COEN-4720 Embedded Systems Design
Lecture 14

System modeling
Models of computation
Specification languages

UML

Cristinel Ababei
Dept. of Electrical and Computer Engr., Marquette University

e System Modeling

Introduction

* Describing embedded system behavior

— Can be extremely difficult

* Complexity increasing with increasing IC capacity
— Past: washing machines, small games, etc.
» Hundreds of lines of code
— Today: TV set-top boxes, Cell phone, etc.
» Millions of lines of code
* Desired behavior often not fully understood in beginning
— Many implementation bugs due to description mistakes/omissions
— English (or other natural language) common starting
point

* Precise description difficult to impossible

Models, Levels of abstraction

* Foundations of science and engineering
* Key aspect: models

— Concrete representation of knowledge and ideas about a
system being developed - specification

— Model deliberately modifies or omits details (abstraction)
but concretely represents certain properties to be
analyzed, understood and verified

— One of the few tools for dealing with complexity

— Formal description of selected properties of a system or
subsystem

— A model consists of data and associated methods
* Synthesis

— Linking adjacent levels of abstraction (refinement)

— Stepwise adding of structural information

Models and Languages

* How can we (precisely) capture behavior?
— We may think of languages (C, C++), but model of computation (MoC) is key

* Models of computation can be described as:
— They define components (e.g. procedures, processes, functions, FSMs)
— They define communication protocols (e.g. asynchronous message passing, rendez-
vous based communication)

— They possibly also define what components know about each other (e.g. sharing
info via global variables)

* Common models of computation:
— Communicating finite state machines — Collections of FSMs
Used by StateCharts, StateFlow and SDL
— Discrete event model — Events carrying a totally ordered time-stamp
Used by VHDL, Verilog, Simulink
— Differential equations
— Asynchronous message passing — Processes communicate through channels that
can buffer messages
* Variants: Dataflow program, Synchronous dataflow (SDF)

— Synchronous message passing — Processes communicate in atomic, instantaneous
actions called rendez-vous

Models vs. Specification Languages

Poetry Recipe Story State Sequent. Data-
Models machine | | program flow

Languages Engliéh Spar‘:lsT‘ ‘Japanese‘ ‘ Java
Recipes vs. English Sequential programs vs. C

* Languages capture models. One can see languages as “incarnation” of models.

* Variety of languages can capture one model. One language can capture variety
of models.

— E.g., sequential program model > C,C++, Java
— E.g., C++ - sequential program model, object-oriented model, state machine model

* Certain languages better at capturing certain computation models.

» Different applications may require the use of different models.

* Some languages allow a mix of models.

» Distinction between model and language is sometimes blurry (e.g. StateCharts
are viewed as model and graphical language; Petri Nets).

» Specification languages facilitate — in a textual or visual/graphical way —
description/capture of system behavior via models of computation.

Computation

Communication

Communication/ Shared Message passing

local computations | memory Synchronous | Asynchronous

Undefined Plain text, use cases

components | (Message) sequence charts

Communicating finite | StateCharts Specification and

state machines Description
Lang. (SDL)

Data flow (Not useful) Kahn networks,
SDF

Petri nets C/E nets, P/T nets, ...

Discrete event (DE) | VHDL*, Only experimental systems, e.g.

model Verilog®, distributed DE in Ptolemy

SystemC*, ...
Imperative (Von- C, C++, C, C++, Java with libraries
Neumann) model Java CSP, ADA |

* Models of Computation

Models of Computation

State-oriented models

— State Transition Diagrams (STD)/ Finite State Machines (FSM)
— Petri Nets (PN)
Activity oriented models

— Data flow graphs (DFG)

Process-based models

* Kahn Process Networks (KPN)

Heterogeneous models

— Synchronous dataflows (SDF)

For details on each of the above, see details at:

— http://dejazzer.com/ece777/ECE777 3 system modeling.pptx

9

State Transition Diagrams (STD)/
Finite State Machine (FSM)

Help understand the behavioral aspect of the
system.

Simple directed graphs with nodes denoting
states & arrows (labeled with triggers &
conditions) denoting transitions.

State: Represents a combination of different
input values for a particular moment of time.

Transitions: Change of state depending on the
input received.

