COEN-4730/EECE-5730 Computer Architecture

Lecture 7

ILP, ILP Limits, and TLP
(Ch.3)

Cristinel Ababei
Dept. of Electrical and Computer Engineering

[fm MARQUETTE

PppL UNIVERSITY

BE THE DIFFERENCE.

Credits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier

Outline

eHardware Based Speculation
eMultiple Issue Processors
eLimits of ILP

oTLP - Multithreading

Hardware Based Speculation

e Combines three key ideas:
1. Dynamic branch prediction to choose which
instructions to execute
2. Speculation to allow execution of instructions
before control dependences are resolved
+ ability to undo effects of incorrectly speculated
sequence

3. Dynamic scheduling to deal with scheduling of
different combinations of basic blocks

Extending Tomasulo’s Algorithm to
Support Speculation

e Must separate execution from allowing instruction to finish
or “commit”

e This additional step called instruction commit

eWhen an instruction is no longer speculative, allow it to
update the register file or memory

eRequires additional set of buffers to hold results of
instructions that have finished execution but have not
committed

eThis Reorder Buffer (ROB) is also used to pass results
among instructions that may be speculated

Reorder Buffer (ROB)

e|n Tomasulo’s algorithm, once an instruction writes its result,
any subsequently issued instructions will find result in the
register file

e With speculation, the register file is not updated until the
instruction commits
° (we know definitively that the instruction should execute)

eThus, the ROB supplies operands in interval between
completion of instruction execution and instruction commit

° ROB is a source of operands for instructions, just as reservation stations (RS)
provide operands in Tomasulo’s algorithm

° ROB extends architecture registers like Reservation Stations (RS) do

ROB Details: Fields of Reorder Buffer Entry

Each entry in the ROB contains four fields:

1. Instruction type
e abranch (has no destination result), a store (has a memory address
destination), or a register operation (ALU operation or load, which has register
destinations)
2. Destination

* Register number ifor loads and ALU operations) or _
memory address (for stores) where the instruction result should be written

3. Value

¢ V\alue of instruction result until the instruction commits

4. Ready

¢ Indicates that instruction has completed execution, and the value is ready

Reorder Buffer Operation

¢ Holds instructions in FIFO order, exactly as issued

¢ When instructions complete, results placed into ROB

— Supplies operands to other instruction between execution
complete & commit = more registers like RS

— Tag results with ROB buffer number instead of reservation station
¢ When instructions commit =values at head of ROB placed in registers

e Asaresult, easy to undo]
speculated instructions Reorder
on mispredicted branches Buffer
or on exceptions — basically,

FLUSH the ROB!

Res Stationd |Res Stationg

Commit path @H WTH

4 Steps of Speculative Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr & send operands & reorder
buffer no. for destination (this stage sometimes called “dispatch”)

2. Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch CDB for result; when both
in reservation station, execute; checks RAW (this stage sometimes called “issue”

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result

When instr. at head of reorder buffer & result present, update register with result (or
store to memory) and remove instr from reorder buffer. Mispredicted branch at head of
ROB flushes ROB. (this state sometimes called “graduation”)

Example: ROB/Tomasulo

ROB [
ROB/Tomasulo — cycle 0‘
Loop:ADDD F4, F2, FO -
MULD F8. F4 F2 Instruction Queue
ADDD F8, F8, F6 SUBL.. 7
SUBD FS, F2, FO DTS, P2, Y Fo[0.0
SUBI ADDD Fé, F8, F6 F2[2.0
BNEZ .., Loo ULD F8, F4, Faled
o O0P DDD F|4, F2, F Fs[s0
[
1
2 1
integer 3 2
FP adders FP mult's
\ \
9
ROB [
0 JADDD| F4 - H
ROB/Tomasulo — cycle 175
2
3
Loop:ADDD F4, F2, FO - :
MULD F8, F4 F2 Instruction Queue g
ADDD F®, F8, F6 BNEZ T
SUBD F8, F2, FO —— F0[0.0
SUBL . UBD F8, F2, F) :;21 ‘2}.3 —
ADDD Fb, F8, F6 :
BNEZ 1ULD F‘S, F4, F} Eg 3;8
[
1 ADDD| 2.0 0.0 ROB(Q
2 1
integer 3 2
FP adders FP mult's
| |

