
1

Lecture 2
Review of Instruction Sets and Pipelines

(Appendix A, C)

Cristinel Ababei
Dept. of Electrical and Computer Engineering

COEN-4730/EECE-5730 Computer Architecture

1Credits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier

Outline

•Instruction Set Principles (Appendix A)

•Pipelining (Appendix C)

2

1

2

2

Arrival to current state-of-the art says that for a
new Instruction Set…

• Virtually every new architecture designed after 1980 uses a load-store
register architecture

• We should expect the use of general-purpose registers

• Memory addressing modes have the ability to significantly reduce
instruction counts. We should expect the support of at least these
addressing modes: immediate, displacement, and register indirect

• Should support these data sizes and types: 8-, 16-, 32, and 64-bit integers
and 64-bit IEEE 754 floating-point numbers

• Support these simple instructions (they will dominate the number of
instructions executed): load, store, add, subtract, move register, and shift

• Support these instructions for Control Flow: compare equal, compare not
equal, compare less, branch (with a PC-relative address at least 8 bits
long), jump, call, and return

3

• We should use fixed instruction encoding if interested in performance,
and use variable instruction encoding if interested in code size

• Should provide at least 16 general-purpose registers, be sure all
addressing modes apply to all data transfer instructions and aim for a
minimalist instruction set. This will reduce the complexity of writing a
correct compiler (which is a major limitation on the amount of
optimization that can be done).

• Before suggesting new instruction set features, look at optimized code
first – as a compiler might completely remove the instructions the
architect tries to improve…

Arrival to current state-of-the art says that for a
new Instruction Set…

4

3

4

3

Example: MIPS, RISC-V follow those
recommendations

• MIPS64 has 32 64-bit general purpose registers (GPR)

• Data types: 8-, 16-, 32-, and 64-bit for integers and 32-bit single precision
and 64-bit double precision for floating point

• Addressing modes: immediate and displacement, both with 16-bit fields

• Types of instruction format:

• MIPS – three types: R,I, and J

• RISC-V – six types: R,I,S,SB,UJ,U

• Supports the list of simple instructions recommended plus a few others

• Control handled through a set of jumps and a set of branches

5

MIPS Encoding Summary

6

• Microprocessor without Interlocked Pipeline Stages

• 3 instruction formats: R, I, and J types

 op rs rt rd shamt funct

 op rs rt 16 bit address

 op 26 bit address

R

I

J

5

6

4

7

RISC-V Encoding Summary

7

Outline

•Instruction Set Principles (Appendix A)

•Pipelining (Appendix C)

8

7

8

5

Pipelining – how is it done?

9

RISC-V Datapath: 5 Stages

10

9

10

6

Visualizing Pipelining

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

11

Pipelining is not quite that easy!

•Limits to pipelining: hazards prevent next
instruction from executing during its
designated clock cycle

1.Structural hazards: HW cannot support this combination of
instructions

2.Data hazards: Instruction depends on result of prior
instruction still in the pipeline

3.Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow
(branches and jumps)

12

11

12

7

1. One Memory Port/Structural Hazards
Instruction and Data memories are the same memory unit

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

13

Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

STALL

Instr 3

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe? De-assert all control lines in

appropriate pipe stages. 14

13

14

8

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

2. Data Hazard on R1
Time (clock cycles)

IF ID/RF EX MEM WB

15

Time (clock cycles)

Forwarding to Avoid Data Hazard

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Take result from where it’s 1st time available and move it to where

it’s/could-be needed 16

15

16

9

Hardware changes to support Forwarding
(a.k.a. Bypassing or Short-circuiting)

M
E

M
/W

R

I
D

/E
X

E
X

/M
E

M

Data
Memory

A
L
U

m
ux

m
ux

R
e
giste

rs

NextPC

Immediate

m
ux

17

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding (1/2)
Load-Use Situations

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

18

17

18

10

Data Hazard Even with Forwarding (2/2)

or r8,r1,r9

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg

A
L
U

DMemIfetch Reg

RegIfetch

A
L
U

DMem RegBubble

Ifetch

A
L
U

DMem RegBubble Reg

Ifetch

A
L
U

DMemBubble Reg

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

19

How to STALL the Pipeline

1. Force control values in ID/EX register to 0
 EX, MEM and WB will therefore do NOP (no-operation)

2. Prevent update of PC and IF/ID register
Using instruction is decoded again
 Following instruction is fetched again
 1-cycle stall allows MEM to read data for ld

20

19

20

11

Datapath with Hazard Detection

21

3. Control Hazard on Branches - Three Stage Stall

10: beq r1,r3,22

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

If we had to wait until the end of EX state to find out if branch is taken or not taken (untaken); Let’s
assume it’s taken; What do you do with the 3 instructions in between? We need to STALL (i.e., do
nothing or delay, NOP) the pipeline 3 stages now or FLUSH (i.e., discard) later.