10

http://dejazzer.com/ece777/ECE777_3_system_modeling.pptx

Finite State Machine

* FSM = (Inputs, Outputs, States, InitialState,
NextState)

» Often suitable for controllers, protocols etc.
* Rarely suitable for Memory and Datapaths

* Easy to use with powerful algorithms for
synthesis and verification

11

Example: Vending machine

Not enough
Money

Money not
enough

Input

Cancel

Power On

Power Off

Enough
Money

12

Example FSM

Informal specification:

If driver turns on the key and does not fasten
seat belt within 5 seconds then sound the
alarm for 5 seconds or until driver fastens the
seat belt or turns off the key

Formal representation:

Inputs = {KEY ON, KEY OFF,

BELT ON, BELT OFF, 5 SECONDS UP,
10 SECONDS UPT - -
Outputs = {START TIMER,

ALARM ON, ALARM OFF}

States = {0Off, Wait, Alarm}

KEY_ON =>

START_TIMER
KEY_OFF

or
BELT_ON

5_SECONDS_UP)
=> ALARM_ON

10_SECONDS_UP
or BELT_ON or

Initial State = off KEY_OFF =>
NextState: CurrentState, Inputs ALARM_OFF
-> NextState
e.g. NextState (WAIT, {KEY OFF})
= OFF -
Outs: CurrentState, Inputs ->
Outputs
e.g. Outs (OFF, {KEY ON}) =
START TIMER -
13

Scalability - Number of states & transitions
increase exponentially as the system

complexity increases
No concurrency support

Have an unstructured, unrealistic, and chaotic

state diagram

To address these problems Harel proposed

StateCharts

— Extension of State Transition Diagram/Finite State

Machines

14

» Specification Languages

15

Specification Languages

* Harel’s StateCharts

* UML Statecharts

» Statemate

* SDL

* SystemC

* SpecC

* VHDL, Verilog, SystemVerilog

e Simulink

* C, C++, Java

* For details on each of the above, see details at:
— http://dejazzer.com/ece777/ECE777 4 specification.pptx

16

http://dejazzer.com/ece777/ECE777_4_specification.pptx

Specification language requirements

Hierarchy
— Behavioral and structural
Compositional behavior
— Must be “easy” to derive behavior from behavior of subsystems
Timing behavior
State-oriented behavior
— Classical automata models are insufficient
— Required for reactive systems
Event-handling

— External (caused by the environment) or internal events (caused by the
system)

No obstacles to the generation of efficient implementations
Support for the design of dependable systems

— Unambiguous semantics and capable of describing security and safety
requirements

Exception-oriented behavior
— Not acceptable to describe exceptions for every state

17

Concurrency
Synchronization and communication
— Concurrent actions have to be able to communicate
Verifiability
Presence of programming elements

— Programming languages have proven to be convenient for
the expression of computations

— Classical state diagrams do not meet the requirement
Executability
— The possibility to execute a specification is a way for
checking it
Support for the design of large systems
— Software technologies has found object orientation

mechanism for designing large systems "

Domain-specific support

— Language feature dedicated to control/data-dominated or
centralized/distributed applications

Readability
— Specification must be readable by the human being
Portability and flexibility

— Small changes of the system’s features should require small
changes to the specification

Non-functional properties

— Fault tolerance, size, expected lifetime, power consumption,
electromagnetic compatibility, extendibility etc.

Termination
Support for non-standard I0-devices
Appropriate model of computation

It is obvious there will be no formal language meeting all
these requirements. Compromises will have to be made.

19

A note on Timing: Problems with classical CS theory
and von Neumann computing

“The lack of timing in the core abstraction is a flaw, from the
perspective of embedded software, ...”

— Ed Lee, Absolutely Positively on Time, IEEE Computer, July 2005.

“Timing is everything”
— Frank Vahid, WESE 2008

Even the core ... notion of “computable” is at odds with the
requirements of embedded software

— In this notion, useful computation terminates

— In embedded software, termination is failure

— Subcomputations must terminate with predictable timing
“What is needed is nearly a reinvention of computer science”
— Ed Lee, Absolutely Positively on Time, IEEE Computer, July 2005.

