COEN-4730/EECE-5730 Computer Architecture

Lecture 5 Main Memory (Ch.2)

Cristinel Ababei

Dept. of Electrical and Computer Engineering

BE THE DIFFERENCE.

Credits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier

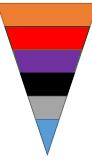
1

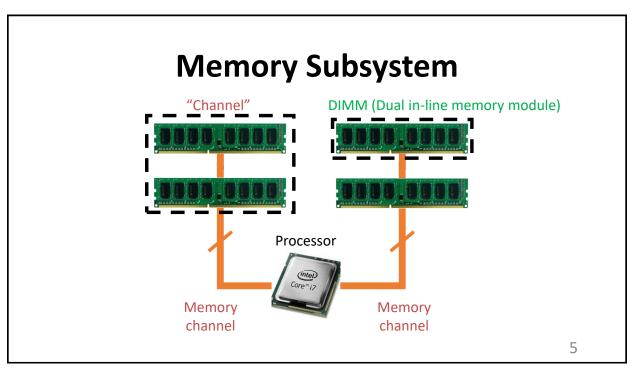
Τ

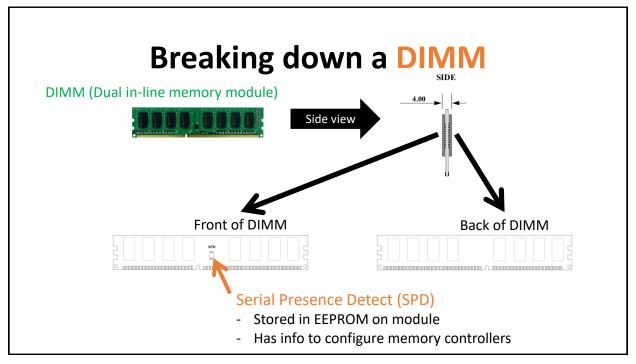
Outline

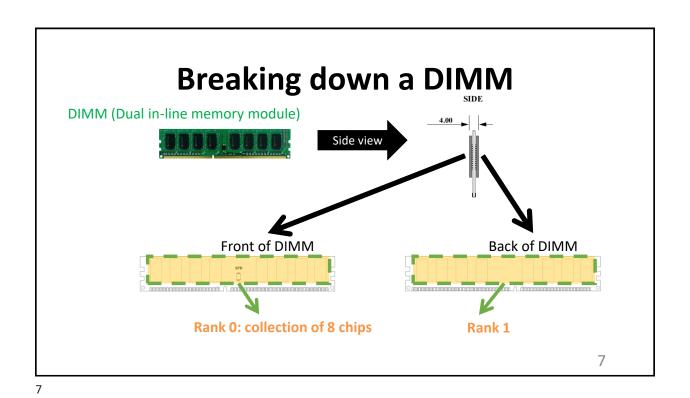
- Main memory organization
- DRAM basics
- Quest for DRAM Performance
- Memory controller
- Future

Main Memory Background

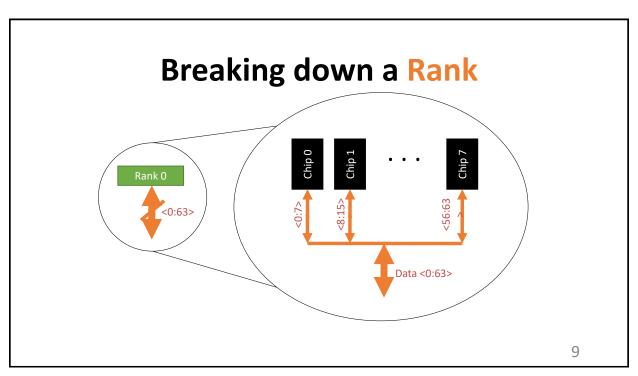

- Performance of Main Memory:
 - ° Latency: affects cache Miss Penalty
 - ° Bandwidth: I/O & Large Block →affect Miss Penalty
- Main Memory is DRAM: Dynamic Random Access Memory
 - ° Dynamic since needs to be refreshed periodically (8 ms, 1% time)
 - ° Addresses divided into 2 halves (Memory as a 2D matrix):
 - RAS or Row Address Strobe
 - · CAS or Column Address Strobe
- Cache uses SRAM: Static Random Access Memory
 - ° No refresh (6 transistors per bit vs. 1 transistor + 1 capacitor per bit)
- While a lot is done in terms of cache organization (to reduce processor-DRAM performance gap), innovations in main memory is needed as well

