
1

Lecture 3
Review of Caches and Virtual Memory

(Appendix B)

Cristinel Ababei
Dept. of Electrical and Computer Engineering

COEN-4730/EECE-5730 Computer Architecture

1Credits: Slides adapted from presentations of Pasricha, Kubiatowicz, Patterson, Mutlu, Elsevier

Outline

• Memory hierarchy, example, terminology

• 4 questions

• 6 basic cache optimizations

• Virtual memory

• Summary

2

1

2

2

Since 1980, CPU has outpaced DRAM ...
CPU

60% per yr

2X in 1.5 yrs

DRAM

9% per yr

2X in 10 yrs
DRAM

CPU

Performance

(1/latency)

Year

Gap grew 50% per
year

•How did architects address this gap?
 Put small, fast “cache” memories between CPU and DRAM
 Create a “memory hierarchy” 3

Memory Hierarchy
•Everything is a cache for something else

•Take advantage of the principle of locality to:
 Present as much memory as possible in cheapest technology

 Provide access at speed offered by fastest technology

O
n

-C
h

ip

C
ach

e

R
eg

isters

Control

Datapath

Secondary

Storage

(Disk/

FLASH/

PCM)

Processor

Main

Memory

(DRAM/

PCM)

L3

Cache

(SRAM)

1s 10,000,000s
 (10s ms)

Speed (ns): 10s-100s 100s

100s GsSize (bytes): Ks-Ms Ms

Tertiary

Storage

(Tape/

Cloud

Storage)

10,000,000,000s
 (10s sec)

Ts 4

3

4

3

iMac G5

1.6 GHz

Reg L1 Inst L1 Data L2 DRAM Disk

Size 1K 64K 32K 512K 256M 80G

Latency

Cycles,

Time

1,

0.6 ns

3,

1.9 ns

3,

1.9 ns

11,

6.9 ns

88,

55 ns

107,

12 ms

Let programs address a memory space that scales to the disk
size, at a speed that is usually as fast as register access.

Managed

by compiler
Managed

by hardware
Managed by OS,

hardware,

application

Goal: Illusion of large, fast, cheap memory

Example of Memory Hierarchy: Apple iMac G5

5

iMac’s PowerPC 970: all caches on-chip

6

5

6

4

Memory Hierarchy: Terminology
•Hit: data appears in some block in the upper level (example: Block X)

 Hit Rate: Fraction of memory access found in the upper level
 Hit Time: Time to access the upper level which consists of:

Time to determine hit/miss + Memory access time

•Miss: data needs to be retrieved from a block in the lower level (Block Y)
 Miss Rate = 1 - (Hit Rate)
 Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block to the processor

•Hit Time << Miss Penalty (500 instructions on 21264!)

7

Lower Level

MemoryUpper Level

MemoryTo Processor

From Processor
Blk X

Blk Y

CPU

Registers

8

Program Locality

◼ Programs access a small proportion of their address space at
any time

◼ Temporal locality
◼ Items accessed recently are likely to be accessed again soon

◼ E.g., instructions in a loop

◼ Spatial locality
◼ Items near those accessed recently are likely to be accessed soon

◼ E.g., sequential instruction access, array data

8

7

8

5

Outline

• Memory hierarchy, example, terminology

• 4 questions

• 6 basic cache optimizations

• Virtual memory

• Summary

9

4 Questions for Memory Hierarchy

•Q1: Where can a block be placed in the upper level?
(Block placement)

•Q2: How is a block found if it is in the upper level?
 (Block identification)
•Q3: Which block should be replaced on a miss?

 (Block replacement)
•Q4: What happens on a write?

 (Write strategy)

10

9

10

6

Q1: Where can a block be placed in the upper level?

•Block 12 placed in 8 block cache:
 Direct mapped, 2-way set associative (SA), Fully associative
 S.A. Mapping = Block Number MODULO Number Sets

Cache

012345670123456701234567

Memory

1111111111222222222233
01234567890123456789012345678901

Fully associative
(Full Mapped)

Direct Mapped
(12 mod 8) = 4

2-Way Set Associative
(12 mod 4) = 0

11

Direct Mapped Cache
• Location determined by address

• Direct mapped: only one choice
– (Block address) modulo (#Blocks in cache)

◼ #Blocks is a power of 2

◼ Use low-order address bits

12

11

12

7

•Compulsory (cold start or process migration, first reference): first access
to a block
 “Cold” fact of life: not a whole lot you can do about it

 Note: If you are going to run “billions” of instruction, Compulsory Misses are insignificant

•Capacity:
 Cache cannot contain all blocks accessed by the program

 Solution: increase cache size

•Conflict (collision):
 Multiple memory locations mapped to the same cache location

 Solution 1: increase cache size

 Solution 2: increase associativity

•Coherence (invalidation): other process (e.g., I/O) updates memory

Sources of Cache Misses

13

• Block is minimum quantum of caching

– Data select field used to select data within block

• Index Used to Lookup Candidates in Cache

– Index identifies the set

• How do we know which particular block is stored in a cache location?

