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Introduction

• Describing embedded system behavior
– Can be extremely difficult

• Complexity increasing with increasing IC capacity
– Past: washing machines, small games, etc.

» Hundreds of lines of code

– Today: TV set-top boxes, Cell phone, etc.

» Millions of lines of code

• Desired behavior often not fully understood in beginning
– Many implementation bugs due to description mistakes/omissions

– English (or other natural language) common starting 
point

• Precise description difficult to impossible
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• Foundations of science and engineering
• Key aspect: models

– Concrete representation of knowledge and ideas about a 
system being developed - specification

– Model deliberately modifies or omits details (abstraction) 
but concretely represents certain properties to be 
analyzed, understood and verified

– One of the few tools for dealing with complexity
– Formal description of selected properties of a system or 

subsystem
– A model consists of data and associated methods

• Synthesis
– Linking adjacent levels of abstraction (refinement)
– Stepwise adding of structural information

Models, Levels of abstraction



3

5

Models and Languages
• How can we (precisely) capture behavior?

– We may think of languages (C, C++), but model of computation (MoC) is key

• Models of computation can be described as:
– They define components (e.g. procedures, processes, functions, FSMs)

– They define communication protocols (e.g. asynchronous message passing, rendez-
vous based communication)

– They possibly also define what components know about each other (e.g. sharing 
info via global variables)

• Common models of computation:
– Communicating finite state machines – Collections of FSMs

• Used by StateCharts, StateFlow and SDL

– Discrete event model – Events carrying a totally ordered time-stamp
• Used by VHDL, Verilog, Simulink

– Differential equations

– Asynchronous message passing – Processes communicate through channels that 
can buffer messages

• Variants: Dataflow program, Synchronous dataflow (SDF)

– Synchronous message passing – Processes communicate in atomic, instantaneous 
actions called rendez-vous

Models vs. Specification Languages
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• Languages capture models. One can see languages as “incarnation” of models.

• Variety of languages can capture one model. One language can capture variety 
of models.
– E.g., sequential program model  C,C++, Java 

– E.g., C++ → sequential program model, object-oriented model, state machine model

• Certain languages better at capturing certain computation models.

• Different applications may require the use of different models.

• Some languages allow a mix of models.

• Distinction between model and language is sometimes blurry (e.g. StateCharts
are viewed as model and graphical language; Petri Nets).

• Specification languages facilitate – in a textual or visual/graphical way –
description/capture of system behavior via models of computation.

Models

Languages

Recipe

SpanishEnglish Japanese

Poetry Story Sequent.
program

C++C Java

State
machine

Data-
flow

Recipes vs. English Sequential programs vs. C
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• Models of Computation
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Models of Computation
• State-oriented models

– State Transition Diagrams (STD)/ Finite State Machines (FSM)

– Petri Nets (PN)

• Activity oriented models
– Data flow graphs (DFG)

• Process-based models

• Kahn Process Networks (KPN)

• Heterogeneous models
– Synchronous dataflows (SDF)

• For details on each of the above, see details at:
– http://dejazzer.com/ece777/ECE777_3_system_modeling.pptx
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State Transition Diagrams (STD)/
Finite State Machine (FSM)

• Help understand the behavioral aspect of the 
system.

• Simple directed graphs with nodes denoting 
states & arrows (labeled with triggers & 
conditions) denoting transitions.

• State: Represents a combination of different 
input values for a particular moment of time.

• Transitions: Change of state depending on the 
input received.

http://dejazzer.com/ece777/ECE777_3_system_modeling.pptx


6

11

Finite State Machine

• FSM = (Inputs, Outputs, States, InitialState, 
NextState)

• Often suitable for controllers, protocols etc.

• Rarely suitable for Memory and Datapaths

• Easy to use with powerful algorithms for 
synthesis and verification

12

Example: Vending machine

Return
Money

Deliver
Soda, 
Return
Change

Idle/Start
State

Display
Amount

Display
Amount
Needed

Money
Input

Money not
enough

Not enough
Money

Enough
Money

Cancel
Cancel

Fake
Money

Power On

Power Off Back to Idle
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Example FSM

• Informal specification:
If driver turns on the key and does not fasten 
seat belt within 5 seconds then sound the 
alarm for 5 seconds or until driver fastens the 
seat belt or turns off the key

• Formal representation:
Inputs = {KEY_ON, KEY_OFF, 
BELT_ON, BELT_OFF, 5_SECONDS_UP, 
10_SECONDS_UP}