10

ROB [
ADDD| F4 - H

ROB/Tomasulo — cycle 29 foto £

3

Loop:ADDD F4, F2, FO

. 4
MULD Fs,F4. F2 Instruction Queue s

6

ADDD F6, F8, F6 ADDD 14, 2, FO i
SUBD F8, F2, FO BNEZ Fo[0.0
SUBI SUBI F2[2.0
ENEZ $UBD F8, F2, Fi Eg ‘G‘-g ROBO
ADDD Ts, F8, F§) F8[8 0 ROB1L
1 ADDD| 2.0 0.0 ROBQ
2 1 MULD| ROBO | 2.0 ROB]
integer 3 2
FP adders FP mult’s

11

ROB [——
o[ADDD] F4 | - |H
ROB/Tomasulo — cycle 3 [uu s |-
2 [ADDD[F6 | -
3
Loop:ADDD F4, F2, FO - p
MULD F8. F4 F2 Instruction Queue g
ADDD F6, F8, F6 MULD F8, F4, F2 T
SUBD F8, F2, FO ACDD 4, 72, 70 F0[0.0
SURI ! BNEZ F2[2.0
BNEZ .. SUBL Fere0on
SUBD F8, F2, Fj F8[8.0[ROB1
[
1 [appp| 2.0 | 0.0 Rogd
2 |appD| RoOB1 | 6.0 ROBZ 1 MuLD] ROBO [2.0 ROBf
integer 3 2
FP adders FP mult's

12

ROB [

: 0O[ADDD| F4 | - | H
ROB/Tomasulo — cycle 41 oo £ |-
2 [ADDD|_F6
3 [SUBD| F8
. 4
LOOD'QEJ[E[D) ,Eg' Ei’ Eg Instruction Queue g
ADDD F6, F8, F6 DOD F6, F8, F 7
SUBD F8, F2. FO MULD F8, F4, F2 Fo[0.0
SURL ! ADDD F4, F2, FO F2[2.0
BNEZ F4[4.0 [ROBO
BNEZ F6[6.0 [ROB2
5|UBI F8[8.0 [ROB3
[
1 lADDD] 2.0 | 0.0 RoOBd
2 |aDDD| ROB1 | 6.0 ROBZ 1 [MULD| ROBO | 2.0 ROB{
. 3 lsuep| 2.0 | 0.0 RoBd 2
integer
FP adders FP mult's
13
ROB
0 [ADDD| F4 | 2.0 | &
ROB/Tomasulo — cycle 5 oo
2 |ADDD| F6 | -
3|SUBD| F8 | -
Loop:ADDD F4, F2, FO , 4 | SUBL
MULD Fs, F4 F2 Instruction (;ue_ue 2
ADDD F6, F8, F6 pUBDFS, 2, 7 i
SUBD F8, F2, FO DDD F6, F8, F Fo[0.0
SUBI re MULD F8, F4, F2 F2 42}8 RGO
F4[4.
BNEZ ADDD P4, 72, 0 F6[6.0 [ROB2
B"“EZ F8[8.0[ROB3
||
SUBI 1 jropD] 2.0 | 0.0 ROB(
2 |aDDD| ROBL | 6.0 RoBd 1MULD] 2.0 | 2.0 ROB{
. susD| 2.0 | 0.0 ROB3 2
integer
FP adders FP mult’s
| \
2.0 (ROBO)

