory address space
– Registers (through the CPU)
– A program counter (PC)
– I/O ports, network connections, file descriptors, etc.

• These resources are generally not shared with other
processes

Types of Tasks

• Periodic tasks
– Found in hard real-time applications
– Examples: control, every 10 ms; multimedia, every 22.727us;

• Intermittent tasks
– Found in all types of applications
– Examples: send email every night at 4am; calibrate a sensor on

startup; save all data when power goes down;

• Background tasks
– A soft real-time or non real-time task
– Will be accomplished only if CPU time is available

• Complex tasks
– Found in all types of applications
– Examples: Microsoft Word; Apache web server;

4

Single Process
• Traditional view of computing: focuses on program. One

says that the program (or task within the program) runs on
the computer

• In embedded applications, we change the p.o.v. to that of
microprocessor: CPU is used to execute the firmware. CPU
is just another resource

• The time it takes a task to complete is called execution
time

Status

Stack

Resources

CPU

Firmware
(Address Space)

Data
(Address Space)

Single Process

Multiple Processes
• If another task is added to the system, potential

resource contention problems arise

• This is resolved by carefully managing how the
resources are allocated to each task and by controlling
how long each can retain the resources

• The main resource, CPU, is given to tasks in a time
multiplexed fashion (i.e., time sharing); when done fast
enough, it will appear as if both tasks are using it at the
same time

• The execution time of the program will be extended,
but operation will give the appearance of simultaneous
execution. Such a scheme is called multitasking

5

Multiple Processes

Status

Stack

Resources

CPU

Firmware
(Address Space)

Data
(Address Space)

Process

Status

Stack

Resources

CPU

Firmware
(Address Space)

Data
(Address Space)

Process

Status

Stack

Resources

CPU

Firmware
(Address Space)

Data
(Address Space)

Process

Sequence Diagram

• At any instant in time, only one process is
actively executing; it said to be in run state

• The other processes are in ready waiting state

Task 0 Task 1 Task 2

6

Task Scheduling
• A schedule is set up to specify when, under what

conditions, and for how long each task will be given the
use of the CPU (and other resources)

• The criteria for deciding which task is to run next are
collectively called a scheduling strategy, which
generally falls into three categories:
– Multiprogramming

• each task continues until it performs an operation that requires
waiting for an external event

– Real-Time
• tasks with specified temporal deadlines are guaranteed to

complete before those deadlines expire

– Time sharing
• running task is required to give up the CPU so that another task

may get a turn

Task States

• Primarily 4 states
1. Running or Executing
2. Ready to Run (but not running)
3. Waiting (for something other than the CPU)
4. Inactive

• Transition between states is referred to as context switch
• Only one task can be Running at a time, unless we use a

multicore CPU
• Task waiting for CPU is Ready to Run
• When a task has requested I/O or put itself to sleep, it is

Waiting
• An Inactive task is waiting to be allowed into the schedule

7

Address Space of a Process

• When a process is created by the OS, it is given a
portion of the physical memory in which to work

• The set of addresses delimiting that code and the data
memory, proprietary to each process, is called its
address space

• Processes are segregated
– Supervisor mode
– User mode – limited to a subset of instructions

• A process may create or spawn child processes (each
with its own data address space, data, status, and
stack)

• A process may create multiple threads (each with its
own stack and status information)

Overview

• What is an Operating System?

• Processes or Tasks, Scheduling

• Threads

• OS, RTOS

• The Kernel

• Cortex-M3

8

Threads
• A process or task is characterized by a collection

of resources that are utilized to execute a
program

• The smallest subset of these resources (a copy of
the CPU registers including the PC and a stack)
that is necessary for the execution of the program
is called a thread

• A thread is a unit of computation with code and
context, but no private data

• A thread can be in only one process; a process
without a thread can do nothing!

