
1

Lecture 5
Main Memory

(Ch.2)

Cristinel Ababei
Dept. of Electrical and Computer Engineering

COEN-4730/EECE-5730 Computer Architecture

1Credits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier
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Main Memory Background
•Performance of Main Memory: 

 Latency: affects cache Miss Penalty
 Bandwidth: I/O & Large Block →affect Miss Penalty 

•Main Memory is DRAM: Dynamic Random Access Memory
 Dynamic since needs to be refreshed periodically (8 ms, 1% time)
 Addresses divided into 2 halves (Memory as a 2D matrix):

• RAS or Row Address Strobe
• CAS or Column Address Strobe

•Cache uses SRAM: Static Random Access Memory
 No refresh (6 transistors per bit vs. 1 transistor + 1 capacitor per bit)

•While a lot is done in terms of cache organization (to 
reduce processor-DRAM performance gap), innovations in 
main memory is needed as well
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Memory Subsystem Organization

•Memory subsystem organization
Channel
DIMM
Rank
Chip
Bank
Row/Column
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Memory Subsystem

Memory 
channel

Memory 
channel

DIMM (Dual in-line memory module)

Processor

“Channel”
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Breaking down a DIMM
DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Serial Presence Detect (SPD)
- Stored in EEPROM on module 
- Has info to configure memory controllers
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Breaking down a DIMM
DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8 chips Rank 1
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Rank

Rank 0 (Front) Rank 1 (Back)

Data <0:63>CS <0:1>Addr/Cmd

<0:63><0:63>

Memory channel 8
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Breaking down a Rank
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Breaking down a Chip
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Breaking down a Bank
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Example: Transferring a Cache Block
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Example: Transferring a Cache Block
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Example: Transferring a Cache Block
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Example: Transferring a cache block
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Example: Transferring a Cache Block

0xFFFF…F
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DRAM Overview
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DRAM Architecture
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• Bits stored in 2-dimensional arrays on chip

• Modern chips have around 4 logical banks on each chip

– Each logical bank physically implemented as many smaller arrays 21

DRAM Array
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• Write:
1. Drive bit line

2. Select row

• Read:
1. Precharge bit line to VDD/2

2. Select row

3. Cell and bit line share charges

» Minute voltage changes on the bit line

4. Sense (fancy sense amp)

» Can detect changes of ~1 million electrons

5. Write: restore the value 

• Refresh
1. Just do a dummy read to every cell.

row select

bit

Read is really a
read followed by
a restoring Write

1-T Memory Cell (DRAM)

SRAM vs. DRAM

SRAM Cell

• Larger cell  lower density, higher cost/bit  

• No dissipation

• Read non-destructive                

• No refresh required 

• Simple read  faster access 

• Standard IC process  natural for integration with logic                                           

DRAM Cell

• Smaller cell  higher density, lower cost/bit 

• Needs periodic refresh, and refresh after read 

• Complex read  longer access time 

• Special IC process  difficult to integrate with logic 
circuits

raw select

bit line bit line

raw enable

bit line

The primary difference between different memory types is the bit cell

addr

data

24

23

24



13

DRAM Operation: Three Steps
•Precharge
 Charges bit lines to known value, required before next row access

•Row access 
 Decode row address, enable addressed row (often multiple Kb in row)
 Contents of storage cell share charge with bitlines 
 Small change in voltage detected by sense amplifiers which latch whole row of bits
 Sense amplifiers drive bitlines full rail to recharge storage cells

•Column access 
 Decode column address to select small number of sense amplifier latches (4, 8, 16, 

or 32 bits depending on DRAM package)
 On read, send latched bits out to chip pins
 On write, charge sense amplifier latches; which then charge storage cells to 

required value
 Can perform multiple column accesses on same row without another row access 

(burst mode)
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DRAM: Memory-Access Protocol
•5 basic commands

 ACTIVATE
 READ
 WRITE
 PRECHARGE
 REFRESH

•To reduce pin count, 
row and column share 
same address pins
 RAS = Row Address Strobe
 CAS = Column Address 

Strobe
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DRAM: Basic Operation
•Access to an "open row"
No need for ACTIVATE command
 READ/WRITE to access row buffer

•Access to a "closed row"
 If another row already active, must first issue PRECHARGE
ACTIVATE to open new row
 READ/WRITE to access row buffer
Optional: PRECHARGE after READ/WRITEs finished
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DRAM Bank Operation

