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ILP, ILP Limits, and TLP

(Ch.3)
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1Credits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier

Outline

•Hardware Based Speculation

•Multiple Issue Processors

•Limits of ILP

•TLP - Multithreading
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Hardware Based Speculation
• Combines three key ideas:

1. Dynamic branch prediction to choose which 
instructions to execute 

2. Speculation to allow execution of instructions 
before control dependences are resolved 
+ ability to undo effects of incorrectly speculated 

sequence 
3. Dynamic scheduling to deal with scheduling of 

different combinations of basic blocks 

Extending Tomasulo’s Algorithm to 
Support Speculation

•Must separate execution from allowing instruction to finish 
or “commit”
•This additional step called instruction commit
•When an instruction is no longer speculative, allow it to 

update the register file or memory 
•Requires additional set of buffers to hold results of 

instructions that have finished execution but have not 
committed
•This Reorder Buffer (ROB) is also used to pass results 

among instructions that may be speculated
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Reorder Buffer (ROB)
•In Tomasulo’s algorithm, once an instruction writes its result, 

any subsequently issued instructions will find result in the 
register file

•With speculation, the register file is not updated until the 
instruction commits 
 (we know definitively that the instruction should execute)

•Thus, the ROB supplies operands in interval between 
completion of instruction execution and instruction commit
 ROB is a source of operands for instructions, just as reservation stations (RS) 

provide operands in Tomasulo’s algorithm
 ROB extends architecture registers like Reservation Stations (RS) do

ROB Details: Fields of Reorder Buffer Entry
Each entry in the ROB contains four fields: 
1. Instruction type 

• a branch (has no destination result), a store (has a memory address 
destination), or a register operation (ALU operation or load, which has register 
destinations)

2. Destination
• Register number (for loads and ALU operations) or 

memory address (for stores) where the instruction result should be written

3. Value
• Value of instruction result until the instruction commits

4. Ready
• Indicates that instruction has completed execution, and the value is ready
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• Holds instructions in FIFO order, exactly as issued

• When instructions complete, results placed into ROB
– Supplies operands to other instruction between execution 

complete & commit  more registers like RS

– Tag results with ROB buffer number instead of reservation station

• When instructions commit values at head of ROB placed in registers

• As a result, easy to undo 
speculated instructions 
on mispredicted branches 
or on exceptions – basically, 

   FLUSH the ROB!

Reorder

BufferFP

Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

Commit path

Reorder Buffer Operation

1. Issue—get instruction from FP Op Queue
 If reservation station and reorder buffer slot free, issue instr & send operands & reorder 

buffer no. for destination (this stage sometimes called “dispatch”)

2. Execution—operate on operands (EX)
 When both operands ready then execute; if not ready, watch CDB for result; when both 

in reservation station, execute; checks RAW (this stage sometimes called “issue”)

3. Write result—finish execution (WB)
 Write on Common Data Bus to all awaiting FUs 

& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result
 When instr. at head of reorder buffer & result present, update register with result (or 

store to memory) and remove instr from reorder buffer. Mispredicted branch at head of 
ROB flushes ROB. (this state sometimes called “graduation”)

4 Steps of Speculative Tomasulo Algorithm
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Example: ROB/Tomasulo
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Outline

•Hardware Based Speculation

•Multiple Issue Processors

•Limits of ILP

•TLP - Multithreading
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Getting CPI less than 1

Superscalar and VLIW processors
• Trade-off between static and dynamic instruction scheduling

– Static scheduling places burden on software

– Dynamic scheduling places burden on hardware

• Superscalar processors issue a variable number of 
instructions per cycle, up to a maximum, using static 
(compiler) or dynamic (hardware) scheduling

• VLIW processors issue a fixed number of instructions per 
cycle, seen as a packet (potentially with empty slots), and 
created and scheduled statically by the compiler

Superscalar Execution
• A superscalar architecture is one in which several 

instructions can be initiated simultaneously and executed 
independently.

• Pipelining allows several instructions to be executed at the 
same time, but they have to be in different pipeline stages 
at a given moment.

• Superscalar architectures include all features of pipelining 
but, in addition, there can be several instructions executing 
simultaneously in the same pipeline stage.
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Superscalar execution illustrated

Example: Loop unrolling and instruction scheduling
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Loop unrolling and instruction scheduling

Loop unrolling in single-issue processor

Loop unrolling; 

4 iterations

Improved instruction 

scheduling

31

32



17

Loop unrolling in superscalar processor

Loop unrolling and static scheduling in superscalar
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Superscalar processor with dynamic scheduling

•Extend Tomasulo’s algorithm to handle 
multiple issue

•Instructions issued in program order

•Cannot issue multiple dependent 
instructions in the same cycle. 

