
1

Lecture 2
Review of Instruction Sets and Pipelines

(Appendix A, C)

Cristinel Ababei
Dept. of Electrical and Computer Engineering

COEN-4730/EECE-5730 Computer Architecture

1Credits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier

Outline

•Instruction Set Principles (Appendix A)

•Pipelining (Appendix C)

2

1

2

2

Arrival to current state-of-the art says that for a
new Instruction Set…

• Virtually every new architecture designed after 1980 uses a load-store
register architecture

• We should expect the use of general-purpose registers

• Memory addressing modes have the ability to significantly reduce
instruction counts. We should expect the support of at least these
addressing modes: immediate, displacement, and register indirect

• Should support these data sizes and types: 8-, 16-, 32, and 64-bit integers
and 64-bit IEEE 754 floating-point numbers

• Support these simple instructions (they will dominate the number of
instructions executed): load, store, add, subtract, move register, and shift

• Support these instructions for Control Flow: compare equal, compare not
equal, compare less, branch (with a PC-relative address at least 8 bits
long), jump, call, and return

3

• We should use fixed instruction encoding if interested in performance,
and use variable instruction encoding if interested in code size

• Should provide at least 16 general-purpose registers, be sure all
addressing modes apply to all data transfer instructions and aim for a
minimalist instruction set. This will reduce the complexity of writing a
correct compiler (which is a major limitation on the amount of
optimization that can be done).

• Before suggesting new instruction set features, look at optimized code
first – as a compiler might completely remove the instructions the
architect tries to improve…

Arrival to current state-of-the art says that for a
new Instruction Set…

4

3

4

3

Example: MIPS, RISC-V follow those
recommendations

• MIPS64 has 32 64-bit general purpose registers (GPR)

• Data types: 8-, 16-, 32-, and 64-bit for integers and 32-bit single precision
and 64-bit double precision for floating point

• Addressing modes: immediate and displacement, both with 16-bit fields

• Types of instruction format:

• MIPS – three types: R,I, and J

• RISC-V – six types: R,I,S,SB,UJ,U

• Supports the list of simple instructions recommended plus a few others

• Control handled through a set of jumps and a set of branches

5

MIPS Encoding Summary

6

• Microprocessor without Interlocked Pipeline Stages

• 3 instruction formats: R, I, and J types

 op rs rt rd shamt funct

 op rs rt 16 bit address

 op 26 bit address

R

I

J

5

6

4

7

RISC-V Encoding Summary

7

Outline

•Instruction Set Principles (Appendix A)

•Pipelining (Appendix C)

8

7

8

5

Pipelining – how is it done?

9

RISC-V Datapath: 5 Stages

10

9

10

6

Visualizing Pipelining

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

11

Pipelining is not quite that easy!

•Limits to pipelining: hazards prevent next
instruction from executing during its
designated clock cycle

1.Structural hazards: HW cannot support this combination of
instructions

2.Data hazards: Instruction depends on result of prior
instruction still in the pipeline

3.Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow
(branches and jumps)

12

11

12

7

1. One Memory Port/Structural Hazards
Instruction and Data memories are the same memory unit

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

13

Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

STALL

Instr 3

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe? De-assert all control lines in

appropriate pipe stages. 14

13

14

8

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

2. Data Hazard on R1
Time (clock cycles)

IF ID/RF EX MEM WB

15

Time (clock cycles)

Forwarding to Avoid Data Hazard

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Take result from where it’s 1st time available and move it to where

it’s/could-be needed 16

15

16

9

Hardware changes to support Forwarding
(a.k.a. Bypassing or Short-circuiting)

M
E

M
/W

R

I
D

/E
X

E
X

/M
E

M

Data
Memory

A
L
U

m
ux

m
ux

R
e
giste

rs

NextPC

Immediate

m
ux

17

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding (1/2)
Load-Use Situations

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

18

17

18

10

Data Hazard Even with Forwarding (2/2)

or r8,r1,r9

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg

A
L
U

DMemIfetch Reg

RegIfetch

A
L
U

DMem RegBubble

Ifetch

A
L
U

DMem RegBubble Reg

Ifetch

A
L
U

DMemBubble Reg

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

19

How to STALL the Pipeline

1. Force control values in ID/EX register to 0
 EX, MEM and WB will therefore do NOP (no-operation)

2. Prevent update of PC and IF/ID register
Using instruction is decoded again
 Following instruction is fetched again
 1-cycle stall allows MEM to read data for ld

20

19

20

11

Datapath with Hazard Detection

21

3. Control Hazard on Branches - Three Stage Stall

10: beq r1,r3,22

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

If we had to wait until the end of EX state to find out if branch is taken or not taken (untaken); Let’s
assume it’s taken; What do you do with the 3 instructions in between? We need to STALL (i.e., do
nothing or delay, NOP) the pipeline 3 stages now or FLUSH (i.e., discard) later.