Outputs = {START_TIMER, 
ALARM_ON, ALARM_OFF}

States = {Off, Wait, Alarm}

Initial State = off

NextState: CurrentState, Inputs 
-> NextState

e.g. NextState(WAIT, {KEY_OFF}) 
= OFF

Outs: CurrentState, Inputs -> 
Outputs

e.g. Outs(OFF, {KEY_ON}) = 
START_TIMER

14

Limitations

• Scalability - Number of states & transitions 
increase exponentially as the system 
complexity  increases

• No concurrency support

• Have an unstructured, unrealistic, and chaotic 
state diagram

• To address these problems Harel proposed 
StateCharts
– Extension of State Transition Diagram/Finite State 

Machines
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• Specification Languages
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Specification Languages
• Harel’s StateCharts
• UML Statecharts
• Statemate
• SDL
• SystemC
• SpecC
• VHDL, Verilog, SystemVerilog
• Simulink
• C, C++, Java
• For details on each of the above, see details at:

– http://dejazzer.com/ece777/ECE777_4_specification.pptx

http://dejazzer.com/ece777/ECE777_4_specification.pptx
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Specification language requirements
• Hierarchy

– Behavioral and structural

• Compositional behavior
– Must be “easy” to derive behavior from behavior of subsystems

• Timing behavior
• State-oriented behavior

– Classical automata models are insufficient
– Required for reactive systems

• Event-handling
– External (caused by the environment) or internal events (caused by the 

system)

• No obstacles to the generation of efficient implementations
• Support for the design of dependable systems

– Unambiguous semantics and capable of describing security and safety 
requirements

• Exception-oriented behavior
– Not acceptable to describe exceptions for every state

17

• Concurrency

• Synchronization and communication
– Concurrent  actions have to be able to communicate

• Verifiability

• Presence of programming elements
– Programming languages have proven to be convenient for 

the expression of computations

– Classical state diagrams do not meet the requirement

• Executability
– The possibility to execute a specification is a way for 

checking it

• Support for the design of large systems
– Software technologies has found object orientation 

mechanism for designing large systems
18



10

• Domain-specific support
– Language feature dedicated to control/data-dominated or 

centralized/distributed applications

• Readability
– Specification must be readable by the human being

• Portability and flexibility
– Small changes of the system’s features should require small 

changes to the specification

• Non-functional properties
– Fault tolerance, size, expected lifetime, power consumption, 

electromagnetic compatibility, extendibility etc.

• Termination
• Support for non-standard IO-devices
• Appropriate model of computation
• It is obvious there will be no formal language meeting all 

these requirements. Compromises will have to be made.
19

A note on Timing: Problems with classical CS theory 
and von Neumann computing

• “The lack of timing in the core abstraction is a flaw, from the 
perspective of embedded software, …”
– Ed Lee, Absolutely Positively on Time, IEEE Computer, July 2005.

• “Timing is everything”
– Frank Vahid, WESE 2008

• Even the core … notion of “computable” is at odds with the 
requirements of embedded software
– In this notion, useful computation terminates
– In embedded software, termination is failure
– Subcomputations must terminate with predictable timing

• “What is needed is nearly a reinvention of computer science”
– Ed Lee, Absolutely Positively on Time, IEEE Computer, July 2005.

20
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General language characteristics
• Synchronous and asynchronous languages

– Languages based CFSMs and sets of processes (ADA, 
Java) are non-deterministic, since the order in which 
executable processes are executed are not specified

– Synchronous languages avoid non-determinism: Esterel, 
Lustre, StateCharts

• Process concepts
– Number of processes can be either static (e.g. 

StateCharts) or dynamic
– Processes can be statically nested or declared at the 

same level
– Techniques for process creation exist
– Concurrent process model

• http://esd.cs.ucr.edu/slides/ch8_011702.ppt
• http://theory.stanford.edu/~rvg/process.html
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General language characteristics

• Synchronization and communication
– Shared memory – all variables can be accessed from all 

processes
– Message passing – messages are sent/received just like 

mails over the Internet. Generally slower.

