
1

Lecture 4
Advanced Cache Optimizations

(Ch.2)

Cristinel Ababei
Dept. of Electrical and Computer Engineering

COEN-4730/EECE-5730 Computer Architecture

1Credits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier

Outline

•Memory hierarchy

•12 advanced cache optimizations

•Real world examples

2

1

2

2

Memory
Hierarchy

3

Memory Hierarchy Design
•Memory hierarchy design becomes more crucial with

recent multi-core processors:
Aggregate peak bandwidth grows with # cores:

• Intel Core i7 can generate two references per core per clock

• Four cores and 3.2 GHz clock
• 25.6 billion 64-bit data references/second +

• 12.8 billion 128-bit instruction references

• = 409.6 GB/s!

• DRAM bandwidth is only 6% of this (34.1 GB/s)

• Requires:
• Multi-port, pipelined caches

• Two levels of cache per core

• Shared third-level cache on chip
4

3

4

3

Processor-DRAM Memory Gap (Latency)

Processor-Memory
Performance Gap:
(grows ~50% /
year)

5

6 Basic Cache Optimizations
• Reducing Miss Rate

1. Larger Block size (compulsory misses)
2. Larger Cache size (capacity misses)
3. Higher Associativity (conflict misses)

• Reducing Miss Penalty
4. Multilevel Caches
5. Giving Read Misses priority over Writes

• Reducing Hit Time
6. Avoid address translation during indexing of Cache

avg. memory access time = AMAT = Hit time + Miss rate x Miss penalty6

5

6

4

Outline

•Memory hierarchy

•12 advanced cache optimizations

•Real world examples

7

12 Advanced* Cache Optimizations
Reducing Hit Time

1.Small and simple caches

2.Way prediction

3.Trace caches

Increasing Cache Bandwidth

4.Pipelined caches

5.Multi-banked caches

6.Non-blocking caches

Reducing Miss Penalty

7.Critical word first

8.Merging write buffers

Reducing Miss Rate

9.Victim Cache

10. Hardware prefetching

11. Compiler prefetching

12. Compiler Optimizations

8

*) These are advanced, but, not necessarily new techniques.

7

8

5

1. Fast Hit Time: Small and Simple L1 Caches

• Index into memory-cache and then compare tag(s) takes time
 Critical timing path:

• addressing tag memory, then

• comparing tags, then

• selecting correct set

• Small cache can help hit time since smaller memory takes less time to index
to find right set of block(s) in cache
 E.g., fast L1 caches were same small size for 3 generations of AMD

microprocessors: K6, Athlon, and Opteron (smaller => shorter access lines)

 Also, having a L2 cache small enough to fit on-chip with the processor avoids time
penalty of going off chip (off-chip ~10X longer data latency, from capacitance)

• Simple cache  direct mapping
 Overlap tag check with data transmission since no choice (kill data out if tag bad)

9

L1 Size and Associativity

Access time vs. size and associativity

Using CACTI 6.5
40 nm

10

9

10

6

L1 Size and Associativity

Energy per read vs. size and associativity
11

2. Fast Hit Time: Way Prediction
•How to combine fast hit time of Direct Mapped and have the lower

conflict misses of 2-way Set Associative cache?
•Way Prediction: keep a few extra bits in cache to predict the “way,” or

block within the set, of next cache access.
 Multiplexor is set early to select desired block; only 1 tag comparison performed during 1st

clock cycle in parallel with reading the cache data
 Miss 1st cycle  check other blocks for matches in next clock cycle

 Accuracy
• > 90% for two-way; > 80% for four-way; I-cache > D-cache

 Power consumption: lower as multiple block checking avoided on a hit

• First used on MIPS R10000 ~mid-90s; now ARM Cortex-A8
•Drawback: hard to tune CPU pipeline if hit time varies from 1 or 2

cycles

Hit Time

Way-Miss Hit Time Miss Penalty

12

11

12

7

• Key Idea: Pack multiple non-contiguous basic blocks into
one contiguous trace cache line

BR BR BR

• Single fetch brings in multiple basic blocks
• Trace cache indexed by start address AND next n branch

predictions

BRBRBR

3. Fast (Instruction Cache) Hit Times via: Trace Cache

13

Trace Cache
•A trace is a sequence of instructions starting at any

point in a dynamic instruction stream.

•It is specified by a start address and the branch
outcomes of control instructions.

