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Lecture 4
Advanced Cache Optimizations

(Ch.2)

Cristinel Ababei
Dept. of Electrical and Computer Engineering

COEN-4730/EECE-5730 Computer Architecture

1Credits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier
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•Memory hierarchy

•12 advanced cache optimizations

•Real world examples
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Memory 
Hierarchy
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Memory Hierarchy Design
•Memory hierarchy design becomes more crucial with 

recent multi-core processors:
Aggregate peak bandwidth grows with # cores:

• Intel Core i7 can generate two references per core per clock

• Four cores and 3.2 GHz clock
• 25.6 billion 64-bit data references/second +

• 12.8 billion 128-bit instruction references

• = 409.6 GB/s!

• DRAM bandwidth is only 6% of this (34.1 GB/s)

• Requires:
• Multi-port, pipelined caches

• Two levels of cache per core

• Shared third-level cache on chip
4
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Processor-DRAM Memory Gap (Latency)

Processor-Memory
Performance Gap:
(grows ~50% / 
year)

5

6 Basic Cache Optimizations
• Reducing Miss Rate

1. Larger Block size (compulsory misses)
2. Larger Cache size (capacity misses)
3. Higher Associativity (conflict misses)

• Reducing Miss Penalty
4. Multilevel Caches 
5. Giving Read Misses priority over Writes 

• Reducing Hit Time
6. Avoid address translation during indexing of Cache

avg. memory access time = AMAT =  Hit time + Miss rate x Miss penalty6
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12 Advanced* Cache Optimizations
Reducing Hit Time

1.Small and simple caches

2.Way prediction

3.Trace caches

Increasing Cache Bandwidth

4.Pipelined caches

5.Multi-banked caches

6.Non-blocking caches

Reducing Miss Penalty

7.Critical word first

8.Merging write buffers

Reducing Miss Rate

9.Victim Cache

10. Hardware prefetching

11. Compiler prefetching

12. Compiler Optimizations

8

*) These are advanced, but, not necessarily new techniques.
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1. Fast Hit Time: Small and Simple L1 Caches

• Index into memory-cache and then compare tag(s) takes time
 Critical timing path:

• addressing tag memory, then

• comparing tags, then

• selecting correct set

• Small cache can help hit time since smaller memory takes less time to index 
to find right set of block(s) in cache
 E.g., fast L1 caches were same small size for 3 generations of AMD 

microprocessors: K6, Athlon, and Opteron (smaller => shorter access lines)

 Also, having a L2 cache small enough to fit on-chip with the processor avoids time 
penalty of going off chip (off-chip ~10X longer data latency, from capacitance)

• Simple cache  direct mapping
 Overlap tag check with data transmission since no choice (kill data out if tag bad)

9

L1 Size and Associativity

Access time vs. size and associativity

Using CACTI 6.5
40 nm
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L1 Size and Associativity

Energy per read vs. size and associativity
11

2. Fast Hit Time: Way Prediction
•How to combine fast hit time of Direct Mapped and have the lower 

conflict misses of 2-way Set Associative cache? 
•Way Prediction: keep a few extra bits in cache to predict the “way,” or 

block within the set, of next cache access. 
 Multiplexor is set early to select desired block; only 1 tag comparison performed during 1st 

clock cycle in parallel with reading the cache data 
 Miss 1st cycle  check other blocks for matches in next clock cycle

 Accuracy 
• > 90% for two-way; > 80% for four-way; I-cache > D-cache

 Power consumption: lower as multiple block checking avoided on a hit

• First used on MIPS R10000 ~mid-90s; now ARM Cortex-A8
•Drawback: hard to tune CPU pipeline if hit time varies from 1 or 2 

cycles

Hit Time

Way-Miss Hit Time Miss Penalty
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• Key Idea: Pack multiple non-contiguous basic blocks into 
one contiguous trace cache line

BR BR BR

• Single fetch brings in multiple basic blocks
• Trace cache indexed by start address AND next n branch 

predictions

BRBRBR

3. Fast (Instruction Cache) Hit Times via: Trace Cache

13

Trace Cache
•A trace is a sequence of instructions starting at any 

point in a dynamic instruction stream.

•It is specified by a start address and the branch 
outcomes of control instructions.

14

A B C

D

E A B C D E

Instruction Cache Trace Cache
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Fetch Mechanism

•Trace cache is accessed in 
parallel with instruction cache.
 Hit → Trace read into issue buffer
 Miss → Fetch from instruction cache

•Trace cache hit if:
 Fetch address match
 Branch predictions match

•Trace cache is NOT on the 
critical path of instruction fetch.