Row Buffer

(Row 0, Column 0)
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READ 0
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2Gb x8 DDR3 Chip [Micron]

Observe Bank organization 29
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Quest for DRAM Performance
1. Fast Page mode 

 Add timing signals that allow repeated accesses to row buffer without 
another row access time

 Such a buffer comes naturally, as each array will buffer 1024 to 2048 bits 
for each access

2. Synchronous DRAM (SDRAM)
 Add a clock signal to DRAM interface, so that repeated transfers would not 

bear overhead to synchronize with DRAM controller

3. Double Data Rate (DDR SDRAM)
 Transfer data on both the rising edge and falling edge of the DRAM clock 

signal  doubling the peak data rate
 DDR2 lowers power by dropping the voltage from 2.5 to 1.8 volts + offers 

higher clock rates: up to 400 MHz
 DDR3 drops to 1.5 volts + higher clock rates: up to 800 MHz
 DDR4 drops to 1-1.2 volts + higher clock rates: up to 1600 MHz 31

Memory Optimizations 
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Memory Optimizations 

33

Graphics Memory

• Achieve 2-5 X bandwidth per DRAM vs. DDR3
 Wider interfaces (32 vs. 16 bit)
 Higher clock rate

• Possible because they are attached via soldering instead of socketted DIMM modules
 E.g. Samsung GDDR5

• 2.5GHz, 20 GBps bandwidth on 32-bit bus (160GBps on 256-bit bus) 34
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DRAM Power: Not always up, but…

35

Stacked/Embedded DRAMs
• Stacked DRAMs in same package as processor

– High Bandwidth Memory (HBM)

35
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DRAM Modules

DRAM Modules
•DRAM chips have narrow interface (typically x4, x8,x16)
•Multiple chips are put together to form wide interface

 DIMM: Dual Inline Memory Module
 E.g., 64-bit DIMM needs to access 8 chips with 8-bit interface
 Share command/address lines, but not data

•Advantages
 Acts like a high-capacity DRAM chips with wide interface
 8x capacity, 8x bandwidth, same latency

•Disadvantages
 Granularity: Accesses cannot be smaller than the interface width
 8x power

38
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A 64-bit Wide DIMM (physical view) 

•Advantages
 Enables even capacity

•Disadvantages
 Interconnect latency

 Complexity

 Higher energy usage

 Address/Command signal 
integrity is a challenge
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Increasing Capacity: Multiple DIMMs on a Channel
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DRAM Channels

DRAM Channels
•Channel: a set of DIMMS in series

 All DIMMs get the same command, one of the ranks replies

•System options
 Single channel system
 Multiple dependent (lock-step) channels

• Single controller with wider interfaces
• Only works if DIMMS are identical

 Multiple independent channels
• Requires multiple controllers

•Tradeoffs
 Cost: pins, wires, controller
 Benefit: higher bandwidth, capacity, flexibility
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DRAM Channel Options
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Multi-CPU (old school)
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NUMA Topology (modern)
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Memory Controller

47

DRAM Controller Functionality

• Obey timing constraints of DRAM

• Map physical addresses to DRAM addresses

• Row buffer management policies 

• DRAM request scheduling

• DRAM refresh strategies

• DRAM power management

• DRAM reliability

→ DRAM controllers are challenging to design!
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Latency Components: Basic DRAM Operation

49

DRAM Addressing
Memory Controller has a significant impact on access latency
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DRAM: Timing Constraints

51

DRAM: Timing Constraints

•There are dozens of these…
 tWTR = Write to read delay

 tWR = Time from end of last write to PRECHARGE

 tFAW = Four ACTIVATE window

 …

•Makes performance analysis, memory controller 
design difficult

•DRAM datasheets freely available, abundant with 
such constraints

51
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DRAM Controller Scheduling Policies (I)

•FCFS (first come first served)
Oldest request first

•FR-FCFS (first ready, first come first served)
 Row-hit first
Oldest first

Goal: maximize row buffer hit rate → maximize DRAM 
throughput

53

DRAM Controller Scheduling Policies (II)

•A scheduling policy is a prioritization order

•Prioritization can be based on
 Request age
 Row buffer hit/miss status
 Request type (prefetch, read, write)
 Requestor type (load miss or store miss)
 Request criticality

• Oldest miss in the core?