14

ROB
0
ROB/Tomasulo —cycle 6 jmum e |- | =
2 [ADDD| F6 -
3 [SUBD| F8 -
. 4 | SUBI
LOOp'?/IEL)j[E[D) Eg' :3’ Eg Instruction Queue 5 [BNEZ
, F4, 6
ADDD F6, F8, F6 SUBL 7
SUBD F8, F2, FO {UBD P8, P2, B Fo[0.0
SURI ! DDD F6, F8, Fi F2[2.0
BNEZ MULD F8, F4, F2 Eg gg 553
ADDD T“- F2, 70 F8[8.0[ROB3
[
SUBI 1
BNEZ 2 |[ADDD| ROB1 | 6.0 ROBZJ 1 MULD[2.0 2.0 ROB]
. 3 |SUBD| 2.0 0.0 ROB3 2
integer
15
ROB
0
ROB/Tomasulo —cycle 7 | jmum| e u
2 |ADDD| F6
|
. 4
LOOP-Q%[E[D) ng :3’ Eg Instruction Queue s [BNEZ
. T, BNEZ 6 [ADDD| F4
ADDD Fé, F8, F6 i
SUBD F8, F2, FO SUBT F0[0.0
SUBI UBD F8, F2, F) F2[2.0
BNEZ .. CDD £6, 78, Fy Fe[e01R00
MULD Ts, F4, F2 F8 8:0 ROB3
L
SUBI 1 ADDD 2.0 0.0 ROBf{
BNEZ 2 |ADDD| ROB1 | 6.0 ROB2 1 MULDl 2.0 2.0 ROB1
. 3 |SUBD| 2.0 0.0 ROB3 2
integer
FP adders FP mult's

16

ROB [
o [MUL ES -
ROB/Tomasulo —cycle 8 mee=T— =
2 |ADD! F6 -
3|SUBD| F8 | 2.0
. 4 | SUBI
LOOp'?/IEL)j[E[D) Eg' Ei’ Eg Instruction Queue 5 [BNEZ
ADDD Fé, F8, F6 ho0o 74, 2, 7] © ARREEY
SUBD F8, F2, FO BNEZ F0[0.0
SUBI SUBI F2(2.0
BNEZ .. UBD P, F2, FY Fe[e.0[R0Es
DDD "Eﬁf F8, Fp F8[8.0/ ROBO
[
SUBI 1 |ADDD| 2.0 0.0 ROBf{
BNEZ 2 |ADDD| ROB1 | 6.0 ROB2 1 MULD| 2.0 2.0 ROBY
nteger 3 EUBDINRIONINONNR0RY 2 MULD| ROBG | 2.0 RORg

FP mult's

2.0

(ROB3)

17

ROB [—
0 [MUL E8 -
ROB/Tomasulo —cycle 9 | mrer= u
2 |AD F6 -
. 4
Loop:ADDD F4, F2, FO Instruction Queue s [BNEZ
MULD F8, F4, F2 2 [ADDDI F4
ADDD F6, F8, F6 ADDD 74, F2, FO 1
SUBD FS8, F2, FO BNEZ Fo[0.0
SUBI SUBI F2(2.0
BNEZ .. UED e P2 H X ILeLH
DDD Tﬁf F8, A F8[8.0[ROBO
[
SUBI 1 ADDD| 2.0 0.0 ROBf
BNEZ 2 |ADDD| ROB1 | 6.0 ROB2 1 MULD 2.0 2.0 ROBI1
. 3 2 MULD| ROB6 | 2.0 ROB(
integer
FP adders FP mult's

18

0 [MUL E8
ROB/Tomasulo —cycle 11 | momoreeT— =
2 |[ADDD| F6 -
3 |SUBD| F8 2.0
. 4 | SUBI
LOOP'Q%EE Eg' Eﬁ’ Eg Instruction Queue s [BNEZ
P4, ADDD F, F2, 70| 6 ADDDI F4 [2.0
ADDD F6, F8, F6 I
SUBD F8, F2, FO BNEZ Fo[0.0
SUBI SUBI F2(2.0
BNEZ e | Fele01R00
DDD F6, F8, Ff F8[8.0]ROBO
[|
SUBI 1 ADDD] 2.0 | 0.0 RoB4
BNEZ 2 ADDD| ROB1 | 6.0 ROB2 1 MULD| 2.0 2.0 ROBI
integer 3 2 MULD| 2.0 2.0 ROBQ
FP adders FP mult’s
\ |
2.0 (ROB6)
19
ROB [
" 0 MUL E8 -
ROB/Tomasulo — cycle 15 @t T7o] =
2 [ADDD| F6 -
3 |SUBD| F8 2.(‘)
- 4 | SUBI va
LOOD'Q?J[EB Eg' Ei’ Eg Instruction Queue s EBIII:E)ZD e
! r 6 A
ADDD F6, F8, F6 ADDD 14, 12, FO i
SUBD Fg, F2, FO BNEZ F0[0.0
SUBRI SUBI F212.0
BNEZ {UBD P8, P2, B Fela0oons
bDD "Ef» F&, F§ F8[8.0[ROBO
[
1
BNEZ 2 |ADDD| 4.0 6.0 ROBZ 1 MULD] 2.0 2.0 ROB1
integer 3 2 MULD[2.0 2.0 ROBQ
FP adders FP mult’s
|
4.0 (ROB1)
20

