
1

COEN-4720 Embedded Systems Design
Lecture 14

System modeling
Models of computation
Specification languages

UML

1

Cristinel Ababei
Dept. of Electrical and Computer Engr., Marquette University

• System Modeling

2

2

3

Introduction

• Describing embedded system behavior
– Can be extremely difficult

• Complexity increasing with increasing IC capacity
– Past: washing machines, small games, etc.

» Hundreds of lines of code

– Today: TV set-top boxes, Cell phone, etc.

» Millions of lines of code

• Desired behavior often not fully understood in beginning
– Many implementation bugs due to description mistakes/omissions

– English (or other natural language) common starting
point

• Precise description difficult to impossible

4

• Foundations of science and engineering
• Key aspect: models

– Concrete representation of knowledge and ideas about a
system being developed - specification

– Model deliberately modifies or omits details (abstraction)
but concretely represents certain properties to be
analyzed, understood and verified

– One of the few tools for dealing with complexity
– Formal description of selected properties of a system or

subsystem
– A model consists of data and associated methods

• Synthesis
– Linking adjacent levels of abstraction (refinement)
– Stepwise adding of structural information

Models, Levels of abstraction

3

5

Models and Languages
• How can we (precisely) capture behavior?

– We may think of languages (C, C++), but model of computation (MoC) is key

• Models of computation can be described as:
– They define components (e.g. procedures, processes, functions, FSMs)

– They define communication protocols (e.g. asynchronous message passing, rendez-
vous based communication)

– They possibly also define what components know about each other (e.g. sharing
info via global variables)

• Common models of computation:
– Communicating finite state machines – Collections of FSMs

• Used by StateCharts, StateFlow and SDL

– Discrete event model – Events carrying a totally ordered time-stamp
• Used by VHDL, Verilog, Simulink

– Differential equations

– Asynchronous message passing – Processes communicate through channels that
can buffer messages

• Variants: Dataflow program, Synchronous dataflow (SDF)

– Synchronous message passing – Processes communicate in atomic, instantaneous
actions called rendez-vous

Models vs. Specification Languages

6

• Languages capture models. One can see languages as “incarnation” of models.

• Variety of languages can capture one model. One language can capture variety
of models.
– E.g., sequential program model C,C++, Java

– E.g., C++ → sequential program model, object-oriented model, state machine model

• Certain languages better at capturing certain computation models.

• Different applications may require the use of different models.

• Some languages allow a mix of models.

• Distinction between model and language is sometimes blurry (e.g. StateCharts
are viewed as model and graphical language; Petri Nets).

• Specification languages facilitate – in a textual or visual/graphical way –
description/capture of system behavior via models of computation.

Models

Languages

Recipe

SpanishEnglish Japanese

Poetry Story Sequent.
program

C++C Java

State
machine

Data-
flow

Recipes vs. English Sequential programs vs. C

4

7

Communication/

local computations

Shared

memory

Message passing

Synchronous | Asynchronous

Undefined

components

Plain text, use cases

| (Message) sequence charts

Communicating finite

state machines

StateCharts Specification and

Description

Lang. (SDL)

Data flow (Not useful) Kahn networks,

SDF

Petri nets C/E nets, P/T nets, …

Discrete event (DE)

model

VHDL*,

Verilog*,

SystemC*, …

Only experimental systems, e.g.

distributed DE in Ptolemy

Imperative (Von-

Neumann) model

C, C++,

Java

C, C++, Java with libraries

CSP, ADA |

Communication

C
o

m
p

u
ta

ti
o

n

8

• Models of Computation

5

Models of Computation
• State-oriented models

– State Transition Diagrams (STD)/ Finite State Machines (FSM)

– Petri Nets (PN)

• Activity oriented models
– Data flow graphs (DFG)

• Process-based models

• Kahn Process Networks (KPN)

• Heterogeneous models
– Synchronous dataflows (SDF)

• For details on each of the above, see details at:
– http://dejazzer.com/ece777/ECE777_3_system_modeling.pptx

9

10

State Transition Diagrams (STD)/
Finite State Machine (FSM)

• Help understand the behavioral aspect of the
system.