• How many instructions in the core depend on it?
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Problem: Memory Request Interference

55

Problem: Memory Request Interference
•Problem: Threads share the memory system, but memory 

system does not distinguish threads’ requests
 Memory system algorithms thread-unaware and thread-unfair

•Existing memory systems
 Free-for-all, demand-based sharing of the memory system
 Aggressive threads can deny service to others
 Do not try to reduce or control inter-thread interference

•Solution #1: Smart resources: Design each shared resource to 
have a configurable fairness/QoS mechanism
 Fair/QoS-aware memory schedulers, interconnects, caches, arbiters

•Solution #2: Dumb resources: Keep each resource free-for-all, 
but control access to memory system at the cores/sources
 Fairness via Source Throttling; Estimate thread slowdowns in the entire system and 

throttle cores that slow down others; Coordinated Prefetcher Throttling 56
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A Modern DRAM Controller

57

DRAM Refresh
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DRAM Refresh

59

DRAM Power Management
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Mobile DRAM characteristics
Technology Parameter DDR3 LPDDR2

Timing (tCAS, tRAS, tRC) 15, 38, 50ns 15, 42, 57ns

Active  current (Read, Write) 180, 185mA 210, 175mA

Idle current (Powerdown, Standby) 35, 45mA 1.6, 23mA

Powerdown exit latency 24ns 7.5ns

Operating voltage 1.5V 1.2V

Typical operating frequency 800MHz 400MHz

Device width 8 16

• Same core as DDR3 devices
 Same capacity per device , same access latency, same active currents

• IO interface optimized for very low static power
 Including faster power down modes,  no termination

• Same chip bandwidth
 Wider interface operating at slower clock rate 61

DRAM Reliability
•DRAMs are susceptible to soft and hard errors
•Dynamic errors can be 

 Detected by parity bits 
• Usually 1 parity bit per 8 bits of data

 Detected and fixed by the use of Error Correcting Codes (ECCs)
• E.g. SECDED Hamming code can detect two errors and correct a single error with a cost of 8 bits of 

overhead per 64 data bits

•In very large systems, the possibility of multiple errors as 
well as complete failure of a single memory chip becomes 
significant
 Chipkill (advanced form of ECC) was introduced by IBM to solve this problem
 Chipkill distributes data and ECC information, so that the complete failure of a 

single memory chip can be handled by supporting the reconstruction of the 
missing data from the remaining memory chips

 IBM and SUN servers and Google Clusters use it
 Intel calls their version SDDC 62
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Molecular RAM
•Molecular RAM technology

 Use special compounds such as porphyrin-based polymers to store electric charge

 Once a certain voltage threshold is achieved the material oxidizes, releasing an 
electric charge. The process is reversible, in effect creating an electric capacitor. 

 Some universities, Hewlett-Packard have announced work on molecular memories.

 NASA is also supporting research on non-volatile molecular memories.
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Phase Change Memory (PCM)
•Phase Change Memory (PCM) technology

 Uses a glass that can be changed between amorphous and crystalline states. Nonvolatile
 https://www.st.com/content/st_com/en/about/innovation---technology/PCM.html 

65

Resistive random-access memory (ReRAM)
•Resistive random-access memory (ReRAM or RRAM)

 A type of non-volatile (NV) random-access (RAM) computer memory that works by 
changing the resistance across a dielectric solid-state material, often referred to as a 
memristor. 

 https://www.crossbar-inc.com/technology/reram-advantages/ 
 https://www.lumenci.com/post/reram 
 … 
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3D Integration: Micron Hybrid Memory Cube (HMC)

•3D-stacked device with memory + logic
•Links between CPU and logic layer HMC
•High capacity, low power, high bandwidth

 https://www.micron.com/-
/media/client/global/documents/products/data-
sheet/hmc/gen2/hmc_gen2.pdf 
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3D Integration: AMD Xilinx

•AMD 3D ICs utilize stacked silicon interconnect (SSI) 
technology
 https://www.xilinx.com/products/silicon-devices/3dic.html 
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Hybrid Memory Research

•Emerging Solutions - Hybrid Memory Research
 https://www.rambus.com/emerging-solutions/hybrid-memory/
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Resources 
•http://www.monolithic3d.com/

•http://isscc.org/index.html

•ISSCC – Memory Trends
 https://www.isscc.org/trends

 https://static1.squarespace.com/static/6130ef779c7a2574bd4b8888/t/626
325a757094e52110f7db0/1650664892028/ISSCC2022PressKit.pdf 

•An article
 https://www.eejournal.com/article/can-any-emerging-memory-

technology-topple-dram-and-nand-flash/ 
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