10

ROB [
: 0 [MULD] F8 | -
ROB/Tomasulo — cycle 16 | I
2 [A BT H
3[SUBD| F8 | 2.0
. 4 | SUBI val
Loop'ﬁﬂfg Eg’ Ei’ IES Instruction Queue s [BNEZ
ADDD F6. FS. F6 MULD F8, F4, F2| 6 |ADDD Ff’ 2.0
SUBD F8, F2, FO ADDD 4, 72, 70 co30
SURI S BNEZ F2[2.0
BNEZ . SUBI Fel0lron
$UBD F‘S F2,) F8[4.0[ROBO
[
1 [ADDD] ROBO | ROB2 ROB]
BNEZ | 2 |ADDD| 4.0 | 6.0 ROBZ 1
nteger 3 2 MuLD| 2.0 | 2.0 Rogq
ff,"r'anChd' Jl FP adders FP mult's
ispredicted!
b R |

21

ROB [
] Flushed
ROB/Tomasulo — cycle 17§ —ures
2 [ADDD[F H
g ERe
: 4 val
LOOP'QB[E[D) Eg’ Ei’ Eg Instruction Queue 5 [BNEZ - ot
s he 6 ushe
ADDD F6, F8, F6 fushed i
SUBD F8, F2, FO fushed Fo[0.0 5| mst
SUBI ... flushed Ei %8 L ;]m.ie;
flushed . ~| from
BNEZ . ﬂuishecl Eg 28 E\gg%) branch
L]
—ABBE-REBE-TREBZ-ROBY
2 ADDD 4.0 6.0 ROBZ 1
integer 3 2 Hoeb—=0 -—ROBY
FP adders FP mult’s
| |

22

" 1 0
ROB/Tomasulo — cycle 19
2 |ADDD| F6 |10.0
3 |SUBD| F8 2.(‘)
Loop:ADDD F4, F2, FO , 4 12uBl i
MULD FS, F4 F2 Instruction Queue g BNEZ nt
ADDD Fe6, F8, F6 i
SUBD F8, F2, FO Eg g.g
SUBI F4[2.0
BNEZ F6/6.0 |ROB2
F84.0|ROB3
L
1
2 |ADDD| 4.0 6.0 ROBZ 1
integer 3 2
FP adders FP mult’s
|
10.0 (ROB2)
23
ROB [
0
ROB/Tomasulo — cycle 20 |
2
3 |SUBD| F8 2‘(‘)
LoOp:ADDD F4, F2, FO : 4 1 SuBl 12
MULD FS,F4, F2 Instruction Queue g BNEZ nt
ADDD F®6, F8, F6 1
SUBD F8, F2, FO Eg g-g
SUBI F4[2.0
BNEZ F610.0
F8(4.0[ROB3
L
1
2 1
integer 3 2
FP adders FP mult’s

24

0
ROB/Tomasulo — cycle 21 ;
2
" SUBI I
Loop:ADDD F4, F2, FO , 4 H
MULD F8. F4 F2 Instruction Queue g BNEZ £
ADDD F®6, F8, F6 1
SUBD F8, F2, FO [Eg g.g
SUBL .. — F4[20
BNEZ ...] F6110.0]
1 F8(2.0
Il
1
2 1
integer 3 2
FP adders FP mult’s
\ |