22

21

22

12

Branch STALL Impact
•If CPI = 1, 30% branch,

 Stall 3 cycles → new CPI = 1.9!
•Two-part solution:

 Determine branch taken or not sooner
 Compute taken branch address earlier

•RISC-V branch tests if register = 0 or  0
•RISC-V Solution:

 Move Zero test to ID/RF stage
 Adder to calculate new PC in ID/RF stage
 1 clock cycle penalty for branch versus 3

23

How to FLUSH
•To flush the pipe (when branch is taken)
Set IF.Flush (new control line)
Zero all control lines

• Similar to stall, except don’t disable the PC and IF/ID write controls – this
effectively writes over what the previous instruction was doing.

No memory or register writes will have yet
happened, so everything else is OK

24

23

24

13

Reducing Branch Delay
•Move hardware to determine outcome to ID
stage
 Target address adder
 Register comparator

•This means the branch decision can be made
during the ID stage instead of the EX stage.
 This is why we need an IF.Flush, but not an ID.Flush

25

26

Datapath – with 1 cycle penalty for control hazards
Branch Taken

25

26

14

27

Datapath – with 1 cycle penalty for control hazards
Branch Taken

Four Compile Time Schemes to Reduce Branch
Hazard Penalties due to One-Delay Stalls

#1: Stall until branch direction is clear
#2: Predict (or Treat) Branch as Not Taken

 Execute successor instructions in sequence as if the branch were a
normal instruction

 “Squash” instructions in pipeline if branch actually taken
 Advantage of late pipeline state update
 47% branches not taken on average
 PC+4 already calculated, so use it to get next instruction

#3: Predict Branch as Taken
 53% branches taken on average
 But have not calculated branch target address

• So, still incurs 1 cycle branch penalty
28

27

28

15

#4: Delayed Branch
 Introduce the sequential successor instruction, which is executed

irrespective of whether or not the branch is taken

 The job of the Compiler is to make the successor instructions valid and
useful

Four Compile Time Schemes to Reduce Branch
Hazard Penalties due to One-Delay Stalls

29

Concluding Remarks
•ISA influences design of datapath and control

•Datapath and control influence design of ISA

•Pipelining improves instruction throughput
using parallelism – ILP (instruction level parallelism)
 More instructions completed per second

 Latency for each instruction is NOT reduced!

•Hazards: structural, data, control

•Multiple issue and dynamic scheduling
 Dependencies limit achievable parallelism

 Complexity leads to the power wall
30

29

30

	Slide 1: Lecture 2 Review of Instruction Sets and Pipelines (Appendix A, C)
	Slide 2: Outline
	Slide 3: Arrival to current state-of-the art says that for a new Instruction Set…
	Slide 4
	Slide 5
	Slide 6: MIPS Encoding Summary
	Slide 7
	Slide 8: Outline
	Slide 9: Pipelining – how is it done?
	Slide 10: RISC-V Datapath: 5 Stages
	Slide 11: Visualizing Pipelining
	Slide 12: Pipelining is not quite that easy!
	Slide 13: 1. One Memory Port/Structural Hazards Instruction and Data memories are the same memory unit
	Slide 14: Structural Hazards
	Slide 15: 2. Data Hazard on R1
	Slide 16: Forwarding to Avoid Data Hazard
	Slide 17: Hardware changes to support Forwarding (a.k.a. Bypassing or Short-circuiting)
	Slide 18: Data Hazard Even with Forwarding (1/2) Load-Use Situations
	Slide 19: Data Hazard Even with Forwarding (2/2)
	Slide 20: How to STALL the Pipeline
	Slide 21: Datapath with Hazard Detection
	Slide 22: 3. Control Hazard on Branches - Three Stage Stall
	Slide 23: Branch STALL Impact
	Slide 24: How to FLUSH
	Slide 25: Reducing Branch Delay
	Slide 26: Datapath – with 1 cycle penalty for control hazards Branch Taken
	Slide 27: Datapath – with 1 cycle penalty for control hazards Branch Taken
	Slide 28: Four Compile Time Schemes to Reduce Branch Hazard Penalties due to One-Delay Stalls
	Slide 29: Four Compile Time Schemes to Reduce Branch Hazard Penalties due to One-Delay Stalls
	Slide 30: Concluding Remarks