20

10

General language characteristics

* Synchronous and asynchronous languages

— Languages based CFSMs and sets of processes (ADA,
Java) are non-deterministic, since the order in which
executable processes are executed are not specified

— Synchronous languages avoid non-determinism: Esterel,
Lustre, StateCharts
* Process concepts

— Number of processes can be either static (e.g.
StateCharts) or dynamic

— Processes can be statically nested or declared at the
same level

— Techniques for process creation exist

— Concurrent process model
* http://esd.cs.ucr.edu/slides/ch8 011702.ppt
* http://theory.stanford.edu/~rvg/process.html

21

General language characteristics

* Synchronization and communication

— Shared memory — all variables can be accessed from all
processes

— Message passing — messages are sent/received just like
mails over the Internet. Generally slower.

* Specifying timing. Four requirements:
— Access to a timer —a means to measure elapsed time
— Means for delaying a process (e.g. “wait for” in VHDL)

— Possibility to specify timeouts (e.g. StateCharts allows
timeouts)

— Methods for specifying deadlines and schedules
* Using non-standard I0/devices

— E.g. ADA allows variables to be mapped to specific memory
addresses

22

11

http://esd.cs.ucr.edu/slides/ch8_011702.ppt
http://theory.stanford.edu/~rvg/process.html

Overview

* Harel’s StateCharts

* UML Statecharts

* Statemate

* SDL

* SystemC

* SpecC

* VHDL, Verilog, SystemVerilog
* Simulink

e C,C++, Java

23

Harel Statecharts

Introduced by David Harel in 1987 - provide compact and
expressive visual formalisms for reactive systems.

What are Statecharts?

— Viewed as both model and graphical specification language.

— Describe communicating finite state machines - Visual formalism for
describing states & transitions in modular fashion.

What is the purpose of using Statecharts?
— To suppress and organize detail.

— Best if graphical. The clarity they provide can be lost if they are
represented in tabular form.

— Allows the super states to have history. History is helpful for back-
up, if system fails.

The Harel statechart is equivalent to a state diagram but it
improves the readability of the resulting diagram.
It can be used to describe many systems, from computer
programs to business processes.

24

12

Harel Statecharts

They are directed graphs and used to describe the
behaviour of an object. The vertices are the states an
object can reach. Edges are changes of the state, the so-
called transitions.

Statecharts based on a generalization of the concepts of
FSMs. It’s considered that the computing power of
statecharts is the same as that of Finite State Machines.

Recent paper argues that the computation power of
statecharts is far beyond that of Finite Automata and that
Interaction Machines are the most accurate theoretical
models for statecharts

Used as a modeling tool and adopted by Unified Modeling
Language (UML) as an important technique to model the
dynamic behavior of systems.

25

State-Transition Diagram vs. Statechart

G/A |E/B

G/A

—

State-transition diagram Statechart

* The statechart reduces the number of transitions when compared to STD.
* G/A represents that for event G action A takes place.

* S & T are combined together into a super-state F (OR- property of the
statechart)

26

13

State-Transition Diagram vs. Statechart

Property State-transition |Statechart
Diagram

Super-states Absent Present

History Absent Present

Concurrency Absent Present

Broadcast Absent Present

Communication

Synchronization & | Absent Present

Timing Info

Hierarchical Absent Present

Structure

Statecharts development

* 2 Types of statechart development
— Harel Statecharts

* Developed by David Harel.

* First developed for function-oriented systems.

* Later extended for OO systems with few changes.

— UML Statecharts
* Developed by Object Management Group (OMG).

* Extended the properties of Harel statecharts with some

new features.

28

14

Example: Harel Statechart

E2/A2 '
\

El/ Al

%

* Harel Statechart showing properties of orthogonality, and-decomposition,
History, Clustering, Refinement, Forking issues.

* E/A -Represents that for event E, action A will take place.
* Dashed line represents the AND-product (orthogonality) of states R & T.

* F[in(Y)]: The function in [] (i.e. in(Y)) represents the guard condition.
29

Example: Equivalent STD

* If there are n states in one side of the dashed line in a super-state and m states
in the other side, then the total number of maximum states in the equivalent
state-transition diagram will be the product m*n.

_—

30

15

1. Decomposition: OR-State, AND-state

* A superstate may be decomposed into any number of OR-states.
When the object is in the superstate, it must be in exactly one of
its OR-substates.

¢ Sisdecomposed into X & Y. At any given time S will be either in X
or Y but not both.