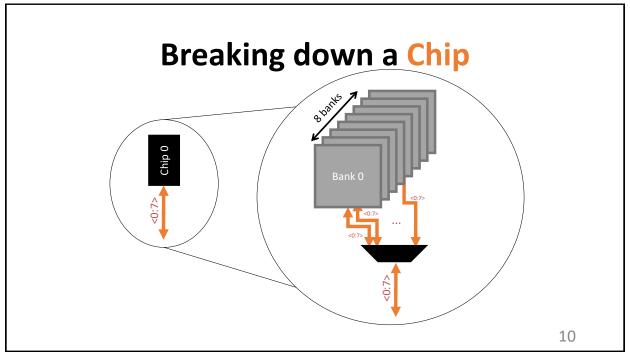

3

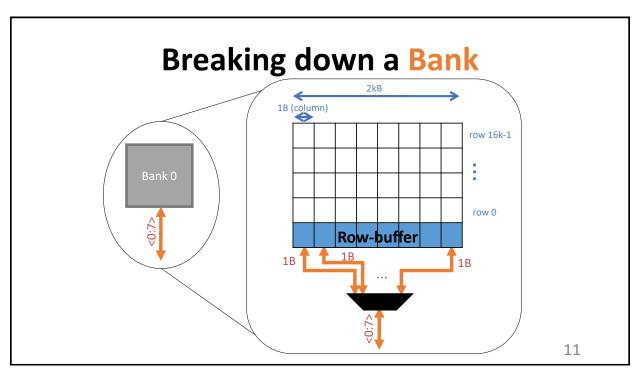

3

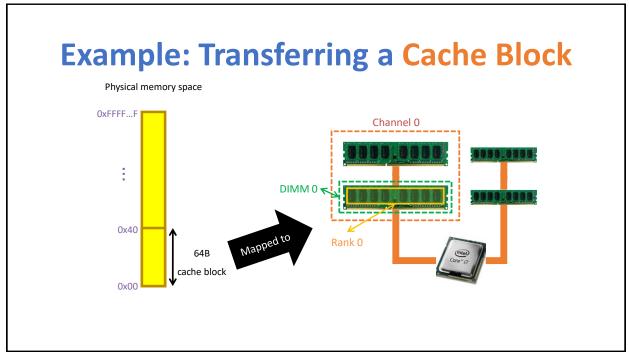

Memory Subsystem Organization

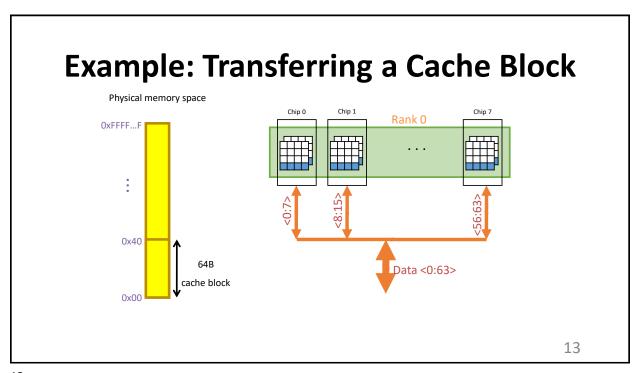
- Memory subsystem organization
 - ° Channel
 - ° DIMM
 - ° Rank
 - ° Chip
 - ° Bank
 - °Row/Column