Dual-issue pipeline with Tomasulo
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Limitations of multiple-issue processors

Outline

•Hardware Based Speculation

•Multiple Issue Processors

•Limits of ILP (Not included in Ed.6, 
2019)

•TLP - Multithreading
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Extracting more ILP

•Speculation
 Look for parallelism beyond branches

 Need easy roll-back – ROB

 Combined with multiple-issue regains performance loss

•Multiple instructions issued per cycle
 Natural parallelism in loops

 Increased hardware complexity

 More ports to register files, memory, other resources

 Branch predictors, potentially for multiple branches simultaneously

 Complex issue logic and control logic

40

Limits to ILP
•How much ILP is available using existing 
mechanisms with increasing HW 
budgets?

•Do we need to invent new HW/SW 
mechanisms to keep on processor 
performance curve?
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Limits to ILP: Quantitative Analysis
Assumptions for ideal/perfect machine (all constraints on ILP are 

removed):
 1. Register renaming – infinite virtual registers 

=> all register WAW & WAR hazards are avoided
 2. Branch prediction – perfect; no mispredictions 
 3. Jump prediction – all jumps perfectly predicted (returns, case 

statements)
2 & 3  no control dependencies; perfect speculation & an 
unbounded buffer of instructions available

 4. Memory-address alias analysis – addresses known & a load can be 
moved before a store provided that the addresses are not equal; 1&4 
eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions (FP *,/); 
unlimited instructions issued/clock cycle; 

Model Power 5
Instructions Issued 
per clock

Infinite 4

Instruction Window 
Size

Infinite 200

Renaming 
Registers

Infinite 48 integer + 
40 Fl. Pt.

Branch Prediction Perfect 2% to 6% 
misprediction

(Tournament 
Branch Predictor)

Cache Perfect 64KI, 32KD, 1.92MB 
L2, 36 MB L3

Memory Alias 
Analysis

Perfect ??

Limits to ILP HW Model comparison
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Upper Limit to ILP: Ideal Machine
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In
s
tr

u
c

ti
o

n
 I

s
s

u
e

s
 p

e
r 

c
y

c
le

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doducd tomcatv

54.8
62.6

17.9

75.2

118.7

150.1

Integer: 18 - 63

FP: 75 - 150

In
s

tr
u

c
ti

o
n

 i
s

s
u

e
s

 /
 C

y
c

le

New Model Model Power 5

Instructions 
Issued per 
clock

Infinite Infinite 4

Instruction 
Window Size

Infinite, 2K, 512, 
128, 32

Infinite 200

Renaming 
Registers

Infinite Infinite 48 integer + 
40 Fl. Pt.

Branch 
Prediction

Perfect Perfect 2% to 6% 
misprediction

(Tournament Branch 
Predictor)

Cache Perfect Perfect 64KI, 32KD, 1.92MB 
L2, 36 MB L3

Memory 
Alias

Perfect Perfect ??

Limits to ILP HW Model comparison
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New Model Model Power 5
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Issued per 
clock
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Perfect Perfect ??

Limits to ILP HW Model comparison
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51

New Model Model Power 5
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New Model Model Power 5
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Limits to ILP

•Advances in compiler technology + significantly 
new and different hardware techniques may be 
able to overcome limitations assumed in 
studies

•However, unlikely such advances when coupled 
with realistic hardware will overcome these 
limits in near future 

Outline

•Hardware Based Speculation

•Multiple Issue Processors

•Limits of ILP 

•TLP - Multithreading
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Performance Beyond Traditional ILP
•There can be much higher natural parallelism in 

some applications (e.g., Database or Scientific 
codes)
•Explicit 

 Thread Level Parallelism (TLP) or 
 Data Level Parallelism (DLP)

•Thread: light-weight process with own instructions 
and data
 Each thread has all the state (instructions, data, PC, register state, and so on) 

necessary to allow it to execute

•Data Level Parallelism: Perform identical operations 
on data, and lots of data

Thread Level Parallelism (TLP)
• Goal: Improve Uniprocessor Throughput
• ILP exploits implicit parallel operations within a 

loop or straight-line code segment
• TLP explicitly represented by the use of multiple 

threads of execution that are inherently parallel
• Goal: Use multiple instruction streams to improve 

1.Throughput of computers that run many programs 
2.Execution time of multithreaded programs

• TLP could be more cost-effective to exploit than 
ILP

57

58



30

Multithreaded Execution
•Multithreading: multiple threads to share the functional units of 1 

processor via overlapping
 Processor must duplicate independent state of each thread e.g., a separate copy of register file, a 

separate PC, and for running independent programs, a separate page table

 Memory shared through the virtual memory mechanisms, which already support multiple 
processes

 HW for fast thread switch; much faster than full process switch (which can take 100s to 1000s of 
clocks)

• Single process might contain multiple threads; all threads within a process share the same 
memory space, and can communicate with each other directly, because they share the same 
variables