The default start state in Sis X. t1 & t0 are the events depending
on which the S will be in either X or Y

OR State

* A superstate may be decomposed into any number of
AND-states. When the object is in the superstate, it must
be in every active AND-substates (shown with dashed
lines).

* Cis the superstate formed by the AND product of A & B.

* X & R are the default initial states of A & B respectively.
When the system enters C it will be present in both X & R
at the concurrent time.

AND State 31

2. Clustering & Refinement
* Clustering is a bottom-up concept & refinement is a top-down one; both
give rise to the OR-relationship between a state’s sub-states.
* Reduces the number of transitions in a statechart.

* Superstate R & T can be extended if needed in order to view the sub-
states and their internal transitions, which is called refinement.

E A
E
\
G/A > G/ -)

G/A G/A

Simple State Diagram Clustering of States

* States S & T are clustered into a single super-state A.

* Expanding A & showing its sub-states is refinement.
32

16

3. History

History (H), in a statechart gives the most
recently visited state of the super-state that it is
entering.

Shallow History (H): Represents the most
recently entered state at the same level.

Deep History (H*): Represents entering the
most recently visited state irrespective of how
deep the state is.

History is “forgotten” if dead has been entered
in the meantime.

33

H — History chooses between G & F. H remembers between A,B,C,D,E.

H remembers the last sub-state (both history and sub-states should be at
the same level) the system left.

H* - System will enter the most recently visited state (A-E)

H* remembers the last sub-state the system left, irrespective of how
deep it may be when considered with the history state.

B & C are the default initial states for G & F.

34

17

4. Orthogonality

5. Overlapping states

* Orthogonality
— Reduces the number of states.

— Viewed as the AND product of two states (consisting of sub-
states) which gives a certain kind of synchronization.

— Generalization of the usual product of automata with some
dependence between components (like common events or
conditions).

* Overlapping states
— A state which is present in both the super-states.
— Overlapping states removes redundancy.
— Turns XORs state machine into ORs.

— Causes semantic problems especially when the overlapping
involves orthogonal components.

35

* Sub-state “C” is present in both A & D, i.e. the
relation between A & D is OR.

* Too much of overlapping should be avoided as
it leads to unnecessary burden & complexity.

36

18

6. Delays & Timeouts (event, number)

* Represents the event that occurs precisely when
the specified number of time units has elapsed
from the occurrence of the specified event.

* Has lower bound and upper bound attached to
each of the timeouts and events.

* Lower Bound: If events are to cause exits, events
do not apply in the state until the lower bound is
reached.

* Upper Bound: The event has to take place in that
time.

7. Conditions & Selection Entrances (C & S)

e Condition (C): Upon the entrance of the super-
state a condition is checked and the transition
is made to one of the sub-states in the super-
state.

* Selection (S): The transition is made
depending on a generic value of the input
rather than the condition.

19

Conditions & Selection Entrances (C & S)

* Crepresents the conditions.

* The state entered depends on whether C
evaluates to P, Q or R and states reached will
be Z, X, Y respectively.

* On entering the super-state, which state
(whether X,Y,Z) to enter depends on the what
the condition C evaluates to.

* The decision to enter one of the
three states, A, B, C depends on
what will be the generic value of S.

More properties
8. Harel statechart is a mix of Mealy and Moore
state machines and flowchart.
9. Fork & merge (see figure).
10. Broadcast feature in statecharts.

40

20

Shortcomings of Harel Statecharts

Semantics: How to represent?
— No specified approach.

— Many papers published, each having one flaw or other, none giving the
complete formal semantics.

— Harel introduced STATEMATE CASE tool to deal with this but that paper too
had one debatable topic.

Notion of time

— Assumption: Transitions take zero time (not possible for RT systems).

— No way to tell whether how long the system can stay in a particular state.
Determinism

— What should be done in case an event may result in multiple transitions
each leading to a different state?

— Which one of the transitions must have precedence over others?

— Leads to non-deterministic situation.

Race condition: What will be the resulting value?

— Non-determinism of statechart may result in race condition for the system.

— Multiple transitions on multiple states may occur for the same event, and
may attempt to modify the same value.

41

Shortcomings: non-determinism

Priority should be given to transitions so as to eliminate the non-determinism.
On entry into the superstate S, both the sub-states are traversed concurrently.