• Simple directed graphs with nodes denoting
states & arrows (labeled with triggers &
conditions) denoting transitions.

• State: Represents a combination of different
input values for a particular moment of time.

• Transitions: Change of state depending on the
input received.

http://dejazzer.com/ece777/ECE777_3_system_modeling.pptx

6

11

Finite State Machine

• FSM = (Inputs, Outputs, States, InitialState,
NextState)

• Often suitable for controllers, protocols etc.

• Rarely suitable for Memory and Datapaths

• Easy to use with powerful algorithms for
synthesis and verification

12

Example: Vending machine

Return
Money

Deliver
Soda,
Return
Change

Idle/Start
State

Display
Amount

Display
Amount
Needed

Money
Input

Money not
enough

Not enough
Money

Enough
Money

Cancel
Cancel

Fake
Money

Power On

Power Off Back to Idle

7

13

Example FSM

• Informal specification:
If driver turns on the key and does not fasten
seat belt within 5 seconds then sound the
alarm for 5 seconds or until driver fastens the
seat belt or turns off the key

• Formal representation:
Inputs = {KEY_ON, KEY_OFF,
BELT_ON, BELT_OFF, 5_SECONDS_UP,
10_SECONDS_UP}

Outputs = {START_TIMER,
ALARM_ON, ALARM_OFF}

States = {Off, Wait, Alarm}

Initial State = off

NextState: CurrentState, Inputs
-> NextState

e.g. NextState(WAIT, {KEY_OFF})
= OFF

Outs: CurrentState, Inputs ->
Outputs

e.g. Outs(OFF, {KEY_ON}) =
START_TIMER

14

Limitations

• Scalability - Number of states & transitions
increase exponentially as the system
complexity increases

• No concurrency support

• Have an unstructured, unrealistic, and chaotic
state diagram

• To address these problems Harel proposed
StateCharts
– Extension of State Transition Diagram/Finite State

Machines

8

• Specification Languages

15

16

Specification Languages
• Harel’s StateCharts
• UML Statecharts
• Statemate
• SDL
• SystemC
• SpecC
• VHDL, Verilog, SystemVerilog
• Simulink
• C, C++, Java
• For details on each of the above, see details at:

– http://dejazzer.com/ece777/ECE777_4_specification.pptx

http://dejazzer.com/ece777/ECE777_4_specification.pptx

9

Specification language requirements
• Hierarchy

– Behavioral and structural

• Compositional behavior
– Must be “easy” to derive behavior from behavior of subsystems

• Timing behavior
• State-oriented behavior

– Classical automata models are insufficient
– Required for reactive systems

• Event-handling
– External (caused by the environment) or internal events (caused by the

system)

• No obstacles to the generation of efficient implementations
• Support for the design of dependable systems

– Unambiguous semantics and capable of describing security and safety
requirements

• Exception-oriented behavior
– Not acceptable to describe exceptions for every state

17

• Concurrency

• Synchronization and communication
– Concurrent actions have to be able to communicate

• Verifiability

• Presence of programming elements
– Programming languages have proven to be convenient for

the expression of computations

– Classical state diagrams do not meet the requirement

• Executability
– The possibility to execute a specification is a way for

checking it

• Support for the design of large systems
– Software technologies has found object orientation

mechanism for designing large systems
18

10

• Domain-specific support
– Language feature dedicated to control/data-dominated or

centralized/distributed applications

• Readability
– Specification must be readable by the human being

• Portability and flexibility
– Small changes of the system’s features should require small

changes to the specification

• Non-functional properties
– Fault tolerance, size, expected lifetime, power consumption,

electromagnetic compatibility, extendibility etc.