Single-process single-thread
• The sequential execution of a set of instructions

through a task or process in an embedded application
is called a thread of execution or thread of control

• This model is referred as single-process single-thread

Status

Stack
Resources

CPU

Firmware
(Address Space)

Data
(Address Space)

Thread

9

Multiple Threads
• During partitioning and functional decomposition of

the function intended to be performed by an ES 
identify which actions would benefit from parallel
execution
– For example, allocate a subjob for each type of I/O

• Each of the subjobs has its own thread of execution
– Such a system is called a single-process multithread design

• Threads are not independent of each other (unlike
processes or tasks)
– Threads can access any address within the process,

including other threads’ stacks

• An OS that supports tasks with multiple threads is
called a multithreaded operating system

Single-Process Multiple-Threads

Status

Stack Resources

CPU

Firmware
(Address Space)

Data
(Address Space)

Thread

Status

Stack

Thread

Status

Stack

Thread

• All four categories of multitasking operating system:
– Single process single thread
– Multiprocess single thread
– Single process multiple threads
– Multiprocess multiple threads

10

• At the minimum, a process or task
needs the following:
1. The code or firmware, the

instructions
• These are in the memory and have

addresses

2. The data that the code is
manipulating
• The data starts in the memory and may

be moved to registers. The data has
addresses

3. CPU and associated physical
registers

4. A stack
5. Status information

Processes (tasks) vs. Threads

Proprietary to
each Thread

Shared among
member Threads

Example: complete software system
with two processes

Operating System:
- Scheduler
- Memory MGT
- I/O Drivers

Process 1

Threads

Process 2

Threads

Software System

11

Reentrant Code

• Child processes (and their threads) share the
same firmware memory area  two different
threads can execute the same function

• Functions using only local variables are inherently
reentrant

• Functions using global variables, variables local to
the process, variables passed by reference, or
shared resources are not reentrant

• Any shared functions must be designed to be
reentrant

Overview

• What is an Operating System?

• Processes or Tasks, Scheduling

• Threads

• OS, RTOS

• The Kernel

• Cortex-M3

12

The Operating System (OS)

• Embedded Operating System provides an
environment within which firmware pieces,
the tasks that make up the embedded
application, are executed

• An OS provides or supports three functions:

1. Schedule task execution

2. Dispatch a task to run

3. Ensure communication and synchronization
among tasks

The Kernel

• Scheduler
– Determines which task will run and when it will do so

• Dispatcher
– Performs the necessary operations to start the task

• Intertask or interprocess communication
– Mechanism for exchanging data and information

between tasks and processes on the same machines
or different ones

• The Kernel is the smallest portion of the OS that
provides these functions

13

Services

• The above functions are captured in the following
types of services:
– Process or task management

• Creation and deletion of user and system processes

– Memory management
• Includes tracking and control of which tasks are loaded into

memory, monitoring memory, administer dynamic mem

– I/O System management
• Interaction with devices done through a special piece of software

called a device driver
• The internal side of that software is called a common calling

interface (an application programmer's interface, API)

– File system management
– System protection
– Networking
– Command interpretation

The Real-Time Operating System (RTOS)

• Primarily an operating system, which in addition
ensures that (rigid) time constraints can be met

• Commonly found in embedded applications

• Key characteristic of an RTOS is that it has
deterministic behavior = given the same state
and the same state of inputs, the next state (and
associated outputs) will be the same each time
the control algorithm utilized by the system is
executed

14

Hard vs. Soft Real Time
• Real time

– A software system with specific speed or response time
requirements

• Soft real time
– Critical tasks have priority over other tasks and retain that

priority until complete

– If performance is not met, performance is considered low

• Hard real time
– System delays are known or at least bound

– If deadlines are not met, the system has failed

• Super hard real time
– Mostly periodic tasks: OS system tick, task compute times,

and deadlines are very short

Architecture of Operating System

Microprocessor hardware
and

Hardware resources

(Embedded)
Application
Command Interface
System I/O
System and User
Memory Management
Intertask
Communication
CPU and Resource
Scheduling/Dispatching
Thread
Management

15

Architecture of Operating System

• Organized like the onion model

– The hierarchy is designed such that each layer
uses functions/operations and services of lower
layers  increased modularity

• In some architectures, upper layers have
access to lower layers through system calls
and hardware instructions

Process or Task Control Block (PCB or TCB)

• An RTOS “orchestrates” the behavior of an
application by executing each of the tasks that
comprise the design according to a specified
schedule

• Each task or process is represented by a task or
process control block (TCB)