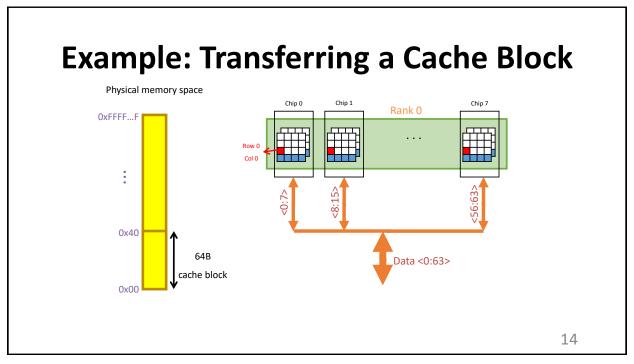


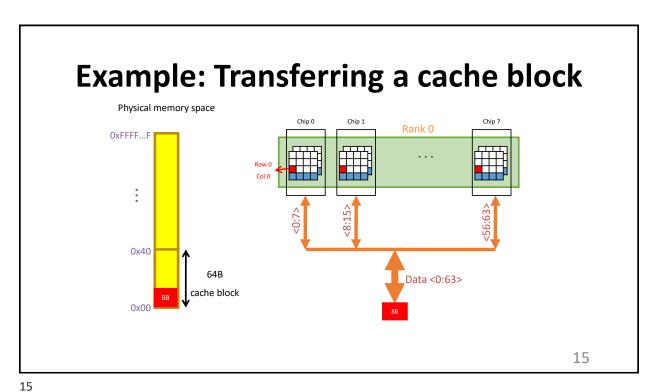


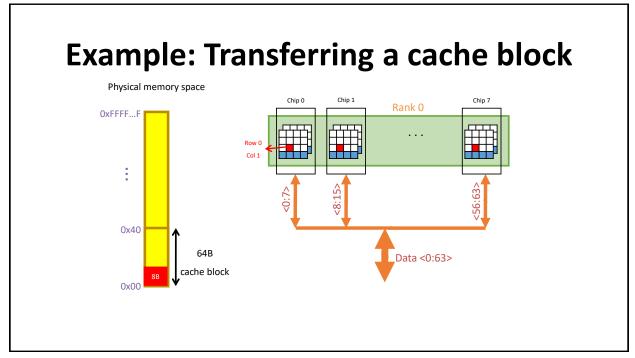


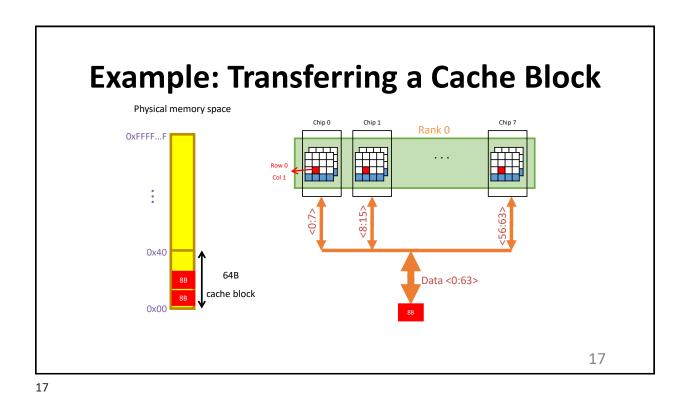












Example: Transferring a Cache Block

Physical memory space

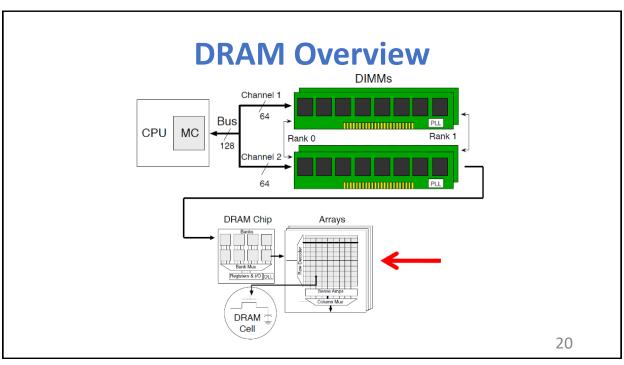
OXFFFF...F

OXAD

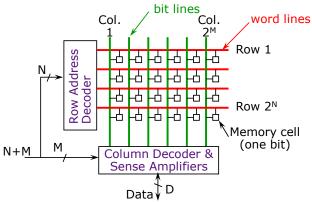
BB

OXAD

A 64B cache block takes 8 I/O cycles to transfer.

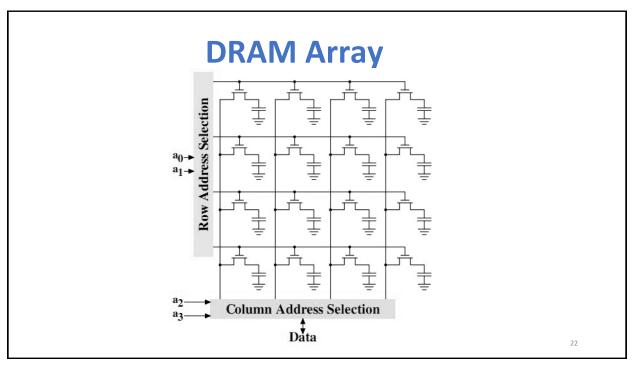

During the process, 8 columns are read sequentially.

Outline

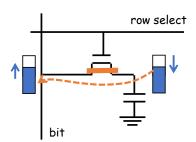

- Main memory organization
- DRAM basics
- Quest for DRAM Performance
- Memory controller
- Future

19

19



DRAM Architecture


- Bits stored in 2-dimensional arrays on chip
- Modern chips have around 4 logical banks on each chip
 - Each logical bank physically implemented as many smaller arrays

21

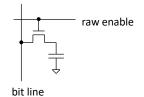
1-T Memory Cell (DRAM)

- Write:
 - 1. Drive bit line
 - 2. Select row
- Read:
 - 1. Precharge bit line to VDD/2
 - 2. Select row
 - 3. Cell and bit line share charges
 - » Minute voltage changes on the bit line
 - 4. Sense (fancy sense amp)
 - » Can detect changes of ~1 million electrons
 - 5. Write: restore the value
- Refresh
 - 1. Just do a dummy read to every cell.

Read is really a read followed by a restoring Write

23

SRAM vs. DRAM


The primary difference between different memory types is the bit cell

SRAM Cell

addr raw select bit line data bit line

- Larger cell ⇒ lower density, higher cost/bit
- No dissipation
- Read non-destructive
- No refresh required
- Simple read ⇒ faster access
- Standard IC process ⇒ natural for integration with logic

DRAM Cell

- Smaller cell ⇒ higher density, lower cost/bit
- · Needs periodic refresh, and refresh after read
- Complex read ⇒ longer access time
- Special IC process ⇒ difficult to integrate with logic circuits

24

DRAM Operation: Three Steps

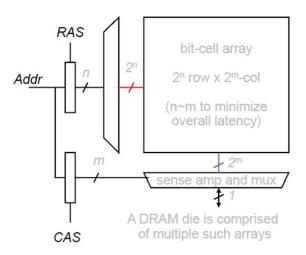
Precharge

° Charges bit lines to known value, required before next row access

Row access

- ° Decode row address, enable addressed row (often multiple Kb in row)
- ° Contents of storage cell share charge with bitlines
- Small change in voltage detected by sense amplifiers which latch whole row of bits
- ° Sense amplifiers drive bitlines full rail to recharge storage cells