• Termination
• Support for non-standard IO-devices
• Appropriate model of computation
• It is obvious there will be no formal language meeting all

these requirements. Compromises will have to be made.
19

A note on Timing: Problems with classical CS theory
and von Neumann computing

• “The lack of timing in the core abstraction is a flaw, from the
perspective of embedded software, …”
– Ed Lee, Absolutely Positively on Time, IEEE Computer, July 2005.

• “Timing is everything”
– Frank Vahid, WESE 2008

• Even the core … notion of “computable” is at odds with the
requirements of embedded software
– In this notion, useful computation terminates
– In embedded software, termination is failure
– Subcomputations must terminate with predictable timing

• “What is needed is nearly a reinvention of computer science”
– Ed Lee, Absolutely Positively on Time, IEEE Computer, July 2005.

20

11

General language characteristics
• Synchronous and asynchronous languages

– Languages based CFSMs and sets of processes (ADA,
Java) are non-deterministic, since the order in which
executable processes are executed are not specified

– Synchronous languages avoid non-determinism: Esterel,
Lustre, StateCharts

• Process concepts
– Number of processes can be either static (e.g.

StateCharts) or dynamic
– Processes can be statically nested or declared at the

same level
– Techniques for process creation exist
– Concurrent process model

• http://esd.cs.ucr.edu/slides/ch8_011702.ppt
• http://theory.stanford.edu/~rvg/process.html

21

General language characteristics

• Synchronization and communication
– Shared memory – all variables can be accessed from all

processes
– Message passing – messages are sent/received just like

mails over the Internet. Generally slower.

• Specifying timing. Four requirements:
– Access to a timer – a means to measure elapsed time
– Means for delaying a process (e.g. “wait for” in VHDL)
– Possibility to specify timeouts (e.g. StateCharts allows

timeouts)
– Methods for specifying deadlines and schedules

• Using non-standard IO/devices
– E.g. ADA allows variables to be mapped to specific memory

addresses

22

http://esd.cs.ucr.edu/slides/ch8_011702.ppt
http://theory.stanford.edu/~rvg/process.html

12

23

Overview

• Harel’s StateCharts
• UML Statecharts
• Statemate
• SDL
• SystemC
• SpecC
• VHDL, Verilog, SystemVerilog
• Simulink
• C, C++, Java

Harel Statecharts
• Introduced by David Harel in 1987 - provide compact and

expressive visual formalisms for reactive systems.
• What are Statecharts?

– Viewed as both model and graphical specification language.
– Describe communicating finite state machines - Visual formalism for

describing states & transitions in modular fashion.

• What is the purpose of using Statecharts?
– To suppress and organize detail.
– Best if graphical. The clarity they provide can be lost if they are

represented in tabular form.
– Allows the super states to have history. History is helpful for back-

up, if system fails.

• The Harel statechart is equivalent to a state diagram but it
improves the readability of the resulting diagram.

• It can be used to describe many systems, from computer
programs to business processes.

24

13

Harel Statecharts
• They are directed graphs and used to describe the

behaviour of an object. The vertices are the states an
object can reach. Edges are changes of the state, the so-
called transitions.

• Statecharts based on a generalization of the concepts of
FSMs. It’s considered that the computing power of
statecharts is the same as that of Finite State Machines.

• Recent paper argues that the computation power of
statecharts is far beyond that of Finite Automata and that
Interaction Machines are the most accurate theoretical
models for statecharts

• Used as a modeling tool and adopted by Unified Modeling
Language (UML) as an important technique to model the
dynamic behavior of systems.