• Specifying timing. Four requirements:
– Access to a timer – a means to measure elapsed time
– Means for delaying a process (e.g. “wait for” in VHDL)
– Possibility to specify timeouts (e.g. StateCharts allows 

timeouts)
– Methods for specifying deadlines and schedules

• Using non-standard IO/devices
– E.g. ADA allows variables to be mapped to specific memory 

addresses

22

http://esd.cs.ucr.edu/slides/ch8_011702.ppt
http://theory.stanford.edu/~rvg/process.html
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Overview

• Harel’s StateCharts
• UML Statecharts
• Statemate
• SDL
• SystemC
• SpecC
• VHDL, Verilog, SystemVerilog
• Simulink
• C, C++, Java

Harel Statecharts
• Introduced by David Harel in 1987 - provide compact and 

expressive visual formalisms for reactive systems.
• What are Statecharts?

– Viewed as both model and graphical specification language.
– Describe communicating finite state machines - Visual formalism for 

describing states & transitions in modular fashion.

• What is the purpose of using Statecharts?
– To suppress and organize detail. 
– Best if graphical. The clarity they provide can be lost if they are 

represented in tabular form. 
– Allows the super states to have history. History is helpful for back-

up, if system fails.

• The Harel statechart is equivalent to a state diagram but it 
improves the readability of the resulting diagram.

• It can be used to describe many systems, from computer 
programs to business processes.

24
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Harel Statecharts
• They are directed graphs and used to describe the 

behaviour of an object. The vertices are the states an 
object can reach. Edges are changes of the state, the so-
called transitions. 

• Statecharts based on a generalization of the concepts of 
FSMs. It’s considered that the computing power of 
statecharts is the same as that of Finite State Machines. 

• Recent paper argues that the computation power of 
statecharts is far beyond that of Finite Automata and that 
Interaction Machines are the most accurate theoretical 
models for statecharts

• Used as a modeling tool and adopted by Unified Modeling 
Language (UML) as an important technique to model the 
dynamic behavior of systems. 

25
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State-Transition Diagram vs. Statechart

S

T

U

E

G/A

F

F
G/A E/B

State-transition diagram

G/A     E/ B

S

T

U

E

F

G/A

Statechart

F

• The statechart reduces the number of transitions when compared to STD.
• G/A represents that for event G action A takes place.
• S & T are combined together into a super-state F (OR- property of the 

statechart)
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State-Transition Diagram vs. Statechart

27

Property State-transition 

Diagram

Statechart

Super-states Absent Present

History Absent Present

Concurrency Absent Present

Broadcast 

Communication

Absent Present

Synchronization & 

Timing Info

Absent Present

Hierarchical 

Structure

Absent Present

Statecharts development

• 2 Types of statechart development

– Harel Statecharts

• Developed by David Harel.

• First developed for function-oriented systems.

• Later extended for OO systems with few changes.

– UML Statecharts

• Developed by Object Management Group (OMG).

• Extended the properties of Harel statecharts with some 
new features.

28
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Example: Harel Statechart

• Harel Statechart showing properties of orthogonality, and-decomposition, 
History, Clustering, Refinement, Forking issues.

• E/A -Represents that for event E, action A will take place.

• Dashed line represents the AND-product (orthogonality) of states R & T.

• F[in(Y)]: The function in [] (i.e. in(Y)) represents the guard condition.
29

U

V

X

Y

W

A

H

G K

E

J

F[ in (Y)]E

R T E1/ A1

E2/A2

Example: Equivalent STD

• If there are n states in one side of the dashed line in a super-state and m states 
in the other side, then the total number of maximum states in the equivalent 
state-transition diagram will be the product m*n.

30

U_X

V_Y

U_Y

V_W

U_W

V_X

A

A

G

G

J

E

K

F
E

K

E

E
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1. Decomposition: OR-State, AND-state

• A superstate may be decomposed into any number of OR-states. 
When the object is in the superstate, it must be in exactly one of 
its OR-substates.

• S is decomposed into X & Y. At any given time S will be either in X 
or Y but not both.

• The default start state in S is X. t1 & t0 are the events depending 
on which the S will be in either X or Y

31

X

Y

t1 t0

S

OR State

• A superstate may be decomposed into any number of 
AND-states. When the object is in the superstate, it must 
be in every active AND-substates (shown with dashed 
lines).

• C is the superstate formed by the AND product of A & B. 

• X & R are the default initial states of A & B respectively. 
When the system enters C it will be present in both X & R 
at the concurrent time.

Z

S

R

Y

X

t6t0 t1

t3A

t1

AND State

B

C

2. Clustering & Refinement
• Clustering is a bottom-up concept & refinement is a top-down one; both 

give rise to the OR-relationship between a state’s sub-states.
• Reduces the number of transitions in a statechart. 
• Superstate R & T can be extended if needed in order to view the sub-

states and their internal transitions, which is called refinement.