Column access

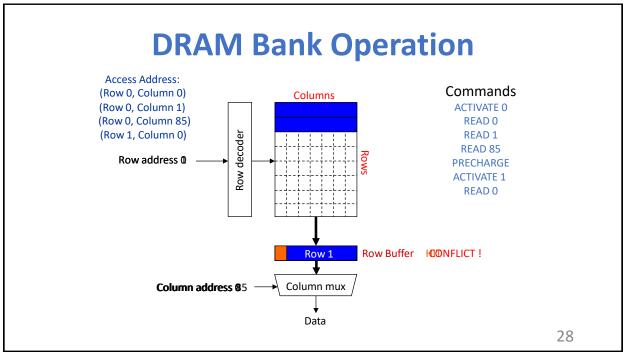

- $^{\circ}$ Decode column address to select small number of sense amplifier latches (4, 8, 16, or 32 bits depending on DRAM package)
- ° On read, send latched bits out to chip pins
- On write, charge sense amplifier latches; which then charge storage cells to required value
- Can perform multiple column accesses on same row without another row access (burst mode)

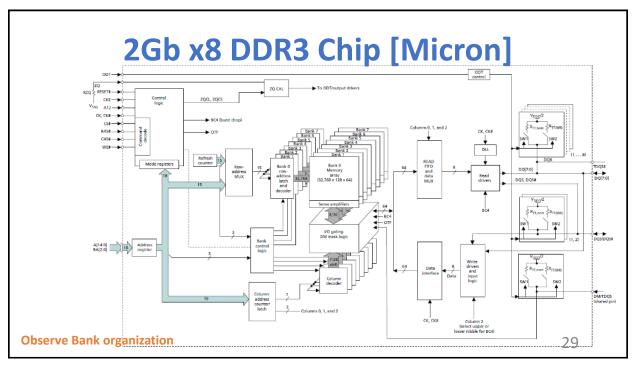
25

25

DRAM: Memory-Access Protocol

- •5 basic commands
 - ° ACTIVATE
 - ° READ
 - ° WRITE
 - ° PRECHARGE
 - ° REFRESH
- To reduce pin count, row and column share same address pins
 - ° RAS = Row Address Strobe
 - ° CAS = Column Address Strobe


26


DRAM: Basic Operation

- Access to an "open row"
 - ° No need for ACTIVATE command
 - ° READ/WRITE to access row buffer
- Access to a "closed row"
 - ° If another row already active, must first issue PRECHARGE
 - ° ACTIVATE to open new row
 - ° READ/WRITE to access row buffer
 - ° Optional: PRECHARGE after READ/WRITEs finished

27

27

Outline

- Main memory organization
- DRAM basics
- Quest for DRAM Performance
- Memory controller
- Future

Quest for DRAM Performance

1. Fast Page mode

- Add timing signals that allow repeated accesses to row buffer without another row access time
- Such a buffer comes naturally, as each array will buffer 1024 to 2048 bits for each access

2. Synchronous DRAM (SDRAM)

 Add a clock signal to DRAM interface, so that repeated transfers would not bear overhead to synchronize with DRAM controller

3. Double Data Rate (DDR SDRAM)

- ° Transfer data on both the rising edge and falling edge of the DRAM clock signal ⇒ doubling the peak data rate
- DDR2 lowers power by dropping the voltage from 2.5 to 1.8 volts + offers higher clock rates: up to 400 MHz
- DDR3 drops to 1.5 volts + higher clock rates: up to 800 MHz
- DDR4 drops to 1-1.2 volts + higher clock rates: up to 1600 MHz

31

31

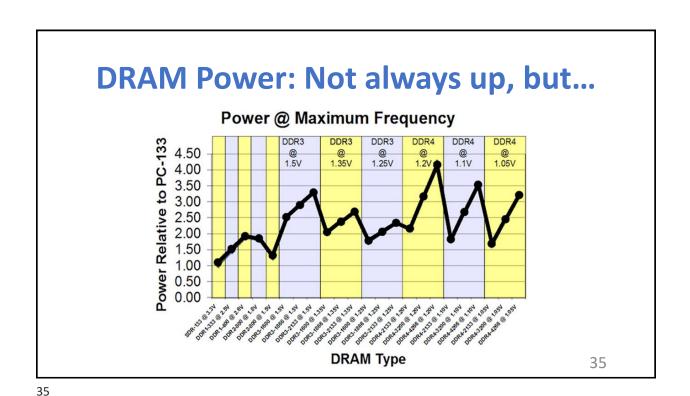
Memory Optimizations

			Best case ac	Precharge needed		
Production year	Chip size	DRAM type	RAS time (ns)	CAS time (ns)	Total (ns)	Total (ns)
2000	256M bit	DDR1	21	21	42	63
2002	512M bit	DDR1	15	15	30	45
2004	1G bit	DDR2	15	15	30	45
2006	2G bit	DDR2	10	10	20	30
2010	4G bit	DDR3	13	13	26	39
2016	8G bit	DDR4	13	13	26	39