• A TCB is a data structure in the operating system
kernel containing the information needed to
manage a particular process

• The TCB is "the manifestation of a process in an
operating system”

16

Task Control Block (TCB)
• PCB allocation

– Static: used typically in ES’s
– Dynamic

• A fixed number of TCBs is allocated at system
generation time and placed in dormant
(unused) state

• When a task is initiated, a TCB is created and
the appropriate information is entered

• TCB is placed in Ready state by scheduler
• TCB will be moved to Execute state by

dispatcher
• When task terminates, associated TCB is

returned to a dormant state
• With fixed number of TCBs, no runtime

memory management is necessary

Queue or Job Queue

• When a task enters the system, it will be
placed into a queue called the Entry Queue or
Job Queue

• May be implemented as a linked list or as an
array

17

A Simple Kernel

• For the description of several versions of a
primitive operating system kernel, read Ch. 11
of:

[Book] James K. Peckol, Embedded Systems, A
Contemporary Design Tool, John Wiley & Sons,
Inc., 2007.

Overview

• What is an Operating System?

• Processes or Tasks, Scheduling

• Threads

• OS, RTOS

• The Kernel

• Cortex-M3

18

Examples of Embedded Operating
Systems Supporting Cortex-M3

RL-RTX with uVision
• See lab#9 of this course!
• RL-RTX is one of the components of RL-ARM, the RealView

Real-Time Library (RL-ARM)
• The RTX kernel is a real time operating system (RTOS) that

enables one to create applications that simultaneously
perform multiple functions or tasks (statically created
processes)

• The RTX kernel uses the execution priorities to select the
next task to run (preemptive scheduling). It provides
additional functions or services for inter-task
communication, memory management, and peripheral
management.

• RTX programs are written using standard C constructs and
compiled with the RealView Compiler

• The RTL.h header file defines the RTX functions and
macros that allow you to easily declare tasks and access all
RTOS features.

19

CMSIS –
Cortex Microcontroller Software Interface Standard

• CMSIS is a vendor-independent hardware
abstraction layer (HAL) for the Cortex-M
processor series

• CMSIS enables consistent and simple software
interfaces to the processor and the peripherals,
simplifying software re-use, reducing the learning
curve for new microcontroller developers and
reducing the time to market for new devices

• Standardizing the software interfaces across all
Cortex-M silicon vendor products  significant
cost reductions in software development

CMSIS
• Hardware Abstraction Layer (HAL) for Cortex-M processor

registers
– NVIC, MPU

• Standardized system exception names. For example:
– void SVC_Handler()
– void UART0_IRQHandler()

• Standardized method of header file organization
• Common method for system initialization

– SystemInit()

• Standardized intrinsic functions. For example:
– void __disable_irq(void)
– void __enable_irq(void)

• Common access functions for communication
• Standardized way for embedded software to determine

system clock frequency
– SystemFrequency variable is defined in device driver code

20

CMSIS Architecture

CMSIS Files

21

External Interrupt Programming

• IRQn is defined in <device.h> file (i.e., LPC17xx.h)

• A set of functions
– void NVIC_EnableIRQ(IRQn_Type IRQn)

– void NVIC_DisableIRQ(IRQn_Type IRQn)

– void NVIC_SetPriority(IRQn_Type IRQn,

int32_t priority)

– uint32_t NVIC_GetPriority(IRQn_Type IRQn)

– void NVIC_SetPendingIRQ(IRQn_Type IRQn)

– void NVIC_ClearPendingIRQ(IRQn_Type IRQn)

– IRQn_Type NVIC_GetPendingIRQ(IRQn_Type

IRQn)

Example

22

Credits, References

• Chapters 11,12 of: James K. Peckol, Embedded Systems, A
Contemporary Design Tool, John Wiley & Sons, Inc., 2007.

• Chapters 3,4 of: Jonathan W. Valvano, Real-Time Operating
Systems for ARM Cortex-M Microcontrollers, 2012.

• Lecture Notes at UWash (Chapter 5);
http://abstract.cs.washington.edu/~shwetak/classes/ee472/

http://abstract.cs.washington.edu/~shwetak/classes/ee472/