– Store block address as well as the data

– Actually, only need the high-order bits

– Called the tag

– If no candidates match, then declare cache miss

• What if there is no data in a location?

– Valid bit: 1 = present, 0 = not present

– Initially 0

Q2: How is a block found if it is in the upper level?

14

13

14

8

Address Subdivision

15

Review: Direct Mapped Cache
• Direct Mapped 2N byte cache:

 The uppermost (32 - N) bits are always the Cache Tag
 The lowest M bits are the Byte Select (Block Size = 2M)

• Example: 1 KB Direct Mapped Cache with 32 B Blocks
 Index chooses potential block
 Tag checked to verify block
 Byte select chooses byte within block

16

15

16

9

Review: Set Associative (SA) Cache
• N-way set associative: N entries (blocks) per Cache Index

 N direct mapped caches operate in parallel

• Example: Two-way Set Associative cache
 Cache Index selects a “set” from the cache
 Two tags in the set are compared to input in parallel
 Data is selected based on the tag result

17

Review: Fully Associative Cache
• Fully Associative: Every cache entry can hold/store any block/line

 Address does not include a cache index
 Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size = 32 B blocks
 We need N 27-bit comparators
 Still have byte select to choose from within block

18

17

18

10

Q3: Which block should be replaced on a miss?

• Easy for Direct Mapped

• Set Associative or Fully Associative:
• LRU (Least Recently Used): Appealing, but hard to implement for high associativity

• Random: Easy, but – how well does it work?

• Miss rates:

Assoc: 2-way 4-way 8-way

Size LRU Ran LRU Ran LRU Ran

16K 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64K 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256K 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

19

Q4: What happens on a Write?

Write-Through Write-Back

Policy

Data written to cache block

also written to lower-level

memory

• Write data only to

the cache block

• Update lower level

when a block falls

out of the cache

Debug Easy Hard

Do read misses

produce writes?
No Yes

Do repeated writes

make it to lower

level?

Yes No

20

19

20

11

Write Buffers for Write-Through Caches

Q. Why a write buffer?

Processor
Cache

Write Buffer

Lower
Level

Memory

Holds data awaiting write-through to lower-level memory

A. So CPU doesn’t stall

Q. Why a buffer, why not just
one register?

A. Bursts of writes are
common

Q. Are Read After Write
(RAW) hazards an issue for
write buffer?

A. Yes! Drain buffer before next
read, or check write buffers for
match on reads

21

Outline

• Memory hierarchy, example, terminology

• 4 questions

• 6 basic cache optimizations

• Virtual memory

• Summary

22

21

22

12

6 Basic Cache Optimizations
• Reducing Miss Rate

1. Larger Block size (compulsory misses)
2. Larger Cache size (capacity misses)
3. Higher Associativity (conflict misses)

• Reducing Miss Penalty
4. Multilevel Caches
5. Giving Read Misses priority over Writes

• Reducing Hit Time
6. Avoid address translation during indexing of Cache

23
Avg. Memory Access Time = AMAT = Hit time + Miss rate x Miss penalty

Outline

• Memory hierarchy, example, terminology

• 4 questions

• 6 basic cache optimizations

• Virtual memory

• Summary

24

23

24

13

Virtual Memory (VM)
• A memory management approach

– Programmer views memory as large address space (larger than physical
memory) without concerns about the amount of physical memory or memory
management

• Main idea: Use main memory as a “cache” for secondary (disk)
storage

– Managed jointly by CPU and the operating system (OS)

– VM “block” is called a page; Typical size of a page: 1-8K

– VM translation “miss” is called a page fault

• Programs share main memory
– Each gets a private virtual address space holding its frequently used code and data

– Protected from other programs

• CPU and OS translate virtual addresses to physical addresses
25

Cache and Virtual Memory

26

25

26

14

Memory Management Unit (MMU) for Paging

27

Notes:
• Virtual (Logical) memory is organized into Pages (or virtual page).
• Physical memory is organized into Page Frames (or physical page).
• The size of Page matches a Page Frame.

Memory Mapping or Address Translation:
Virtual Address to Physical Address

• In virtual memory, blocks of memory (called pages)
are mapped from one set of addresses (called
virtual addresses) to another set (called physical
addresses).

• The processor generates virtual addresses while
the memory is accessed using physical addresses.
Both the virtual memory and the physical memory
are broken into pages, so that a virtual page is
mapped to a physical page.

• It is possible for a virtual page to be absent from
main memory and not be mapped to a physical
address; in that case, the page resides on disk.

• Physical pages can be shared by having two virtual
addresses point to the same physical address. This
capability is used to allow two different programs
to share data or code.