Memory Optimizations

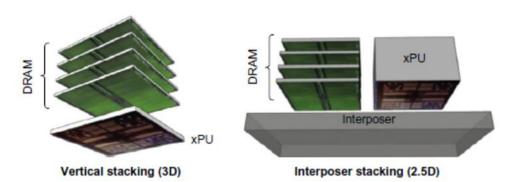
Standard	I/O clock rate	M transfers/s	DRAM name	MiB/s/DIMM	DIMM name
DDR1	133	266	DDR266	2128	PC2100
DDR1	150	300	DDR300	2400	PC2400
DDR1	200	400	DDR400	3200	PC3200
DDR2	266	533	DDR2-533	4264	PC4300
DDR2	333	667	DDR2-667	5336	PC5300
DDR2	400	800	DDR2-800	6400	PC6400
DDR3	533	1066	DDR3-1066	8528	PC8500
DDR3	666	1333	DDR3-1333	10,664	PC10700
DDR3	800	1600	DDR3-1600	12,800	PC12800
DDR4	1333	2666	DDR4-2666	21,300	PC21300

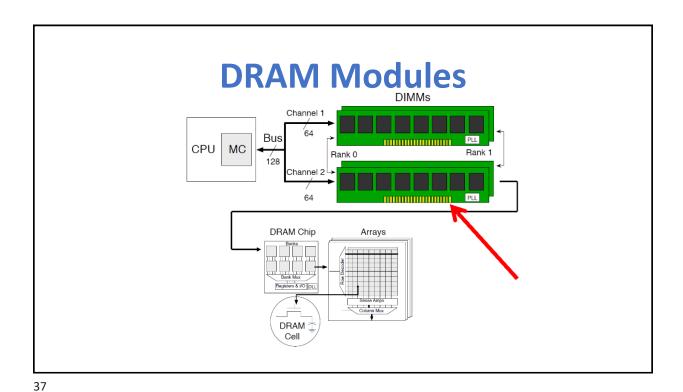
33


33

Graphics Memory

Product	Density	Banks	Part Num.	PKG & Speed	Org.	Interf.	Ref.	Voltage(V)	PKG.	PKG Type	Status
gDDR3 SDRAM 2Gb C-die	1Gb G-die		K4W1G1646G	BC08/1A 11/12/15	64Mx16					Halogen-Free, Lead-Free & Flip-Chip	Mass Production
	8Banks	K4W2G1646C	HC1A/11 12/15	128Mx16	SSTL_15	8K/64ms	1.5V ± 0.075V	96ball FBGA	Halogen-Free	Mass Production	
	DDP 4Gb D-die		K4W4G1646D	BC12	256Mx16					& Lead-Free	CS Jan.'11
GDDR3	512Mb I-die	8Banks	K4J52324KI	HC7A/08 1A/12/14	16Mx32	POD_18	8K/32ms	1.8V ± 0.1V	136ball FBGA	Halogen-Free & Lead-Free	Mass Production
SGRAM	1Gb G-die		K4J10324KG	HC1A/14	32Mx32						CS Aug.'11
GDDR5 SGRAM	1Gb G-die	16Banks	K4G10325FG	HC03/04/05	32Mx32	POD_15	8K/32ms	1.5V ± 0.045V	170ball FBGA	Halogen-Free & Lead-Free	Mass Production
	2Gb C-die		K4G20325FC	HC03/04/05	64Mx32	POD_15	16K/32ms	1.5V ± 0.045V	170ball FBGA	Halogen-Free & Lead-Free	Mass Production


- Achieve 2-5 X bandwidth per DRAM vs. DDR3
 - ° Wider interfaces (32 vs. 16 bit)
 - ° Higher clock rate
 - Possible because they are attached via soldering instead of socketted DIMM modules
 - $^{\circ}$ E.g. Samsung GDDR5
 - 2.5GHz, 20 GBps bandwidth on 32-bit bus (160GBps on 256-bit bus)


34

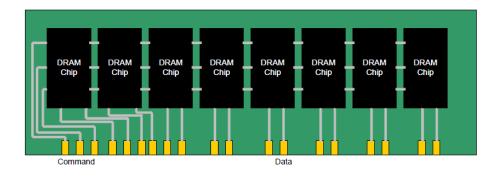
Stacked/Embedded DRAMs

- Stacked DRAMs in same package as processor
 - High Bandwidth Memory (HBM)

DRAM Modules

- DRAM chips have narrow interface (typically x4, x8,x16)
- Multiple chips are put together to form wide interface
 - ° DIMM: Dual Inline Memory Module
 - ° E.g., 64-bit DIMM needs to access 8 chips with 8-bit interface
 - ° Share command/address lines, but not data

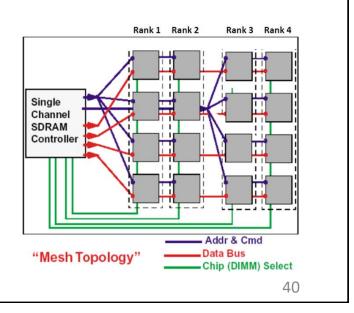
Advantages

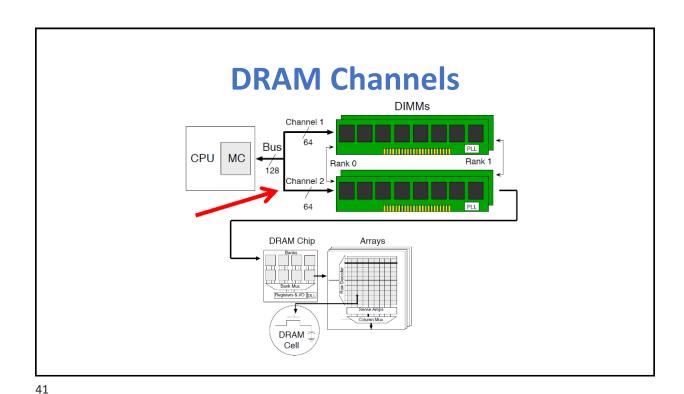

- ° Acts like a high-capacity DRAM chips with wide interface
- ° 8x capacity, 8x bandwidth, same latency