Outline
eHardware Based Speculation
eMultiple Issue Processors
eLimits of ILP
oTLP - Multithreading
26

13

Getting CPl less than 1

Superscalar and VLIW processors
e Trade-off between static and dynamic instruction scheduling

— Static scheduling places burden on software
— Dynamic scheduling places burden on hardware
issue a variable number of
instructions per cycle, up to a maximum, using static
(compiler) or dynamic (hardware) scheduling

issue a fixed number of instructions per
cycle, seen as a packet (potentially with empty slots), and
created and scheduled statically by the compiler

27

Superscalar Execution

e A is one in which several
instructions can be initiated simultaneously and executed
independently.

e Pipelining allows several instructions to be executed at the
same time, but they have to be in different pipeline stages
at a given moment.

e Superscalar architectures include all features of pipelining
but, in addition, there can be several instructions executing
simultaneously in the same pipeline stage.

28

Superscalar execution illustrated

» Higher instruction fetch bandwidth
» INT instructions, loads and stores occupy one slot
» FP instructions occupy second slot

» Need pipelined FP datapath, otherwise FP datapath
becomes bottleneck

Instruction type Pipe stages

INT instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

INT instruction IF ID EX MEM wB

FP instruction IF ID EX MEM WB

INT instruction IF 1D EX MEM WB
FP instruction IF 1D EX MEM WB

29

Example: Loop unrolling and instruction scheduling

for (i=1l; i<=1000; i=i+1;)
X[i] = x[1i] + s;

Assume latencies

Producer Consumer Latency
FP ALUop | Another FP ALU op 3

FP ALU op | store double 2
Load double | FP ALU op 1
Load double | store double 0

30

15

Loop unrolling and instruction scheduling

Example in MIPS assembly

Clock cycle issued
Loop: LD FO, O0O(R1l) 1
ADDD F4, FO, F2 3
SD F4, O0(R1) 6
SUBI R1, R1, 8 7
BNEZ R1l, Loop 8

» 9 cycles per loop iteration due to stalls

31
Loop unrolling in single-issue processor
Loop unrolling; Improved instruction
4 iterations scheduling
Loop: 1p F0, oGy o Vg eeued » LD's up eliminate LD-ADDD
LD F6, -8(R1) 2 1-cycle stall
LD F10, -16(R1) 3
LD F14, -24(R1) 4 » ADDD'’s up eliminate ADDD-SD
ADDD F4, FO, F2 5
ADDD F8, F6, F2 6 2-cycle stalls
ADDD F12, F10, F2 7 .
ADDD F16, F14, F2 8 » SD down fills branch delay slot
sD F4, O0(R1) 9
SD F8, -8(R1) 10 » Need adjustment of SD indices
sD F12, -16(R1) 11
SUBI R1, R1, 32 12 » 14 cycles for 4 iterations, or 3.5
BNEZ R1, Loop 13 . .
SD F16, 8(R1) 14 cycles per iteration
32

16

Loop unrolling in superscalar processor

Unroll 3 iterations with dual-issue instruction scheduling

INT FP Cycle
Loop: LD F0, 0(R1) 1
LD F6,-8 (R1) 2
LD F10,-16(R1) ADDD F4,FO0,F2 3
ADDD F8,F6,F2 4
ADDD F12,F10,F2 5
sD O(R1),F4 6
SD —8(R1),F8 7
SUBI R1,R1, 24 8
BNEZ R1, Loop 9
sD 8(R1),F12 10

» 10 cycles per 3 iterations, 3.3 cycles per iteration

Loop unrolling and static scheduling in superscalar

Unroll 5 iterations with dual-issue instruction scheduling

INT FP Cycle
Loop: | LD FO, 0 (RI) i
] F&, -8 (RI) z
LD F10,-16(R1) | ADDD F4,FO0,F2 3
LD F14,-24(R1) | ADDD F8,F6,F2 1
LD F18,-32Z(R1) | &DDD F1Z,F10,F2 5
SD 0(R1) ,F4 ADDD F16,F14,F2 6
SD -8 (RI1),F8 ADDD F20,F18,F2 7
SD —-16(R1),F12 8
SD -24(R1),F16 9
SUBI RI,RI, 40 9
ENEZ R1, Loop 11
SD 8(R1),F20 12

» 12 cycles per 5 iterations, 2.4 cycles per iteration

Superscalar processor with dynamic scheduling

eExtend Tomasulo’s algorithm to handle
multiple issue

e|nstructions issued in program order

eCannot issue multiple dependent
instructions in the same cycle.