32

S

T

U
U

G/A

E

F

G/A E/B

F

E

F

G/A

S

T

G/A E/B

Simple State Diagram Clustering of States

A

• States S & T are clustered into a single super-state A.
• Expanding A & showing its sub-states is refinement.
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3. History

• History (H), in a statechart gives the most 
recently visited state of the super-state that it is 
entering.

• Shallow History (H): Represents the most 
recently entered state at the same level.

• Deep History (H*): Represents entering the 
most recently visited state irrespective of how 
deep the state is.

• History is “forgotten” if dead has been entered 
in the meantime.

33

• H – History chooses between G & F. H remembers between A,B,C,D,E.

• H remembers the last sub-state (both history and sub-states should be at 
the same level) the system left. 

• H* - System will enter the most recently visited state (A-E)

• H* remembers the last sub-state the system left, irrespective of how 
deep it may be when considered with the history state. 

• B & C are the default initial states for G & F.

34

H/H*

A

B

C

E

D

G

K

F
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4. Orthogonality
5. Overlapping states

35

• Orthogonality
– Reduces the number of states.
– Viewed as the AND product of two states (consisting of sub-

states) which gives a certain kind of synchronization.
– Generalization of the usual product of automata with some 

dependence between components (like common events or 
conditions).

• Overlapping states
– A state which is present in both the super-states. 
– Overlapping states removes redundancy.
– Turns XORs state machine into ORs.
– Causes semantic problems especially when the overlapping 

involves orthogonal components.

• Sub-state “C” is present in both A & D, i.e. the 
relation between A & D is OR.

• Too much of overlapping should be avoided as 
it leads to unnecessary burden & complexity.

36

B

A

C
E

F

D

a

b
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6. Delays & Timeouts (event, number)

• Represents the event that occurs precisely when 
the specified number of time units has elapsed 
from the occurrence of the specified event. 

• Has lower bound and upper bound attached to 
each of the timeouts and events.

• Lower Bound: If events are to cause exits, events 
do not apply in the state until the lower bound is 
reached.

• Upper Bound: The event has to take place in that 
time.

37

7. Conditions & Selection Entrances (C & S)

• Condition (C): Upon the entrance of the super-
state a condition is checked and the transition 
is made to one of the sub-states in the super-
state.

• Selection (S): The transition is made 
depending on a generic value of the input 
rather than the condition.

38
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Conditions & Selection Entrances (C & S)

• C represents the conditions.
• The state entered depends on whether C 

evaluates to P, Q or R and states reached will 
be Z, X, Y respectively.

• On entering the super-state, which state 
(whether X,Y,Z) to enter depends on the what 
the condition C evaluates to.

39

a
Y

X Z

C
R

PQ

• The decision to enter one of the 
three states, A, B, C depends on 
what will be the generic value of S.

A

C

B

S

Data Entered

Reset
Execute

Set_up

More properties

40

8. Harel statechart is a mix of Mealy and Moore 
state machines and flowchart.

9. Fork & merge (see figure).

10. Broadcast feature in statecharts.

A

B C

D E

F

E1/A1

E2/A2



21

Shortcomings of Harel Statecharts
• Semantics: How to represent?

– No specified approach.
– Many papers published, each having one flaw or other, none giving the 

complete formal semantics.
– Harel introduced STATEMATE CASE tool to deal with this but that paper too 

had one debatable topic.

• Notion of time
– Assumption: Transitions take zero time (not possible for RT systems).
– No way to tell whether how long the system can stay in a particular state.

• Determinism
– What should be done in case an event may result in multiple transitions 

each leading to a different state?
– Which one of the transitions must have precedence over others?
– Leads to non-deterministic situation.

• Race condition: What will be the resulting value?
– Non-determinism of statechart may result in race condition for the system.
– Multiple transitions on multiple states may occur for the same event, and 

may attempt to modify the same value.

41

Shortcomings: non-determinism
• Priority should be given to transitions so as to eliminate the non-determinism.

• On entry into the superstate S, both the sub-states are traversed concurrently.

• When the system exits S, it is not sure what the values of X & Y will be, it 
depends on which one of the events triggered first (i.e., if E in S1 is triggered 
first then the values of X and Y both will be 1, else X will be assigned to 1 and 
the value of Y depends what X was prior to being assigned 1).