Disadvantages

- ° Granularity: Accesses cannot be smaller than the interface width
- ° 8x power

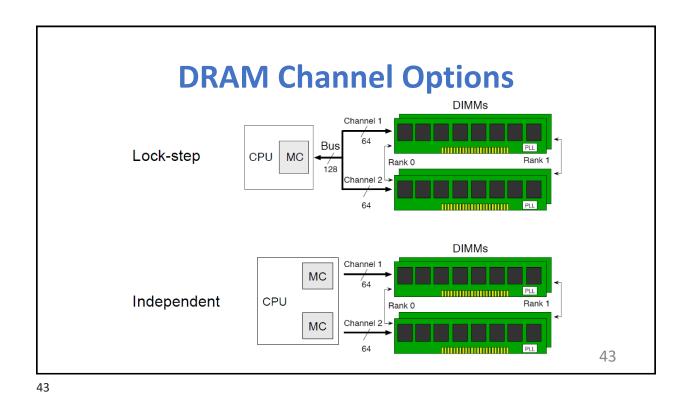
38


A 64-bit Wide DIMM (physical view)



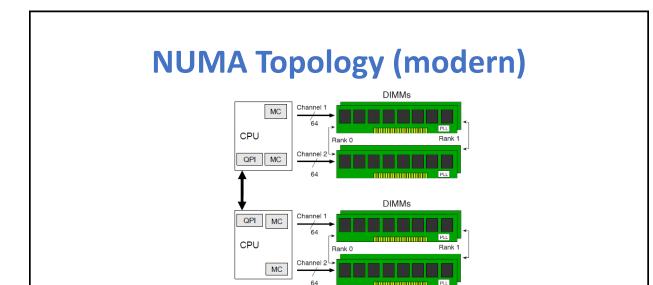
39

Increasing Capacity: Multiple DIMMs on a Channel


- Advantages
 - ° Enables even capacity
- Disadvantages
 - ° Interconnect latency
 - ° Complexity
 - ° Higher energy usage
 - ° Address/Command signal integrity is a challenge

DRAM Channels

- Channel: a set of DIMMS in series
 - $^{\circ}$ All DIMMs get the same command, one of the ranks replies
- System options
 - $^{\circ}$ Single channel system
 - ° Multiple dependent (lock-step) channels
 - Single controller with wider interfaces
 - Only works if DIMMS are identical
 - ° Multiple independent channels
 - Requires multiple controllers
- Tradeoffs
 - ° Cost: pins, wires, controller
 - $^{\circ}$ Benefit: higher bandwidth, capacity, flexibility

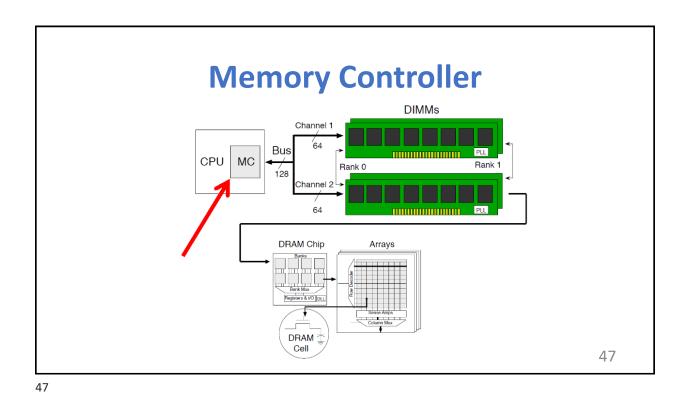


Multi-CPU (old school)

CPU Front-side bus Channel 1

External MC adds latency

Capacity doesn't grow w/ # of CPUs



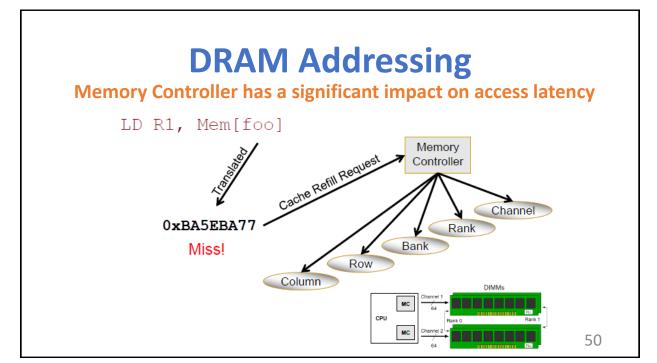
- Capacity grows w/ # of CPUs
- NUMA: "Non-uniform Memory Access"

45

Outline

- Main memory organization
- DRAM basics
- Quest for DRAM Performance
- Memory controller
- Future

DRAM Controller Functionality


- Obey timing constraints of DRAM
- Map physical addresses to DRAM addresses
- Row buffer management policies
- DRAM request scheduling
- DRAM refresh strategies
- DRAM power management
- DRAM reliability
- → DRAM controllers are challenging to design!