25

26

State-Transition Diagram vs. Statechart

S

T

U

E

G/A

F

F
G/A E/B

State-transition diagram

G/A E/ B

S

T

U

E

F

G/A

Statechart

F

• The statechart reduces the number of transitions when compared to STD.
• G/A represents that for event G action A takes place.
• S & T are combined together into a super-state F (OR- property of the

statechart)

14

State-Transition Diagram vs. Statechart

27

Property State-transition

Diagram

Statechart

Super-states Absent Present

History Absent Present

Concurrency Absent Present

Broadcast

Communication

Absent Present

Synchronization &

Timing Info

Absent Present

Hierarchical

Structure

Absent Present

Statecharts development

• 2 Types of statechart development

– Harel Statecharts

• Developed by David Harel.

• First developed for function-oriented systems.

• Later extended for OO systems with few changes.

– UML Statecharts

• Developed by Object Management Group (OMG).

• Extended the properties of Harel statecharts with some
new features.

28

15

Example: Harel Statechart

• Harel Statechart showing properties of orthogonality, and-decomposition,
History, Clustering, Refinement, Forking issues.

• E/A -Represents that for event E, action A will take place.

• Dashed line represents the AND-product (orthogonality) of states R & T.

• F[in(Y)]: The function in [] (i.e. in(Y)) represents the guard condition.
29

U

V

X

Y

W

A

H

G K

E

J

F[in (Y)]E

R T E1/ A1

E2/A2

Example: Equivalent STD

• If there are n states in one side of the dashed line in a super-state and m states
in the other side, then the total number of maximum states in the equivalent
state-transition diagram will be the product m*n.

30

U_X

V_Y

U_Y

V_W

U_W

V_X

A

A

G

G

J

E

K

F
E

K

E

E

16

1. Decomposition: OR-State, AND-state

• A superstate may be decomposed into any number of OR-states.
When the object is in the superstate, it must be in exactly one of
its OR-substates.

• S is decomposed into X & Y. At any given time S will be either in X
or Y but not both.

• The default start state in S is X. t1 & t0 are the events depending
on which the S will be in either X or Y

31

X

Y

t1 t0

S

OR State

• A superstate may be decomposed into any number of
AND-states. When the object is in the superstate, it must
be in every active AND-substates (shown with dashed
lines).

• C is the superstate formed by the AND product of A & B.

• X & R are the default initial states of A & B respectively.
When the system enters C it will be present in both X & R
at the concurrent time.

Z

S

R

Y

X

t6t0 t1

t3A

t1

AND State

B

C

2. Clustering & Refinement
• Clustering is a bottom-up concept & refinement is a top-down one; both

give rise to the OR-relationship between a state’s sub-states.
• Reduces the number of transitions in a statechart.
• Superstate R & T can be extended if needed in order to view the sub-

states and their internal transitions, which is called refinement.

32

S

T

U
U

G/A

E

F

G/A E/B

F

E

F

G/A

S

T

G/A E/B

Simple State Diagram Clustering of States

A

• States S & T are clustered into a single super-state A.
• Expanding A & showing its sub-states is refinement.

17

3. History

• History (H), in a statechart gives the most
recently visited state of the super-state that it is
entering.

• Shallow History (H): Represents the most
recently entered state at the same level.

• Deep History (H*): Represents entering the
most recently visited state irrespective of how
deep the state is.

• History is “forgotten” if dead has been entered
in the meantime.

33

• H – History chooses between G & F. H remembers between A,B,C,D,E.

• H remembers the last sub-state (both history and sub-states should be at
the same level) the system left.

• H* - System will enter the most recently visited state (A-E)

• H* remembers the last sub-state the system left, irrespective of how
deep it may be when considered with the history state.

• B & C are the default initial states for G & F.

34

H/H*

A

B

C

E

D

G

K

F

18

4. Orthogonality
5. Overlapping states

35

• Orthogonality
– Reduces the number of states.
– Viewed as the AND product of two states (consisting of sub-

states) which gives a certain kind of synchronization.
– Generalization of the usual product of automata with some

dependence between components (like common events or
conditions).

• Overlapping states
– A state which is present in both the super-states.
– Overlapping states removes redundancy.
– Turns XORs state machine into ORs.
– Causes semantic problems especially when the overlapping

involves orthogonal components.