14

A B C

D

E A B C D E

Instruction Cache Trace Cache

13

14

8

Fetch Mechanism

•Trace cache is accessed in
parallel with instruction cache.
 Hit → Trace read into issue buffer
 Miss → Fetch from instruction cache

•Trace cache hit if:
 Fetch address match
 Branch predictions match

•Trace cache is NOT on the
critical path of instruction fetch.

15

4. Increase Cache Bandwidth: Pipelining Cache

•Pipeline cache access to improve bandwidth
Examples: (I-cache access)

• Pentium: 1 cycle

• Pentium Pro – Pentium III: 2 cycles

• Pentium 4 – Core i7: 4 cycles

•Increases branch mis-prediction penalty

•Makes it easier to increase associativity

16

15

16

9

5. Increase Cache Bandwidth: Multibanked Caches

•Organize cache as independent banks to support simultaneous access
 ARM Cortex-A8 supports 1-4 banks for L2
 Intel i7 supports 4 banks for L1 and 8 banks for L2

•Banking works best when accesses naturally spread themselves across
banks  mapping of addresses to banks affects behavior of memory
system
 Sequential interleaving (see figure above)

•Also reduces power consumption
17

Sun UltraSPARCT2 8-bank L2 cache

18

17

18

10

6. Increase Cache Bandwidth: Nonblocking Caches
• Allow hits before previous misses complete

 “Hit under miss”

 “Hit under multiple miss”

• Intel i7 supports both; ARM A8 has limited
support in L2

• In general, processors can hide L1 miss
penalty but not L2 miss penalty

Nonblocking cache in Intel i7

32KB L1 cache, 4-cycle latency

256 KB L2 cache,10-cycle latency

2 MB L3 cache, 36-cycle latency

All caches 8-way set associative, 64-byte block size

• Deciding how many outstanding misses to support is complex
• Larger caches and L3 caches have reduced benefits

9-12.5% saving for hit-under-1-miss
10-16% for hit-under-2-misses
Little improvement for 64 case

19

7. Reduce Miss Penalty: Early Restart (minor
help) & Critical Word First (major)

•Do not wait for full block before restarting CPU during Load

•Early restart - As soon as the requested word of the block
arrives, send it to the CPU and let the CPU continue execution
 Spatial locality  tend to want next sequential word, so first access to a block is normally to

1st word, but next is to 2nd word, which may stall again and so on, so benefit from early
restart alone is not clear

•Critical Word First - Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block
 Large blocks more popular today  Critical Word 1st Widely Used

Block

20

19

20

11

8. Reduce Miss Penalty: Merging Write Buffer
•When storing to a block that is already pending in the write

buffer, update write buffer
 Reduces stalls due to full write buffer
 Multiword writes faster than writes performed one word at a time

No write
merging

Write
merging

Sun T1 (Niagara) and Intel Core i7 processors, among many others, use write merging for fast
write-through L1 (to L2) caches. 21

9. Reducing Misses: Victim Cache

•How to combine fast hit time
of direct mapped yet still
avoid conflict misses?
•Add buffer to place data

discarded from cache
•Jouppi [1990]: 4-entry victim

cache removed 20% to 95%
of conflicts for a 4 KB direct
mapped data cache
•Used in Alpha, HP machines

To Next Lower Level in Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

22

21

22

12

10. Reducing Misses by Hardware Prefetching of Instructions & Data
• Prefetching relies on having extra memory bandwidth that can be used without penalty

• Instruction Prefetching
• Typically, CPU fetches 2 blocks on a miss: the requested block and the next consecutive block.

• Requested block is placed in instruction cache when it returns, and prefetched block is placed into instruction
stream buffer

• Data Prefetching
• Pentium 4 can prefetch data into L2 cache from up to 8 streams from 8 different 4 KB pages

• Prefetching invoked if 2 successive L2 cache misses to a page, if distance between those cache blocks is < 256
bytes

1.16

1.45

1.18 1.20 1.21 1.26 1.29 1.32
1.40

1.49

1.97

1.00

1.20

1.40

1.60

1.80

2.00

2.20

ga
p

m
cf

fam
3d

wup
wise

ga
lge

l

fac
er

ec
sw

im
ap

plu
luc

as
m

gri
d

eq
ua

ke

P
e
rf

o
rm

a
n
c
e
 I

m
p
ro

v
e
m

e
n
t

SPECint2000 SPECfp2000

Pentium 4

23

11. Reducing Misses by Software Prefetching Data

•Insert Prefetch instructions to request data before the
processor needs it
•Data prefetch