Latency Components: Basic DRAM Operation

- CPU → controller transfer time
- Controller latency
 - Queuing & scheduling delay at the controller
 - Access converted to basic commands
- DRAM bank latency
 - tCAS is row is "open" OR
 - tRCD + tCAS if array precharged OR
 - tRP + tRCD + tCAS (worst case: tRC + tRCD + tCAS)
- DRAM data transfer time
 - BurstLen / (MT/s)
- Controller → CPU transfer time

49

49

DRAM: Timing Constraints

- Memory controller must respect physical device characteristics
 - tRCD = Row to Column command delay
 - How long it takes row to get to sense amps
 - tCAS = Time between column command and data out
 - tCCD = Time between column commands
 - Rate that you can pipeline column commands
 - tRP = Time to precharge DRAM array
 - **tRAS** = Time between RAS and data restoration in DRAM array (minimum time a row must be open)
 - tRC = tRAS + tRP = Row "cycle" time
 - Minimum time between accesses to different rows

51

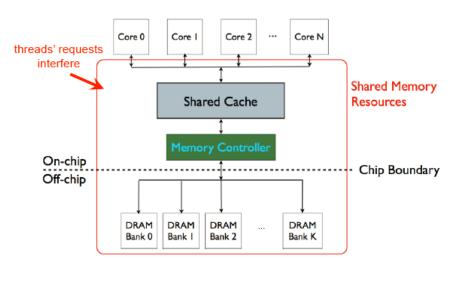
51

DRAM: Timing Constraints

- There are dozens of these...
 - ° tWTR = Write to read delay
 - ° tWR = Time from end of last write to PRECHARGE
 - ° tFAW = Four ACTIVATE window
 - 0
- Makes performance analysis, memory controller design difficult
- DRAM datasheets freely available, abundant with such constraints

DRAM Controller Scheduling Policies (I)

- FCFS (first come first served)
 - ° Oldest request first
- FR-FCFS (first ready, first come first served)
 - ° Row-hit first
 - ° Oldest first
 - ° Goal: maximize row buffer hit rate → maximize DRAM throughput

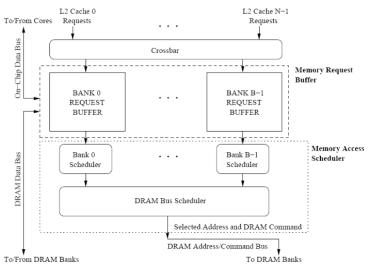

53

53

DRAM Controller Scheduling Policies (II)

- A scheduling policy is a prioritization order
- Prioritization can be based on
 - ° Request age
 - ° Row buffer hit/miss status
 - ° Request type (prefetch, read, write)
 - ° Requestor type (load miss or store miss)
 - ° Request criticality
 - Oldest miss in the core?
 - How many instructions in the core depend on it?

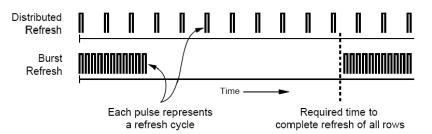
Problem: Memory Request Interference


55

Problem: Memory Request Interference

- Problem: Threads share the memory system, but memory system does not distinguish threads' requests
 - $^{\circ}$ Memory system algorithms thread-unaware and thread-unfair
- Existing memory systems
 - ° Free-for-all, demand-based sharing of the memory system
 - ° Aggressive threads can deny service to others
 - ° Do not try to reduce or control inter-thread interference
- Solution #1: Smart resources: Design each shared resource to have a configurable fairness/QoS mechanism
 - ° Fair/QoS-aware memory schedulers, interconnects, caches, arbiters
- Solution #2: Dumb resources: Keep each resource free-for-all, but control access to memory system at the cores/sources
 - ° Fairness via Source Throttling; Estimate thread slowdowns in the entire system and throttle cores that slow down others; Coordinated Prefetcher Throttling

56



DRAM Refresh

- DRAM capacitor charge leaks over time
- The memory controller needs to read each row periodically to restore the charge
 - Activate + precharge each row every N ms
 - Typical N = 64 ms
- Implications on performance?
 - DRAM bank unavailable while refreshed
 - Long pause times: If we refresh all rows in burst, every 64ms the DRAM will be unavailable until refresh ends

58

- Distributed refresh eliminates long pause times
- How else we can reduce the effect of refresh on performance?
 - Can we reduce the number of refreshes?