• Sub-state “C” is present in both A & D, i.e. the
relation between A & D is OR.

• Too much of overlapping should be avoided as
it leads to unnecessary burden & complexity.

36

B

A

C
E

F

D

a

b

19

6. Delays & Timeouts (event, number)

• Represents the event that occurs precisely when
the specified number of time units has elapsed
from the occurrence of the specified event.

• Has lower bound and upper bound attached to
each of the timeouts and events.

• Lower Bound: If events are to cause exits, events
do not apply in the state until the lower bound is
reached.

• Upper Bound: The event has to take place in that
time.

37

7. Conditions & Selection Entrances (C & S)

• Condition (C): Upon the entrance of the super-
state a condition is checked and the transition
is made to one of the sub-states in the super-
state.

• Selection (S): The transition is made
depending on a generic value of the input
rather than the condition.

38

20

Conditions & Selection Entrances (C & S)

• C represents the conditions.
• The state entered depends on whether C

evaluates to P, Q or R and states reached will
be Z, X, Y respectively.

• On entering the super-state, which state
(whether X,Y,Z) to enter depends on the what
the condition C evaluates to.

39

a
Y

X Z

C
R

PQ

• The decision to enter one of the
three states, A, B, C depends on
what will be the generic value of S.

A

C

B

S

Data Entered

Reset
Execute

Set_up

More properties

40

8. Harel statechart is a mix of Mealy and Moore
state machines and flowchart.

9. Fork & merge (see figure).

10. Broadcast feature in statecharts.

A

B C

D E

F

E1/A1

E2/A2

21

Shortcomings of Harel Statecharts
• Semantics: How to represent?

– No specified approach.
– Many papers published, each having one flaw or other, none giving the

complete formal semantics.
– Harel introduced STATEMATE CASE tool to deal with this but that paper too

had one debatable topic.

• Notion of time
– Assumption: Transitions take zero time (not possible for RT systems).
– No way to tell whether how long the system can stay in a particular state.

• Determinism
– What should be done in case an event may result in multiple transitions

each leading to a different state?
– Which one of the transitions must have precedence over others?
– Leads to non-deterministic situation.

• Race condition: What will be the resulting value?
– Non-determinism of statechart may result in race condition for the system.
– Multiple transitions on multiple states may occur for the same event, and

may attempt to modify the same value.

41

Shortcomings: non-determinism
• Priority should be given to transitions so as to eliminate the non-determinism.

• On entry into the superstate S, both the sub-states are traversed concurrently.

• When the system exits S, it is not sure what the values of X & Y will be, it
depends on which one of the events triggered first (i.e., if E in S1 is triggered
first then the values of X and Y both will be 1, else X will be assigned to 1 and
the value of Y depends what X was prior to being assigned 1).

• This leads to non-determinism in the system.

42

S11

S12 S22

S21

E/X=1 E/Y=X

S1 S2

S

22

Shortcomings: race condition
• Race Situation: What is the value of X after state “S” is

exited?
• There is race condition in the system. The value of X

depends on which of the events i.e. E in S1 or E in S2
triggered last.

43

S11

S12 S22

S21

E/X=1 E/X=2

S1 S2

S

Shortcomings of Harel Statecharts

• Infinite loops:

– Doesn’t define the property of consistency check in its
model.

– The flaw in the design may lead to infinite loop while the
system is being designed.

• Inconsistency in free transitions:

– Inconsistency when an exit transition leaving a composite
boundary happens to be an unlabelled transition.

• Statecharts do not support any dynamic semantics
to cover their precise behavioral aspects.

44

23

Conclusion

• StateCharts’ main application domain is that of
local, control-dominated systems.

• Key advantage is the property of nesting
hierarchies.