 Register Prefetch: Load data into register
(HP PA-RISC loads)

 Cache Prefetch: Load into cache
(MIPS IV, PowerPC, SPARC v.9)

 Special prefetching instructions cannot cause faults; a form of speculative
execution

•Issuing prefetch instructions takes time
 Is cost of prefetch issues < savings in reduced misses?
 Higher superscalar reduces difficulty of issue bandwidth

24

23

24

13

12. Reducing Misses by Compiler Optimizations
•McFarling [1989] reduced cache misses by 75% on 8 KB

direct mapped cache, 4 Byte blocks in Software

•Instructions
 Reorder procedures in memory to reduce conflict misses
 Profiling to look at conflicts (using custom tools)

•Data
 Merging Arrays: Improve spatial locality by single array of compound

elements vs. 2 arrays
 Loop Interchange: Change nesting of loops to access data in order stored in

memory
 Loop Fusion: Combine 2 independent loops that have same looping and some

variables overlap
 Blocking: Improve temporal locality by accessing “blocks” of data repeatedly

vs. going down whole columns or rows
25

Summary: Advanced Cache Optimizations

26

25

26

14

Outline

•Memory hierarchy

•12 advanced cache optimizations

•Real world examples

27

Real World Example #1:
AMD Opteron Memory Hierarchy

• 12-stage integer pipeline yields a maximum clock rate of 2.8 GHz

• 48-bit virtual and 40-bit physical addresses

• I and D cache: 64 KB, 2-way set associative, 64-B block, LRU

• L2 cache: 1 MB, 16-way, 64-B block, pseudo LRU

• Data and L2 caches use write back, write allocate

• L1 caches are virtually indexed and physically tagged

• L1 I TLB and L1 D TLB: fully associative, 40 entries
 32 entries for 4 KB pages and 8 for 2 MB or 4 MB pages

• L2 I TLB and L1 D TLB: 4-way, 512 entities of 4 KB pages

• Memory controller allows up to 10 cache misses
 8 from D cache and 2 from I cache

28

27

28

15

Opteron Memory Hierarchy Performance

•For SPEC2000
 I cache misses per instruction is 0.01% to 0.09%
D cache misses per instruction are 1.34% to 1.43%
 L2 cache misses per instruction are 0.23% to 0.36%

•Commercial benchmark (“TPC-C-like”)
 I cache misses per instruction is 1.83% (100X!)

D cache misses per instruction are 1.39% ( same)
 L2 cache misses per instruction are 0.62% (2X to 3X)

29

Pentium 4 vs. Opteron Memory Hierarchy

CPU Pentium 4 (3.2 GHz*) Opteron (2.8 GHz)

Instruction

Cache
Trace Cache

(8K micro-ops)

2-way associative, 64

KB, 64B block

Data

Cache 8-way associative, 16 KB,

64B block, inclusive in L2

2-way associative, 64

KB, 64B block, exclusive

to L2

L2 cache 8-way associative,

2 MB, 128B block

16-way associative, 1

MB, 64B block

Prefetch 8 streams to L2 1 stream to L2

Memory 200 MHz x 64 bits 200 MHz x 128 bits

30

29

30

16

Misses Per Instruction (MPI): Pentium 4 vs. Opteron

-

1

2

3

4

5

6

7

gz
ip vp

r

gc
c

m
cf

cr
af

ty

w
u
pw

is
e

sw
im

m
gr

id

ap
pl

u

m
es

a

R
a
ti
o
 o

f
M

P
I:

 P
e
n
ti
u
m

 4
/O

p
te

ro
n

D cache: P4/Opteron

L2 cache: P4/Opteron

SPECint2000 SPECfp2000

Opteron better

Pentium better

• D cache miss: P4 is 2.3X to 3.4X vs. Opteron

• L2 cache miss: P4 is 0.5X to 1.5X vs. Opteron

• Note: Same ISA, but not same instruction count

2.3X

3.4X

0.5X

1.5X

31

Real World Example #2:
Intel core i7 Memory Hierarchy

•Out-of-order execution processor that includes four cores and
supports the x86-64 instruction set architecture
 Each core can execute up to four 80x86 instructions per clock cycle using a multiple

issue, dynamically scheduled, 16-stage pipeline
 Can also support up to two simultaneous threads per processor, using a technique

called simultaneous multithreading; 3.3 GHz clock rate
 Uses 48-bit virtual addresses and 36-bit physical addresses

• Yielding a maximum physical memory of 36 GB.