59

DRAM Power Management

- DRAM chips have power modes
- Idea: When not accessing a chip power it down
- Power states
 - Active (highest power)
 - All banks idle (i.e. precharged)
 - Power-down
 - Self-refresh (lowest power)
- State transitions incur latency during which the chip cannot be accessed

Mobile DRAM characteristics

Technology Parameter	DDR3	LPDDR2	
Timing (tCAS, tRAS, tRC)	15, 38, 50ns	15, 42, 57ns	
Active current (Read, Write)	180, 185mA	210, 175mA	
Idle current (Powerdown, Standby)	35, 45mA	1.6, 23mA	
Powerdown exit latency	24ns	7.5ns	
Operating voltage	1.5V	1.2V	
Typical operating frequency	800MHz	400MHz	
Device width	8	16	

- Same core as DDR3 devices
 - Same capacity per device, same access latency, same active currents
- IO interface optimized for very low static power
 - ° Including faster power down modes, no termination
- Same chip bandwidth
 - ° Wider interface operating at slower clock rate

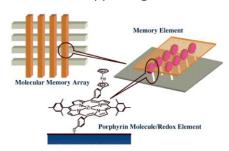
61

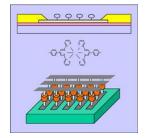
61

- DRAM ReliabilityDRAMs are susceptible to soft and hard errors
- Dynamic errors can be
 - Detected by parity bits
 - Usually 1 parity bit per 8 bits of data
 - ° Detected and fixed by the use of Error Correcting Codes (ECCs)
 - E.g. SECDED Hamming code can detect two errors and correct a single error with a cost of 8 bits of overhead per 64 data bits
- In very large systems, the possibility of multiple errors as well as complete failure of a single memory chip becomes significant
 - ° Chipkill (advanced form of ECC) was introduced by IBM to solve this problem
 - ° Chipkill distributes data and ECC information, so that the complete failure of a single memory chip can be handled by supporting the reconstruction of the missing data from the remaining memory chips
 - ° IBM and SUN servers and Google Clusters use it
 - Intel calls their version SDDC

62

Outline

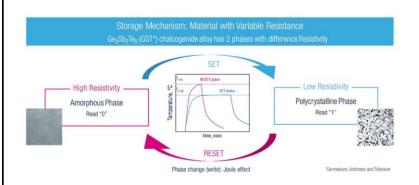

- Main memory organization
- DRAM basics
- Quest for DRAM Performance
- Memory controller
- Future

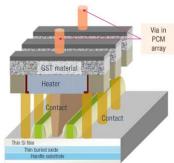

63

63

Molecular RAM

- Molecular RAM technology
 - $^{\circ}$ Use special compounds such as porphyrin-based polymers to store electric charge
 - ° Once a certain voltage threshold is achieved the material oxidizes, releasing an electric charge. The process is reversible, in effect creating an electric capacitor.
 - ° Some universities, Hewlett-Packard have announced work on molecular memories.
 - ° NASA is also supporting research on non-volatile molecular memories.

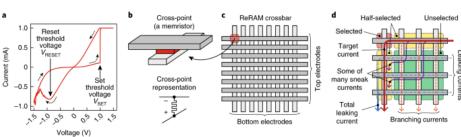




64

Phase Change Memory (PCM)

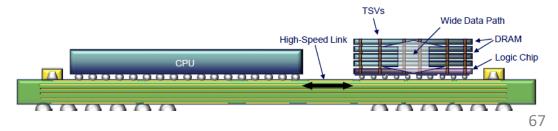
- Phase Change Memory (PCM) technology
 - $^{\circ}\,$ Uses a ${\it glass}$ that can be changed between amorphous and crystalline states. Nonvolatile
 - ° https://www.st.com/content/st_com/en/about/innovation---technology/PCM.html


65

65

Resistive random-access memory (ReRAM)

- Resistive random-access memory (ReRAM or RRAM)
 - A type of non-volatile (NV) random-access (RAM) computer memory that works by changing the resistance across a dielectric solid-state material, often referred to as a memristor.
 - https://www.crossbar-inc.com/technology/reram-advantages/
 - https://www.lumenci.com/post/reram


···

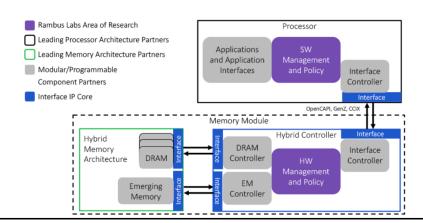
66

3D Integration: Micron Hybrid Memory Cube (HMC)

- •3D-stacked device with memory + logic
- Links between CPU and logic layer HMC
- High capacity, low power, high bandwidth
 - https://www.micron.com/-/media/client/global/documents/products/datasheet/hmc/gen2/hmc gen2.pdf

67

3D Integration: AMD Xilinx


- AMD 3D ICs utilize stacked silicon interconnect (SSI) technology
 - ° https://www.xilinx.com/products/silicon-devices/3dic.html

68

Hybrid Memory Research

- Emerging Solutions Hybrid Memory Research
 - https://www.rambus.com/emerging-solutions/hybrid-memory/

69

69

Resources

- http://www.monolithic3d.com/
- http://isscc.org/index.html
- •ISSCC Memory Trends
 - ° https://www.isscc.org/trends
 - https://static1.squarespace.com/static/6130ef779c7a2574bd4b8888/t/626 325a757094e52110f7db0/1650664892028/ISSCC2022PressKit.pdf
- An article
 - https://www.eejournal.com/article/can-any-emerging-memorytechnology-topple-dram-and-nand-flash/