• Examples of tools based on StateCharts:
StateMate (IBM), StateFlow (MathWorks),
BetterState (WindRiver, Intel). Many can
translate StateCharts into equivalent C or
VHDL, from which hardware can be
synthesized.

45

Further info

• http://ls12-www.cs.tu-
dortmund.de/daes/media/documents/staff/marwedel/es-
book/slides10/es-marw-2.02-fsm.ppt

• http://www-
inst.eecs.berkeley.edu/~ee249/fa08/Lectures/mocFSM-
CFSM.pdf

46

http://ls12-www.cs.tu-dortmund.de/daes/media/documents/staff/marwedel/es-book/slides10/es-marw-2.02-fsm.ppt
http://chess.eecs.berkeley.edu/design/2010/mocFSM-CFSM.pdf

24

Overview

• Harel’s StateCharts
• UML Statecharts
• Statemate
• SDL
• SystemC
• SpecC
• VHDL, Verilog, SystemVerilog
• Simulink
• C, C++, Java

47

Basic UML Statechart Diagram

48

25

UML (unified modeling language)
statecharts

• Harel statecharts are the basis for UML
statecharts.

• Harel statecharts were mainly designed for
function-oriented structured analysis design
techniques, later extended for OO technology.

• Statecharts were introduced in UML with
modifications in the semantics and some in-
build terminology.

49

Example

• UML statechart showing properties of orthogoanlity, and-
decomposition, History, Clustering, Refinement, Forking
issues, pseudostates, Synch pseudostates.

50

G

C1

D2D1

C2

B

A

D3

E1/A1

E2/A2

F

F

26

UML Statecharts: Properties
1. Object Behavior:

– An object can be in different states depending on the present value of the
variables and data types it has.

– The object behavior can be represented in three different types:

1. Simple behavior: Doesn’t depend on history of the previous inputs or
services. E.g. simple mathematical functions.

2. State behavior: The entire system or space is divided into states.

3. Continuous behavior: Depends on object’s time history.

2. Delays & Timeouts:

– Statechart transitions are modeled to take insignificant amount of time.

– A guard and a trigger represent a transition. They are of two types of
triggers:
• Named Trigger: Results in transition.

• Null transition: Evaluated only once upon entrance to the source state.

– Assumption: Evaluation of conditions, guards and triggers takes zero
amount of time.

– Timeouts are there in UML statecharts.
51

UML Statecharts: Properties
3. UML statecharts define 4 types of events:

– Signal: Event due to extended asynchronous process.
– Call: Execution of an operation within the object.
– Change: Change in value of an attribute.
– Time: Lapse of a time-interval.

4. Message passing between different diagrams
5. Priority given to transitions with the innermost source state.

52

A

B

B1

Enter: f(a)
Exit: g()

Enter: x()
Exit: y(a, b)

First y(a, b)
then g()

First f(a) is
then x()

Execute from outermost first – for entry
Execute from innermost first – for exit

27

UML Statecharts: Properties
6. Actions and Activities:

– Activities: Performed as long as the state is active, interpreted and terminated by the receipt of an
incoming event.

– Actions: Usually short, non-interruptible behavior while activities longer, interruptible behavior.

7. Fork & Join in UML.
8. Two different kinds of state machine formalisms:

– Statechart Diagrams: Used when state transitions takes place when an event of interest occurs.
– Activity diagrams: Changes state primarily upon completion of the activities executed.

9. UML statecharts have some dependence on abstract state machines along with Mealy’s.
Harel statecharts are mainly based on Moore’s

10. Events can carry parameter, which Harel’s statechart doesn’t support.
11. Conditional guards.
12. Guards & explicit state machines.

53

Off On

OnButtonPushed [Guard Condition] /
Action:= Start();ControlPanel.UpdateState(Start)

Message: OnButtonPushed
Guard: Guard Condition
Action: Start() [Internal Action]
ControlPanel.UpdateState(Start) [External Action]

UML Statecharts: Properties
13. Pseudostates.