22

21

22

12

Branch STALL Impact
•If CPI = 1, 30% branch,

 Stall 3 cycles → new CPI = 1.9!
•Two-part solution:

 Determine branch taken or not sooner
 Compute taken branch address earlier

•RISC-V branch tests if register = 0 or 0
•RISC-V Solution:

 Move Zero test to ID/RF stage
 Adder to calculate new PC in ID/RF stage
 1 clock cycle penalty for branch versus 3

23

How to FLUSH
•To flush the pipe (when branch is taken)
Set IF.Flush (new control line)
Zero all control lines

• Similar to stall, except don’t disable the PC and IF/ID write controls – this
effectively writes over what the previous instruction was doing.

No memory or register writes will have yet
happened, so everything else is OK

24

23

24

13

Reducing Branch Delay
•Move hardware to determine outcome to ID
stage
 Target address adder
 Register comparator

•This means the branch decision can be made
during the ID stage instead of the EX stage.
 This is why we need an IF.Flush, but not an ID.Flush

25

26

Datapath – with 1 cycle penalty for control hazards
Branch Taken

25

26

14

27

Datapath – with 1 cycle penalty for control hazards
Branch Taken

Four Compile Time Schemes to Reduce Branch
Hazard Penalties due to One-Delay Stalls

#1: Stall until branch direction is clear
#2: Predict (or Treat) Branch as Not Taken

 Execute successor instructions in sequence as if the branch were a
normal instruction

 “Squash” instructions in pipeline if branch actually taken
 Advantage of late pipeline state update
 47% branches not taken on average
 PC+4 already calculated, so use it to get next instruction

#3: Predict Branch as Taken
 53% branches taken on average
 But have not calculated branch target address

• So, still incurs 1 cycle branch penalty
28

27

28

15

#4: Delayed Branch
 Introduce the sequential successor instruction, which is executed

irrespective of whether or not the branch is taken

 The job of the Compiler is to make the successor instructions valid and
useful

Four Compile Time Schemes to Reduce Branch
Hazard Penalties due to One-Delay Stalls

29

Concluding Remarks
•ISA influences design of datapath and control

•Datapath and control influence design of ISA

•Pipelining improves instruction throughput
using parallelism – ILP (instruction level parallelism)
 More instructions completed per second

 Latency for each instruction is NOT reduced!

•Hazards: structural, data, control

•Multiple issue and dynamic scheduling
 Dependencies limit achievable parallelism

 Complexity leads to the power wall
30

29

30

	Slide 1: Lecture 2 Review of Instruction Sets and Pipelines (Appendix A, C)
	Slide 2: Outline
	Slide 3: Arrival to current state-of-the art says that for a new Instruction Set…
	Slide 4
	Slide 5
	Slide 6: MIPS Encoding Summary
	Slide 7
	Slide 8: Outline
	Slide 9: Pipelining – how is it done?
	Slide 10: RISC-V Datapath: 5 Stages
	Slide 11: Visualizing Pipelining
	Slide 12: Pipelining is not quite that easy!
	Slide 13: 1. One Memory Port/Structural Hazards Instruction and Data memories are the same memory unit
	Slide 14: Structural Hazards
	Slide 15: 2. Data Hazard on R1
	Slide 16: Forwarding to Avoid Data Hazard
	Slide 17: Hardware changes to support Forwarding (a.k.a. Bypassing or Short-circuiting)
	Slide 18: Data Hazard Even with Forwarding (1/2) Load-Use Situations
	Slide 19: Data Hazard Even with Forwarding (2/2)
	Slide 20: How to STALL the Pipeline
	Slide 21: Datapath with Hazard Detection
	Slide 22: 3. Control Hazard on Branches - Three Stage Stall
	Slide 23: Branch STALL Impact
	Slide 24: How to FLUSH
	Slide 25: Reducing Branch Delay
	Slide 26: Datapath – with 1 cycle penalty for control hazards Branch Taken
	Slide 27: Datapath – with 1 cycle penalty for control hazards Branch Taken
	Slide 28: Four Compile Time Schemes to Reduce Branch Hazard Penalties due to One-Delay Stalls
	Slide 29: Four Compile Time Schemes to Reduce Branch Hazard Penalties due to One-Delay Stalls
	Slide 30: Concluding Remarks