35
Dual-issue pipeline with Tomasulo
Assume usual loop example

lteration Starts Memory Writes

number Instructions Issues at execute access pt CDB at Comment
1 LD FO,D(RI) 1 2 3 4 Firstissue
1 ADDD F4,F0,F2 7 5 8 Wait for LD
1 SD F4,0(RI) 2 3 9 Wait for ADDD
1 SUBT RI,RI1,8 3 4 5 Wait for INT FU
1 BNEZ RI, Loop 4 5 Wait for SUBI
2 LD FO,0(RI) 5 7 8 9 Wait for BNE
2 ADDD F4,F0,F2 5 10 13 Wait for [D
2 SD F4,0(RI) 6 8 14 Wait for ADDD
2 SUBI R1,RI1,8 7 9 10 Wait for INT FU
2 BNEZ RI, Loop 8 11 Wait for SUBI
3 ID FO,0(RI) 9 12 13 14 Wait for BNE
3 ADDD F4,F0,F2 g 5 18 Wait for LD
3 SD F4, 0 (RI) 10 13 19 Wait for ADDD
3 SUBT RI,R1,8 11 14 15 Wait for INT FU
3 BNEZ R1, TLoop 12 16 Wait for SUBI

» 19 cycles per 4 iterations, or 4.8 cycles per iteration

36

18

Limitations of multiple-issue processors

Software and hardware implications

» Inherent limitations of ILP in programs (control and data dependencies)

» Need as many independent instructions as pipeline depth
» Deep unrolling, register pressure

» Hardware complexity increasing rapidly with instructions issued per
cycle

Adding FUs scales complexity linearly

Higher memory and register-file bandwidth, more ports
Memory system implications, interleaving

Dynamic scheduling expensive

Issue logic of dynamic scheduled processors expensive

yvyvwvyy

v

» Middle ground: combination of static (compiler) and dynamic scheduling

Outline
eHardware Based Speculation
eMultiple Issue Processors
eLimits of ILP (Not included in Ed.6,
2019)
oTLP - Multithreading
38

19

Extracting more ILP

eSpeculation
° Look for parallelism beyond branches
° Need easy roll-back — ROB
° Combined with multiple-issue regains performance loss

eMultiple instructions issued per cycle

° Natural parallelism in loops

° Increased hardware complexity

° More ports to register files, memory, other resources

° Branch predictors, potentially for multiple branches simultaneously
° Complexissue logic and control logic

39

Limits to ILP

*How much ILP is available using existing
mechanisms with increasing HW
budgets?

*Do we need to invent new HW/SW
mechanisms to keep on processor
performance curve?

40

20

Limits to ILP: Quantitative Analysis

Assumptions for ideal/perfect machine (all constraints on ILP are
removed):

1. Re?ister renaming — infinite virtual registers
=> all register WAW & WAR hazards are avoided

2. Branch prediction — perfect; no mispredictions

3. Jump prediction — all jumps perfectly predicted (returns, case
statements)

2 & 3 = no control dependencies; perfect speculation & an
unbounded buffer of instructions available

4. Memory-address alias analysis — addresses known & a load can be
moved before a store provided that the addresses are not equal; 1&4
eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions (FP *,/);
unlimited instructions issued/clock cycle;

41
Limits to ILP HW Model comparison
Model Power 5
Instructions Issued | Infinite 4
per clock
Instruction Window | Infinite 200
Size
Renaming Infinite 48 integer +
Registers 40 FI. Pt.
Branch Prediction | Perfect 2% to 6%
misprediction
(Tournament
Branch Predictor)
Cache Perfect 64KIl, 32KD, 1.92MB
L2,36 MB L3
Memory Alias Perfect ??
Analysis
42