When the system exits S, it is not sure what the values of X & Y will be, it
depends on which one of the events triggered first (i.e., if E in S1 is triggered
first then the values of X and Y both will be 1, else X will be assigned to 1 and
the value of Y depends what X was prior to being assigned 1).

This leads to non-determinism in the system.

42

21

Shortcomings: race condition

* Race Situation: What is the value of X after state “S” is
exited?

* There is race condition in the system. The value of X
depends on which of the eventsi.e. Ein S1 or Ein S2

triggered last.

43

Shortcomings of Harel Statecharts

* Infinite loops:
— Doesn’t define the property of consistency check in its
model.
— The flaw in the design may lead to infinite loop while the
system is being designed.
* Inconsistency in free transitions:
— Inconsistency when an exit transition leaving a composite
boundary happens to be an unlabelled transition.
 Statecharts do not support any dynamic semantics
to cover their precise behavioral aspects.

44

22

Conclusion

» StateCharts’ main application domain is that of
local, control-dominated systems.

* Key advantage is the property of nesting
hierarchies.

* Examples of tools based on StateCharts:
StateMate (IBM), StateFlow (MathWorks),
BetterState (WindRiver, Intel). Many can
translate StateCharts into equivalent C or
VHDL, from which hardware can be
synthesized.

45

Further info

* http://Is12-www.cs.tu-
dortmund.de/daes/media/documents/staff/marwedel/es-
book/slides10/es-marw-2.02-fsm.ppt

e http://www-
inst.eecs.berkeley.edu/~ee249/fa08/Lectures/mocFSM-

CFSM.pdf

46

23

http://ls12-www.cs.tu-dortmund.de/daes/media/documents/staff/marwedel/es-book/slides10/es-marw-2.02-fsm.ppt
http://chess.eecs.berkeley.edu/design/2010/mocFSM-CFSM.pdf

Overview

Harel’s StateCharts

UML Statecharts

Statemate

SDL

SystemC

SpecC

VHDL, Verilog, SystemVerilog
Simulink

C, C++, Java

47

Basic UML Statechart Diagram

“top” state
Initial
pseudostate tOP

24

UML (unified modeling language)
statecharts

* Harel statecharts are the basis for UML
statecharts.

* Harel statecharts were mainly designed for
function-oriented structured analysis design
techniques, later extended for OO technology.

e Statecharts were introduced in UML with
modifications in the semantics and some in-
build terminology.

49

Example

* UML statechart showing properties of orthogoanlity, and-
decomposition, History, Clustering, Refinement, Forking
issues, pseudostates, Synch pseudostates.

E1/Al

.

E2/A2

50

25

UML Statecharts: Properties

1. Object Behavior:

2.
3.

An object can be in different states depending on the present value of the
variables and data types it has.

The object behavior can be represented in three different types:

Simple behavior: Doesn’t depend on history of the previous inputs or
services. E.g. simple mathematical functions.

State behavior: The entire system or space is divided into states.
Continuous behavior: Depends on object’s time history.

2. Delays & Timeouts:

Statechart transitions are modeled to take insignificant amount of time.

A guard and a trigger represent a transition. They are of two types of
triggers:

* Named Trigger: Results in transition.

e Null transition: Evaluated only once upon entrance to the source state.
Assumption: Evaluation of conditions, guards and triggers takes zero
amount of time.

Timeouts are there in UML statecharts.
51

UML Statecharts: Properties

3. UML statecharts define 4 types of events:

vk

Signal: Event due to extended asynchronous process.
Call: Execution of an operation within the object.
Change: Change in value of an attribute.

Time: Lapse of a time-interval.

Message passing between different diagrams
Priority given to transitions with the innermost source state.

Enter: f(a)
B Exit: g() First f(a) is
then x()
First y(a, b)
then g()

Execute from outermost first — for entry
Execute from innermost first — for exit -

26

UML Statecharts: Properties

6. Actions and Activities:

— Activities: Performed as long as the state is active, interpreted and terminated by the receipt of an
incoming event.

— Actions: Usually short, non-interruptible behavior while activities longer, interruptible behavior.
7. Fork & Join in UML.

8. Two different kinds of state machine formalisms:
— Statechart Diagrams: Used when state transitions takes place when an event of interest occurs.
— Activity diagrams: Changes state primarily upon completion of the activities executed.