– A kind of state vertex in the UML metamodel that represent transient points in transition paths
within a state machine.

– Vertical bars indicate where concurrent behavior begins or ends (called pseudostates)

– E.g. Start state, Terminal state, Connectors etc.

14. Synch Pseudostate

– Allows a special kind of guard in which a “latch” remembers that a specific transition has occurred

– Similar to Petri net “place” with explicitly indicated capacity

– Must synchronize across AND-States

54

G

C1

D2D1

C2

B

A

D3

E1/A1

E2/A2

F

FC

Synch Pseudostate

Pseudostates

28

Symbols

55

Join

Fork

Synch

Terminal

Branch

Pseudostate
Name

Symbol

C OR

T OR

* OR n

Stub

Merge Junction

Choice Point

Junction

Initial/Default

Deep History

Shallow History

Pseudostate
Name

Symbol

H

H*

Shortcomings of UML statecharts
1. No discussion of extension mechanisms of statechart

diagrams.
2. Do not support overlapped states:

– But the same functionality can be achieved without the use of overlapped
states, though overhead involved to design it increases.

3. Boundary crossing violates encapsulation:
– Boundary crossing (supported by UML) is the practice, which violates the

encapsulation of hierarchical states machines.

4. Non-determinism:
– UML’s reversed priority rule for resolving inter-level concurrency conflicts

introduces non-determinism in the outer state machine.

5. Representation of states:
– UML statecharts can properly represent only one distinct accept state in a

sub-state machine.

6. Exit Paths:
– In UML all the exit paths are subsequently merged in the single completion

transition leaving the composite state boundary.
56

29

Example: Mobile Phone System

57

Dial

Call

Talk

MSC Server
Idle

Assigning

Ready
Ready

RegularCall

Idle

Receive Call
[Regular Call]

BS Server ActiveBS Server
Idle

Start

Shut Down
Receive a call
[Correct #]

MSC Server ActiveStart

Shut Down

Hang Up

Power ON [Simulation]

[MSC Server Shutdown]

[Wrong #]
Send Frame

Receive
IP & Port
successfully

Dial Digit (n)[Valid]

Dial Digit (n)[Incomplete]

[BS Server Shutdown or in saturation of capacity]

Active

Send a Call

Connect

Comparison

58

Property Harel Statechart UML Statechart

Nesting & Orthogonal Regions Supported Supported

Single transition represents the same

event from different sub-states

Supported Supported

Broadcast events. Supported Supported

History Supported Supported

Sub-machines Supported Supported

Overlapping states Supported Absent

Pseudostates Absent, but connectors perform

same operations

Supported

Fork & Join methodology Fork and Merge Implemented using

pseudostates.

Event carrying feature Absent Supported

Free transitions Inconsistency when an exit

transition leaving composite

boundary

Prevented in UML by defining

a free boundary exit transition

Synchronization Limited # of ways: IS_IN

parameter, Broadcast

Communication

of ways: Broadcast

Communication, Fork, Join,

Propagated events, IS_IN

operator, synch pseudostate

Event Handling Outermost state machine Innermost state machine.

30

Conclusion

• MoC: FSM + shared memory

• Use of Harel statecharts or UML statecharts
depends on the requirements for the design
of the system.

• Systems which have synchronization as their
main issue can be well-designed if they used
UML statecharts.

• UML statecharts are widely used due to
popularity, & number of tools in market that
support UML statecharts.

59

Further Info
• http://en.wikipedia.org/wiki/UML_state_machine

• http://www.uml.org

• Practical UML - A Hands-On Introduction for Developers:

– http://edn.embarcadero.com/article/31863

• Miro Samek (2008). Practical UML Statecharts in C/C++,
Second Edition: Event-Driven Programming for
Embedded Systems. Newnes. ISBN 978-0-7506-8706-5.

60

http://www.uml.org/
http://www.uml.org/
http://edn.embarcadero.com/article/31863