 Memory management is handled with a two level TLB

32

31

32

17

Intel core i7 Memory Hierarchy

• 3-level cache hierarchy
 L1 is virtually indexed and physically tagged while the L2 and L3 caches are physically indexed
 L1 and L2 are separate for each core; L3 is shared (max. 2 MB/core)
 All three caches are nonblocking and allow multiple outstanding writes
 A merging write buffer is used for the L1 cache, which holds data in the event that the line is not

present in L1 when it is written. (That is, an L1 write miss does not cause the line to be allocated)
 L3 is inclusive of L1 and L2
 Replacement is by a variant on pseudo-LRU; in the case of L3 the block replaced is always the lowest

numbered way whose access bit is turned off. This is not quite random but is easy to compute.
33

Figure 2.22 The L1 data cache miss rate for 17 SPECCPU2006 benchmarks is shown in two ways: relative to the actual loads that complete execution
successfully and relative to all the references to L1, which also includes prefetches, speculative loads that do not complete, and writes, which count as
references, but do not generate misses. These data, like the rest in this section, were collected by Professor Lu Peng and Ph.D. student Ying Zhang, both
of Louisiana State University, based on earlier studies of the Intel Core Duo and other processors (see Peng et al. [2008]).

Intel core i7 Cache Performance

34

33

34

18

Figure 2.24 The L2 and L3 data cache miss rates for 17 SPECCPU2006 benchmarks are shown relative to all the references to L1, which also includes
prefetches, speculative loads that do not complete, and program–generated loads and stores. These data, like the rest in this section, were collected
by Professor Lu Peng and Ph.D. student Ying Zhang, both of Louisiana State University.

Intel core i7 Cache Performance

35

Figure 2.26 Instruction and data misses per 1000 instructions as cache size varies from 4 KB to 4096 KB. Instruction misses for gcc are 30,000 to
40,000 times larger than lucas, and, conversely, data misses for lucas are 2 to 60 times larger than gcc. The programs gap, gcc, and lucas are from
the SPEC2000 benchmark suite.

Intel core i7 Cache Performance

36

35

36

	Slide 1: Lecture 4 Advanced Cache Optimizations (Ch.2)
	Slide 2: Outline
	Slide 3: Memory Hierarchy
	Slide 4: Memory Hierarchy Design
	Slide 5
	Slide 6: 6 Basic Cache Optimizations
	Slide 7: Outline
	Slide 8: 12 Advanced* Cache Optimizations
	Slide 9: 1. Fast Hit Time: Small and Simple L1 Caches
	Slide 10: L1 Size and Associativity
	Slide 11: L1 Size and Associativity
	Slide 12: 2. Fast Hit Time: Way Prediction
	Slide 13: 3. Fast (Instruction Cache) Hit Times via: Trace Cache
	Slide 14: Trace Cache
	Slide 15: Fetch Mechanism
	Slide 16: 4. Increase Cache Bandwidth: Pipelining Cache
	Slide 17: 5. Increase Cache Bandwidth: Multibanked Caches
	Slide 18: Sun UltraSPARCT2 8-bank L2 cache
	Slide 19: 6. Increase Cache Bandwidth: Nonblocking Caches
	Slide 20: 7. Reduce Miss Penalty: Early Restart (minor help) & Critical Word First (major)
	Slide 21: 8. Reduce Miss Penalty: Merging Write Buffer
	Slide 22: 9. Reducing Misses: Victim Cache
	Slide 23: 10. Reducing Misses by Hardware Prefetching of Instructions & Data
	Slide 24: 11. Reducing Misses by Software Prefetching Data
	Slide 25: 12. Reducing Misses by Compiler Optimizations
	Slide 26: Summary: Advanced Cache Optimizations
	Slide 27: Outline
	Slide 28: Real World Example #1: AMD Opteron Memory Hierarchy
	Slide 29: Opteron Memory Hierarchy Performance
	Slide 30: Pentium 4 vs. Opteron Memory Hierarchy
	Slide 31: Misses Per Instruction (MPI): Pentium 4 vs. Opteron
	Slide 32: Real World Example #2: Intel core i7 Memory Hierarchy
	Slide 33: Intel core i7 Memory Hierarchy
	Slide 34: Intel core i7 Cache Performance
	Slide 35: Intel core i7 Cache Performance
	Slide 36: Intel core i7 Cache Performance