•When to switch between threads?
1.Alternate instruction per thread (fine grain)

2.When a thread is stalled, perhaps for a cache miss, another thread can be executed (coarse grain)

HW: Simple Multithreaded Pipeline
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1. Fine-Grained Multithreading
•Switches between threads on each cycle, causing the 

execution of multiples threads to be interleaved 
•Usually done in a round-robin fashion, skipping any stalled 

threads
•CPU must be able to switch threads every clock
•Advantage is it can hide both short and long stalls, since 

instructions from other threads executed when one thread 
stalls 
•Disadvantage is it slows down execution of individual 

threads, since a thread ready to execute without stalls will 
be delayed by instructions from other threads
•Used on Sun’s T1 (2005) and T2 (Niagara, 2007)

Fine-Grained Multithreading on the Sun T1
• Circa 2005; first major processor to focus on TLP rather than ILP
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CPI on Sun T1

• T1 has 8 cores; with 4 threads/core

• Ideal effective CPI per thread?

• Ideal per-core CPI?

• In 2005 when it was introduced, the Sun T1 processor had the best 
performance on integer applications with extensive TLP and demanding 
memory performance, such as SPECJBB and transaction processing workloads

2. Course-Grained Multithreading

•Switches threads only on costly stalls, such as L2 cache 
misses
•Advantages 

 Relieves need to have very fast thread-switching
 Doesn’t slow down thread, since instructions from other threads issued only when the thread encounters a 

costly stall 

•Disadvantage is hard to overcome throughput losses from 
shorter stalls, due to pipeline start-up costs
 Since CPU issues instructions from 1 thread, when a stall occurs, the pipeline must be emptied or frozen 
 New thread must fill pipeline before instructions can complete 

•Because of this start-up overhead, coarse-grained 
multithreading is better for reducing penalty of high cost 
stalls, where pipeline refill time << stall time
•Used in IBM AS/400, but not in modern processors
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•Techniques presented so far have all been 
“vertical” multithreading where each pipeline 
stage works on one thread at a time

•SMT uses fine-grain control already present 
inside an OoO superscalar to allow instructions 
from multiple threads to enter execution on 
same clock cycle. Gives better utilization of 
machine resources.

3. Simultaneous MultiThreading (SMT) for OoO superscalars

Simultaneous Multithreading (SMT)
•Simultaneous multithreading (SMT): a variation of fine-grained 

multithreading implemented on top of a multiple-issue, 
dynamically scheduled processor

•Add multiple contexts and fetch engines and allow instructions 
fetched from different threads to issue simultaneously

•Utilize wide out-of-order superscalar processor issue queue to 
find instructions to issue from multiple threads

•OoO instruction window already has most of the circuitry 
required to schedule from multiple threads

•Any single thread can utilize whole machine

•Used in Core i7 (2008) and IBM Power 7 (2010)
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Illustration of Multithreading Categories
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Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

Execution slots

Example 1: Intel Core i7
•Aggressive out-of-order speculative microarchitecture
•Total pipeline depth is 14 stages; branch 

mispredictions cost 17 cycles
•48 load and 32 store buffers
•Six independent functional units can each begin 

execution of a ready micro-op in the same cycle
•Uses a 36-entry centralized reservation station shared 

by six functional units, with ROB
Up to six micro-ops may be dispatched to functional units 

every cycle
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Intel Core i7 Performance: CPI

The CPI for the 19 SPECCPU2006 benchmarks shows an average CPI of 0.83 

for both the FP and integer benchmarks. SMT further improves performance 

by 15-30% (according to Intel)

Example 2: ARM Cortex A8
•13-stage pipeline, dual-issue, statically scheduled 

superscalar with dynamic issue detection, which allows the 
processor to issue one or two instructions per clock
•Dynamic branch predictor with a 512-entry two-way set 

associative branch target buffer and a 4K-entry global 
history buffer, indexed by branch history and current PC
 incorrect prediction results in a 13-cycle penalty as pipeline is flushed
 eight-entry return stack is kept to track return addresses

•Has an ideal CPI of 0.5 due to its dual-issue structure
•Hazards: 

 Functional and data (compiler must handle; otherwise issue 1 instr/cycle)
 Control (arise only when branches are mispredicted)
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ARM Cortex A8 Performance: CPI

11/3/2024

Pipeline stalls created 

significant performance 

losses

ARM Cortex A9 vs. A8

• The insight that the pipeline stalls created significant performance losses probably played a key 
role in the decision to make the ARM Cortex-A9 a dynamically scheduled superscalar w/ 
speculation

• A9 uses a more powerful branch predictor, OO execution, instruction cache prefetch, faster 
multiply pipeline and a nonblocking L1 data cache
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ARM A Series Processors

~40% faster than A9

  up to 8 cores

~50% faster than A8

The Future? 

•Moving away from ILP enhancements
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