• This leads to non-determinism in the system.

42

S11

S12 S22

S21

E/X=1 E/Y=X

S1 S2

S
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Shortcomings: race condition
• Race Situation: What is the value of X after state “S” is 

exited?
• There is race condition in the system. The value of X 

depends on which of the events i.e. E in S1 or E in S2 
triggered last.

43

S11

S12 S22

S21

E/X=1 E/X=2

S1 S2

S

Shortcomings of Harel Statecharts

• Infinite loops:

– Doesn’t define the property of consistency check in its 
model.

– The flaw in the design may lead to infinite loop while the 
system is being designed. 

• Inconsistency in free transitions:

– Inconsistency when an exit transition leaving a composite 
boundary happens to be an unlabelled transition.

• Statecharts do not support any dynamic semantics 
to cover their precise behavioral aspects.

44
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Conclusion

• StateCharts’ main application domain is that of 
local, control-dominated systems.

• Key advantage is the property of nesting 
hierarchies.

• Examples of tools based on StateCharts: 
StateMate (IBM), StateFlow (MathWorks), 
BetterState (WindRiver, Intel). Many can 
translate StateCharts into equivalent C or 
VHDL, from which hardware can be 
synthesized. 

45

Further info

• http://ls12-www.cs.tu-
dortmund.de/daes/media/documents/staff/marwedel/es-
book/slides10/es-marw-2.02-fsm.ppt

• http://www-
inst.eecs.berkeley.edu/~ee249/fa08/Lectures/mocFSM-
CFSM.pdf

46

http://ls12-www.cs.tu-dortmund.de/daes/media/documents/staff/marwedel/es-book/slides10/es-marw-2.02-fsm.ppt
http://chess.eecs.berkeley.edu/design/2010/mocFSM-CFSM.pdf
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Overview

• Harel’s StateCharts
• UML Statecharts
• Statemate
• SDL
• SystemC
• SpecC
• VHDL, Verilog, SystemVerilog
• Simulink
• C, C++, Java

47

Basic UML Statechart Diagram

48
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UML (unified modeling language) 
statecharts

• Harel statecharts are the basis for UML 
statecharts. 

• Harel statecharts were mainly designed for 
function-oriented structured analysis design 
techniques, later extended for OO technology.

• Statecharts were introduced in UML with 
modifications in the semantics and some in-
build terminology.

49

Example

• UML statechart showing properties of orthogoanlity, and-
decomposition, History, Clustering, Refinement, Forking 
issues, pseudostates, Synch pseudostates.

50

G

C1

D2D1

C2

B

A

D3

E1/A1

E2/A2

F

F



26

UML Statecharts: Properties
1. Object Behavior:

– An object can be in different states depending on the present value of the 
variables and data types it has.

– The object behavior can be represented in three different types:

1. Simple behavior: Doesn’t depend on history of the previous inputs or 
services. E.g. simple mathematical functions.

2. State behavior: The entire system or space is divided into states. 

3. Continuous behavior: Depends on object’s time history.

2. Delays & Timeouts:

– Statechart transitions are modeled to take insignificant amount of time. 

– A guard and a trigger represent a transition. They are of two types of 
triggers:
• Named Trigger: Results in transition.

• Null transition: Evaluated only once upon entrance to the source state.

– Assumption: Evaluation of conditions, guards and triggers takes zero 
amount of time.

– Timeouts are there in UML statecharts.
51

UML Statecharts: Properties
3. UML statecharts define 4 types of events:

– Signal: Event due to extended asynchronous process.
– Call: Execution of an operation within the object.
– Change: Change in value of an attribute.
– Time: Lapse of a time-interval.

4. Message passing between different diagrams
5. Priority given to transitions with the innermost source state. 

52

A

B

B1

Enter: f(a)
Exit: g()

Enter: x()
Exit: y(a, b)

First y(a, b)
then g()

First f(a) is 
then x()

Execute from outermost first – for entry
Execute from innermost first – for exit
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UML Statecharts: Properties
6. Actions and Activities:

– Activities: Performed as long as the state is active, interpreted and terminated by the receipt of an 
incoming event.

– Actions: Usually short, non-interruptible behavior while activities longer, interruptible behavior.

7. Fork & Join in UML.
8. Two different kinds of state machine formalisms:

– Statechart Diagrams: Used when state transitions takes place when an event of interest occurs.
– Activity diagrams: Changes state primarily upon completion of the activities executed.