15

4. Increase Cache Bandwidth: Pipelining Cache

•Pipeline cache access to improve bandwidth
Examples: (I-cache access)

• Pentium: 1 cycle

• Pentium Pro – Pentium III: 2 cycles

• Pentium 4 – Core i7: 4 cycles

•Increases branch mis-prediction penalty

•Makes it easier to increase associativity

16
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5. Increase Cache Bandwidth: Multibanked Caches

•Organize cache as independent banks to support simultaneous access
 ARM Cortex-A8 supports 1-4 banks for L2
 Intel i7 supports 4 banks for L1 and 8 banks for L2

•Banking works best when accesses naturally spread themselves across 
banks  mapping of addresses to banks affects behavior of memory 
system
 Sequential interleaving (see figure above)

•Also reduces power consumption
17

Sun UltraSPARCT2 8-bank L2 cache
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6. Increase Cache Bandwidth: Nonblocking Caches
• Allow hits before previous misses complete

 “Hit under miss”

 “Hit under multiple miss”

• Intel i7 supports both; ARM A8 has limited 
support in L2 

• In general, processors can hide L1 miss 
penalty but not L2 miss penalty

Nonblocking cache in Intel i7 

32KB L1 cache, 4-cycle latency 

256 KB L2 cache,10-cycle latency

2 MB L3 cache, 36-cycle latency 

All caches 8-way set associative, 64-byte block size

• Deciding how many outstanding misses to support is complex
• Larger caches and L3 caches have reduced benefits

9-12.5% saving for hit-under-1-miss
10-16% for hit-under-2-misses
Little improvement for 64 case

19

7. Reduce Miss Penalty: Early Restart (minor 
help) & Critical Word First (major)

•Do not wait for full block before restarting CPU during Load

•Early restart - As soon as the requested word of the block 
arrives, send it to the CPU and let the CPU continue execution
 Spatial locality  tend to want next sequential word, so first access to a block is normally to 

1st word, but next is to 2nd word, which may stall again and so on, so benefit from early 
restart alone is not clear

•Critical Word First - Request the missed word first from memory 
and send it to the CPU as soon as it arrives; let the CPU continue 
execution while filling the rest of the words in the block
 Large blocks more popular today  Critical Word 1st Widely Used 

Block

20
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8. Reduce Miss Penalty: Merging Write Buffer
•When storing to a block that is already pending in the write 

buffer, update write buffer
 Reduces stalls due to full write buffer
 Multiword writes faster than writes performed one word at a time

No write 
merging

Write 
merging

Sun T1 (Niagara) and Intel Core i7 processors, among many others, use write merging for fast 
write-through L1 (to L2) caches. 21

9. Reducing Misses: Victim Cache

•How to combine fast hit time 
of direct mapped yet still 
avoid conflict misses? 
•Add buffer to place data 

discarded from cache
•Jouppi [1990]: 4-entry victim 

cache removed 20% to 95% 
of conflicts for a 4 KB direct 
mapped data cache
•Used in Alpha, HP machines

To Next Lower Level in Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

22
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10. Reducing Misses by Hardware Prefetching of Instructions & Data
• Prefetching relies on having extra memory bandwidth that can be used without penalty

• Instruction Prefetching
• Typically, CPU fetches 2 blocks on a miss: the requested block and the next consecutive block. 

• Requested block is placed in instruction cache when it returns, and prefetched block is placed into instruction 
stream buffer

• Data Prefetching
• Pentium 4 can prefetch data into L2 cache from up to 8 streams from 8 different 4 KB pages 

• Prefetching invoked if 2 successive L2 cache misses to a page, if distance between those cache blocks is < 256 
bytes
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11. Reducing Misses by Software Prefetching Data

•Insert Prefetch instructions to request data before the 
processor needs it
•Data prefetch

 Register Prefetch: Load data into register 
(HP PA-RISC loads)

 Cache Prefetch: Load into cache 
(MIPS IV, PowerPC, SPARC v.9)

 Special prefetching instructions cannot cause faults; a form of speculative 
execution

•Issuing prefetch instructions takes time
 Is cost of prefetch issues < savings in reduced misses?
 Higher superscalar reduces difficulty of issue bandwidth

24
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12. Reducing Misses by Compiler Optimizations
•McFarling [1989] reduced cache misses by 75% on 8 KB 

direct mapped cache, 4 Byte blocks in Software

•Instructions
 Reorder procedures in memory to reduce conflict misses
 Profiling to look at conflicts (using custom tools)

•Data
 Merging Arrays: Improve spatial locality by single array of compound 

elements vs. 2 arrays
 Loop Interchange: Change nesting of loops to access data in order stored in 

memory
 Loop Fusion: Combine 2 independent loops that have same looping and some 

variables overlap
 Blocking: Improve temporal locality by accessing “blocks” of data repeatedly 

vs. going down whole columns or rows
25

Summary: Advanced Cache Optimizations
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Real World Example #1: 
AMD Opteron Memory Hierarchy