21

Upper Limit to ILP: Ideal Machine

160 150.1
o FP: 75 - 150
O 140
>
@) 118.7
— 120
0
Qo t Integer: 18 - 63
g 80 4 75.2
— 62.6
c | 548
o 60
-
O 40 T
g 17.9
) 20 T
c [
- 0

gcc espresso fpppp doducd tomcatv

Programs

43
Limits to ILP HW Model comparison
New Model [Model |Power5
Instructions | Infinite Infinite 4
Issued per
clock
Instruction Infinite, 2K, 512, [Infinite 200
Window Size | 128, 32
Renaming Infinite Infinite 48 integer +
Registers 40 FI. Pt.
Branch Perfect Perfect 2% to 6%
Prediction misprediction
(Tournament Branch
Predictor)
Cache Perfect Perfect 64KI, 32KD, 1.92MB
L2,36 MB L3
Memory Perfect Perfect ??
Alias
44

22

More Realistic HW: Window Impact

Change from Infinite window)
2048, 512, 128, 32 FP: 9-150

150

140

120

100

Integer: 8 - 63

80

60

40 1

20 T

Instruction issues Per Clock

gce espresso li fpppp doduc tomcatv

Binfinite ®2048 ®512 0128 B32

45
Limits to ILP HW Model comparison
New Model [Model |Power5
Instructions |64 Infinite 4
Issued per
clock
Instruction 2048 Infinite 200
Window Size
Renaming Infinite Infinite 48 integer +
Registers 40 FI. Pt.
Branch Perfect vs. 8K Perfect 2% to 6%
Prediction Tournament vs. misprediction
512 2-bit vs. (Tournament Branch
profile vs. none Predictor)
Cache Perfect Perfect 64KIl, 32KD, 1.92MB
L2,36 MB L3
Memory Perfect Perfect ??
Alias
46

23

More Realistic HW: Branch Impact

Change from Infinite window .

to examine to 2048 and FP: 15 2048
maximum issue of 64
instructions per clock cycle

60 T

50 T+

I
S

Integer: 6 - 12

)
S

Instruction issues per cycle

@
o
= £ 20 {
10
o
gce espresso li fpppp doducd tomcatv
Program
‘ @perfect BSelective predictor B Standard 2-bit O Static 8 None ‘
Perfect Tournament BHT (512) Profile No prediction
47
Misprediction Rates
35%
30%
30%
it
© 0,
& 25%
[
o 20%
o
3 15%
o
2 10%
=
5% 1%1%
0 00%
0% -
tomcatv doduc fpppp li espresso gce
B Profile-based B 2-bit counter B Tournament |
48

24

Limits to ILP HW Model comparison

New Model [Model |Power5

Instructions |64 Infinite 4

Issued per

clock

Instruction 2048 Infinite 200

Window Size

Renaming Infinite v. 256, Infinite 48 integer +

Registers 128, 64, 32, none 40 FI. Pt.

Branch 8K 2-level Perfect Tournament Branch

Prediction Predictor

Cache Perfect Perfect 64Kl, 32KD, 1.92MB
L2,36 MB L3

Memory Perfect Perfect ??

Alias

49
More Realistic HW:
Renaming Register Impact (N int + N fp)
"1 Cha(rj\ge 26914'8 instr
window, instr issue, 5 . -
*®T 8K 2 level Prediction FP: 11 4554
Og 30 T
ok Integer: 5-15
‘ B nfinite @256 W128 064 W32 .NOHE‘
Infinite 256 128 64 32 None
50

25

Limits to ILP HW Model comparison

New Model |Model |[Power5
Instructions |64 Infinite 4
Issued per
clock
Instruction 2048 Infinite 200
Window Size
Renaming 256 Int + 256 FP | Infinite 48 integer +
Registers 40 FI. Pt.
Branch 8K 2-level Perfect Tournament
Prediction
Cache Perfect Perfect 64KI, 32KD, 1.92MB