9. UML statecharts have some dependence on abstract state machines along with Mealy’s. 
Harel statecharts are mainly based on Moore’s

10. Events can carry parameter, which Harel’s statechart doesn’t support.
11. Conditional guards.
12. Guards & explicit state machines.

53

Off On

OnButtonPushed [Guard Condition] / 
Action:= Start();ControlPanel.UpdateState(Start)

Message: OnButtonPushed
Guard: Guard Condition
Action: Start() [Internal Action]
ControlPanel.UpdateState(Start) [External Action]

UML Statecharts: Properties
13. Pseudostates.

– A kind of state vertex in the UML metamodel that represent transient points in transition paths 
within a state machine.

– Vertical bars indicate where concurrent behavior begins or ends (called pseudostates)

– E.g. Start state, Terminal state, Connectors etc.

14. Synch Pseudostate

– Allows a special kind of guard in which a “latch” remembers that a specific transition has occurred

– Similar to Petri net “place” with explicitly indicated capacity

– Must synchronize across AND-States

54

G

C1

D2D1

C2

B

A

D3

E1/A1

E2/A2

F

FC

Synch Pseudostate

Pseudostates
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Symbols

55

Join

Fork

Synch

Terminal

Branch

Pseudostate 
Name

Symbol

C OR

T OR

* OR n

Stub

Merge Junction

Choice Point

Junction

Initial/Default

Deep History

Shallow History

Pseudostate 
Name

Symbol

H

H*

Shortcomings of UML statecharts
1. No discussion of extension mechanisms of statechart

diagrams.
2. Do not support overlapped states:

– But the same functionality can be achieved without the use of overlapped 
states, though overhead involved to design it increases.

3. Boundary crossing violates encapsulation:
– Boundary crossing (supported by UML) is the practice, which violates the 

encapsulation of hierarchical states machines.

4. Non-determinism:
– UML’s reversed priority rule for resolving inter-level concurrency conflicts 

introduces non-determinism in the outer state machine.

5. Representation of states:
– UML statecharts can properly represent only one distinct accept state in a 

sub-state machine.

6. Exit Paths:
– In UML all the exit paths are subsequently merged in the single completion 

transition leaving the composite state boundary.
56



29

Example: Mobile Phone System

57

Dial

Call

Talk

MSC Server 
Idle

Assigning

Ready
Ready

RegularCall

Idle

Receive Call
[Regular Call]

BS Server ActiveBS Server 
Idle

Start

Shut Down
Receive a call
[Correct #]

MSC Server ActiveStart

Shut Down

Hang Up

Power ON [Simulation]

[MSC Server Shutdown]

[Wrong #]
Send Frame

Receive
IP & Port
successfully

Dial Digit (n)[Valid]

Dial Digit (n)[Incomplete]

[BS Server Shutdown or in saturation of capacity]

Active

Send a Call

Connect

Comparison
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Property Harel Statechart UML Statechart

Nesting & Orthogonal Regions Supported Supported

Single transition  represents the same 

event from different sub-states

Supported Supported

Broadcast events. Supported Supported

History Supported Supported

Sub-machines Supported Supported

Overlapping states Supported Absent

Pseudostates Absent, but connectors perform 

same operations

Supported

Fork & Join methodology Fork and Merge Implemented using 

pseudostates.

Event carrying feature Absent Supported

Free transitions Inconsistency when an exit 

transition leaving composite 

boundary

Prevented in UML by defining 

a free boundary exit transition

Synchronization Limited # of ways: IS_IN 

parameter, Broadcast 

Communication

# of ways: Broadcast 

Communication, Fork, Join, 

Propagated events, IS_IN 

operator, synch pseudostate

Event Handling Outermost state machine Innermost state machine.



30

Conclusion

• MoC: FSM + shared memory

• Use of Harel statecharts or UML statecharts
depends on the requirements for the design 
of the system.

• Systems which have synchronization as their 
main issue can be well-designed if they used 
UML statecharts.

• UML statecharts are widely used due to 
popularity, & number of tools in market that 
support UML statecharts.
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Further Info
• http://en.wikipedia.org/wiki/UML_state_machine

• http://www.uml.org

• Practical UML - A Hands-On Introduction for Developers:

– http://edn.embarcadero.com/article/31863

• Miro Samek (2008). Practical UML Statecharts in C/C++, 
Second Edition: Event-Driven Programming for 
Embedded Systems. Newnes. ISBN 978-0-7506-8706-5.
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