• 12-stage integer pipeline yields a maximum clock rate of 2.8 GHz 

• 48-bit virtual and 40-bit physical addresses

• I and D cache: 64 KB, 2-way set associative, 64-B block, LRU

• L2 cache: 1 MB, 16-way, 64-B block, pseudo LRU

• Data and L2 caches use write back, write allocate 

• L1 caches are virtually indexed and physically tagged

• L1 I TLB and L1 D TLB: fully associative, 40 entries 
 32 entries for 4 KB pages and 8 for 2 MB or 4 MB pages 

• L2 I TLB and L1 D TLB: 4-way, 512 entities of 4 KB pages

• Memory controller allows up to 10 cache misses
 8 from D cache and 2 from I cache

28
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Opteron Memory Hierarchy Performance

•For SPEC2000
 I cache misses per instruction is 0.01% to 0.09% 
D cache misses per instruction are 1.34% to 1.43% 
 L2 cache misses per instruction are 0.23% to 0.36% 

•Commercial benchmark (“TPC-C-like”)
 I cache misses per instruction is 1.83%  (100X!)

D cache misses per instruction are 1.39% ( same)
 L2 cache misses per instruction are 0.62% (2X to 3X)

29

Pentium 4 vs. Opteron Memory Hierarchy

CPU Pentium 4 (3.2 GHz*) Opteron (2.8 GHz)

Instruction 

Cache
Trace Cache 

(8K micro-ops)

2-way associative, 64 

KB, 64B block

Data 

Cache 8-way associative, 16 KB, 

64B block, inclusive in L2

2-way associative, 64 

KB, 64B block, exclusive 

to L2

L2 cache 8-way associative, 

2 MB, 128B block

16-way associative, 1 

MB, 64B block

Prefetch 8 streams to L2 1 stream to L2

Memory 200 MHz x 64 bits 200 MHz x 128 bits

30
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Misses Per Instruction (MPI): Pentium 4 vs. Opteron
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Opteron better

Pentium better

• D cache miss: P4 is 2.3X to 3.4X vs. Opteron

• L2 cache miss: P4 is 0.5X to 1.5X vs. Opteron

• Note: Same ISA, but not same instruction count

2.3X

3.4X

0.5X

1.5X
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Real World Example #2: 
Intel core i7 Memory Hierarchy

•Out-of-order execution processor that includes four cores and 
supports the x86-64 instruction set architecture
 Each core can execute up to four 80x86 instructions per clock cycle using a multiple 

issue, dynamically scheduled, 16-stage pipeline
 Can also support up to two simultaneous threads per processor, using a technique 

called simultaneous multithreading; 3.3 GHz clock rate
 Uses 48-bit virtual addresses and 36-bit physical addresses

• Yielding a maximum physical memory of 36 GB.

 Memory management is handled with a two level TLB

32
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Intel core i7 Memory Hierarchy

• 3-level cache hierarchy
 L1 is virtually indexed and physically tagged while the L2 and L3 caches are physically indexed
 L1 and L2 are separate for each core; L3 is shared (max. 2 MB/core)
 All three caches are nonblocking and allow multiple outstanding writes
 A merging write buffer is used for the L1 cache, which holds data in the event that the line is not 

present in L1 when it is written. (That is, an L1 write miss does not cause the line to be allocated) 
 L3 is inclusive of L1 and L2
 Replacement is by a variant on pseudo-LRU; in the case of L3 the block replaced is always the lowest 

numbered way whose access bit is turned off. This is not quite random but is easy to compute.
33

Figure 2.22 The L1 data cache miss rate for 17 SPECCPU2006 benchmarks is shown in two ways: relative to the actual loads that complete execution 
successfully and relative to all the references to L1, which also includes prefetches, speculative loads that do not complete, and writes, which count as 
references, but do not generate misses. These data, like the rest in this section, were collected by Professor Lu Peng and Ph.D. student Ying Zhang, both 
of Louisiana State University, based on earlier studies of the Intel Core Duo and other processors (see Peng et al. [2008]). 

Intel core i7 Cache Performance

34
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Figure 2.24 The L2 and L3 data cache miss rates for 17 SPECCPU2006 benchmarks are shown relative to all the references to L1, which also includes 
prefetches, speculative loads that do not complete, and program–generated loads and stores. These data, like the rest in this section, were collected 
by Professor Lu Peng and Ph.D. student Ying Zhang, both of Louisiana State University. 

Intel core i7 Cache Performance

35

Figure 2.26 Instruction and data misses per 1000 instructions as cache size varies from 4 KB to 4096 KB. Instruction misses for gcc are 30,000 to 
40,000 times larger than lucas, and, conversely, data misses for lucas are 2 to 60 times larger than gcc. The programs gap, gcc, and lucas are from 
the SPEC2000 benchmark suite. 

Intel core i7 Cache Performance
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