9. UML statecharts have some dependence on abstract state machines along with Mealy’s.
Harel statecharts are mainly based on Moore’s

10. Events can carry parameter, which Harel’s statechart doesn’t support.
11. Conditional guards.
12. Guards & explicit state machines.

OnButtonPushed [Guard Condition] /
Action:= Start();ControlPanel.UpdateState(Start)

Message: OnButtonPushed

Guard: Guard Condition

Action: Start() [Internal Action]

ControlPanel.UpdateState(Start) [External Action] 53

UML Statecharts: Properties

13. Pseudostates.

— Akind of state vertex in the UML metamodel that represent transient points in transition paths
within a state machine.

— Vertical bars indicate where concurrent behavior begins or ends (called pseudostates)
— E.g. Start state, Terminal state, Connectors etc.
14. Synch Pseudostate
— Allows a special kind of guard in which a “latch” remembers that a specific transition has occurred
— Similar to Petri net “place” with explicitly indicated capacity
— Must synchronize across AND-States

,~ Synch Pseudostate

e

Pseudostates o

27

Symbols

Symbol Pseudostate Symbol |Pseudostate
Name Name

@ OR<> Branch ©) Shallow History

Deep History
OR @ Terminal

Initial/Default

®o—

Synch —@— |Junction

—K Fork —{(—. | Choice Point
@ — | Merge Junction

Stub

55

Shortcomings of UML statecharts

1. No discussion of extension mechanisms of statechart
diagrams.

Do not support overlapped states:

— But the same functionality can be achieved without the use of overlapped
states, though overhead involved to design it increases.

Boundary crossing violates encapsulation:

— Boundary crossing (supported by UML) is the practice, which violates the
encapsulation of hierarchical states machines.

4. Non-determinism:

— UML's reversed priority rule for resolving inter-level concurrency conflicts
introduces non-determinism in the outer state machine.

Representation of states:

— UML statecharts can properly represent only one distinct accept state in a
sub-state machine.

Exit Paths:

— In UML all the exit paths are subsequently merged in the single completion
transition leaving the composite state boundary.

g

w

b

o

56

Example: Mobile Phone System

[BS Server Shutdown or in saturation of capacity]

[MSC Server Shutdown]

Active

Power ON [Simulatid

Hang Up

Dial Digit (n)[Valid]

Dial Digit (n)[Incomplet

Receive
IP & Port

[Wrong #] successfu
Send Frame
Send a Call
1 ConnN
Start MSC Server Active
‘\ Start BS Server Active
Shut Down Receive a call feceive Call
[Correct #] Shut Down [Regular Call]
Comparison
Property Harel Statechart UML Statechart
Nesting & Orthogonal Regions Supported Supported
Single transition represents the same Supported Supported
event from different sub-states
Broadcast events. Supported Supported
History Supported Supported
Sub-machines Supported Supported
Overlapping states Supported Absent
Pseudostates Absent, but connectors perform | Supported

same operations

Fork & Join methodology

Fork and Merge

Implemented using
pseudostates.

Event carrying feature

Absent

Supported

Free transitions

boundary

Inconsistency when an exit
transition leaving composite

Prevented in UML by defining
a free boundary exit transition

Synchronization

Limited # of ways: IS_IN
parameter, Broadcast
Communication

of ways: Broadcast
Communication, Fork, Join,
Propagated events, IS_IN
operator, synch pseudostate

Event Handling

Outermost state machine

Innermost state machine.58

29

Conclusion

* MoC: FSM + shared memory

* Use of Harel statecharts or UML statecharts
depends on the requirements for the design
of the system.

* Systems which have synchronization as their
main issue can be well-designed if they used
UML statecharts.

e UML statecharts are widely used due to
popularity, & number of tools in market that
support UML statecharts.

59

Further Info
http://en.wikipedia.org/wiki/UML state machine

http://www.uml.org

Practical UML - A Hands-On Introduction for Developers:

— http://edn.embarcadero.com/article/31863

Miro Samek (2008). Practical UML Statecharts in C/C++,
Second Edition: Event-Driven Programming for
Embedded Systems. Newnes. ISBN 978-0-7506-8706-5.

60

30

http://www.uml.org/
http://www.uml.org/
http://edn.embarcadero.com/article/31863