28

27

28

15

Translation Using a Page Table (PT)

•The page table is indexed
with the virtual page
number to obtain the
corresponding portion of
the physical address

29

Mapping Pages to Storage

30

29

30

16

Storage of Page Tables Issues

•If in physical memory, each memory reference in
the program results in 2 memory accesses:
 One for page table entry

 Another to perform desired memory access

•Solution: TLB (Translation Lookaside Buffer) – small
cache to hold PT entries

31

• Cache applied to address translations

• Fully Associative, Set Associative, or Direct Mapped

Translation Lookaside Buffers (TLB)

CPU TLB Cache
Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

missTranslation
with a TLB

32

31

32

17

Fast Translation Using a TLB

33

Putting it All Together: TLB, Page Table, Cache,
Main Memory

33

34

18

TLB and Cache Interaction

35

Three Advantages of Virtual Memory
1. Translation:

 Program can be given consistent view of memory, even though physical memory is
scrambled

 Makes multithreading reasonable
 Only the most important part of program (“Working Set”) must be in physical memory.
 Contiguous structures (like stacks) use only as much physical memory as necessary yet

still grow later.

2. Protection:
 Different threads (or processes) protected from each other.
 Different pages can be given special behavior

• (Read Only, Invisible to user programs, etc.)

 Kernel data protected from User programs
 Very important for protection from malicious programs

3. Sharing:
 Can map same physical page to multiple users (i.e., processes or programs)

(“Shared memory”)

36

35

36

19

Outline

• Memory hierarchy, example, terminology

• 4 questions

• 6 basic cache optimizations

• Virtual memory

• Summary

37

Summary #1/3: The Cache Design Space
•Several interacting dimensions

 cache size
 block size
 associativity
 replacement policy
 write-through vs. write-back

•The optimal choice is a compromise
 depends on access characteristics

• workload

• use (I-cache, D-cache, TLB)

 depends on technology/cost

•Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

38

37

38

20

Summary #2/3: Caches
•The Principle of Locality:

 Program access a relatively small portion of the address space at any
instant of time.
• Temporal Locality: Locality in Time
• Spatial Locality: Locality in Space

•Three Major Categories of Cache Misses:
 Compulsory Misses: sad facts of life. Example: cold start misses.
 Capacity Misses: increase cache size
 Conflict Misses: increase cache size and/or associativity.

•Write Policy: Write Through vs. Write Back
•Today CPU time is a function of (ops, cache misses) vs.

just of (ops): affects Compilers, Data structures, and
Algorithms

39

Summary #3/3: Virtual Memory (VM)
•Page tables map virtual address to physical address
•TLBs are important for fast translation
•TLB misses are significant in processor performance
•Caches, TLBs, Virtual Memory all understood by examining how

they deal with 4 questions:
1) Where can block be placed?
2) How is block found?
3) What block is replaced on miss?
4) How are writes handled?

•Today VM allows many processes to share single memory
without having to swap all processes to disk; today VM
protection is paramount!

40

39

40

	Slide 1: Lecture 3 Review of Caches and Virtual Memory (Appendix B)
	Slide 2: Outline
	Slide 3: Since 1980, CPU has outpaced DRAM ...
	Slide 4: Memory Hierarchy
	Slide 5
	Slide 6
	Slide 7: Memory Hierarchy: Terminology
	Slide 8
	Slide 9: Outline
	Slide 10: 4 Questions for Memory Hierarchy
	Slide 11: Q1: Where can a block be placed in the upper level?
	Slide 12
	Slide 13: Sources of Cache Misses
	Slide 14
	Slide 15
	Slide 16: Review: Direct Mapped Cache
	Slide 17: Review: Set Associative (SA) Cache
	Slide 18: Review: Fully Associative Cache
	Slide 19: Q3: Which block should be replaced on a miss?
	Slide 20: Q4: What happens on a Write?
	Slide 21: Write Buffers for Write-Through Caches
	Slide 22: Outline
	Slide 23: 6 Basic Cache Optimizations
	Slide 24: Outline
	Slide 25
	Slide 26: Cache and Virtual Memory
	Slide 27: Memory Management Unit (MMU) for Paging
	Slide 28: Memory Mapping or Address Translation: Virtual Address to Physical Address
	Slide 29: Translation Using a Page Table (PT)
	Slide 30: Mapping Pages to Storage
	Slide 31: Storage of Page Tables Issues
	Slide 32
	Slide 33: Fast Translation Using a TLB
	Slide 34: Putting it All Together: TLB, Page Table, Cache, Main Memory
	Slide 35: TLB and Cache Interaction
	Slide 36: Three Advantages of Virtual Memory
	Slide 37: Outline
	Slide 38: Summary #1/3: The Cache Design Space
	Slide 39: Summary #2/3: Caches
	Slide 40: Summary #3/3: Virtual Memory (VM)