L2,36 MB L3

Memory Perfect v. Stack | Perfect ??
Alias v. Inspect v.

none

51

51
More Realistic HW:
Memory Address Alias Impact
7 Change 2048 instr s 4
ST window, 64 instr issue,
w0 4 8K 2 level Prediction, 256 FP: 4 - 45
ol renaming registers (Fortran,
s0 1 no heap)
25 4
4 In r. 4 -
O j: I tege 9 o 1
) m L | II
—_— 10 4 . . I 9
5 1 4 5 5 5 ‘ 5 4, 5 4 5,
U_IIID o e e B e
gce espresso li fpppp doducd tomcatv
Program
| B perfect W Giobal/stack Perfect] Inspection O None ‘
Perfect Global/Stack perf; Inspec. None
heap conflicts Assem.
52

26

Limits to ILP HW Model comparison

New Model |Model |[Power5
Instructions |64 (no Infinite 4
Issued per restrictions)
clock
Instruction Infinite vs. 256, Infinite 200
Window Size | 128, 64, 32
Renaming 64 Int + 64 FP Infinite 48 integer +
Registers 40 FI. Pt.
Branch 1K 2-level Perfect Tournament
Prediction
Cache Perfect Perfect 64KI, 32KD, 1.92MB

L2,36 MB L3

Memory HW Perfect Perfect
Alias disambiguation

53

Realistic HW: Window Impact

IPC

10

60
50 T
40 T
30 +

20 +

]I]Il.. II i M .

Perfect disambiguation (HW), 1K
Selective Prediction, 16 entry return, 64 56
registers, issue as many as window

i FP: 8-45 Qi

22

!nteger 6-12

151

1010]0 121211,

17]6
IL III .ll

expresso li fpppp doducd tomcatv

Program

| W infinte W 256 W Oea [P M 16 Hs H. |

Infinite 256 128 64 32 16 8 4

54

27

Limits to ILP

eAdvances in compiler technology + significantly
new and different hardware techniques may be
able to overcome limitations assumed in
studies

eHowever, unlikely such advances when coupled
with realistic hardware will overcome these
limits in near future

55

Outline

eHardware Based Speculation
eMultiple Issue Processors
eLimits of ILP

oTLP - Multithreading

56

56

28

Performance Beyond Traditional ILP

eThere can be much higher natural parallelism in
some applications (e.g., Database or Scientific
codes)
oExplicit
° Thread Level Parallelism (TLP) or
° Data Level Parallelism (DLP)

eThread: light-weight process with own instructions
and data

° Each thread has all the state (instructions, data, PC, register state, and so on)
necessary to allow it to execute

eData Level Parallelism: Perform identical operations
on data, and lots of data

57

Thread Level Parallelism (TLP)

e Goal: Improve Uniprocessor Throughput
e |LP exploits implicit parallel operations within a

loop or straight-line code segment

e TLP explicitly represented by the use of multiple

threads of execution that are inherently parallel

e Goal: Use multiple instruction streams to improve

1.Throughput of computers that run many programs
2.Execution time of multithreaded programs

e TLP could be more cost-effective to exploit than

ILP

58

29

Multithreaded Execution

e Multithreading: multiple threads to share the functional units of 1
processor via overlapping

° Processor must duplicate independent state of each thread e.g., a separate copy of register file, a
separate PC, and for running independent programs, a separate page table

° Memory shared through the virtual memory mechanisms, which already support multiple
processes

° HW for fast thread switch; much faster than full process switch (which can take 100s to 1000s of
clocks)

* Single process might contain multiple threads; all threads within a process share the same
memory space, and can communicate with each other directly, because they share the same
variables

e \When to switch between threads?

1.Alternate instruction per thread (fine grain)
2.When a thread is stalled, perhaps for a cache miss, another thread can be executed (coarse grain)

59

HW: Simple Multithreaded Pipeline

CC
is 1$ GPR1
1K AN

2 Thread W "2
select

= Have to carry thread select down pipeline to ensure correct state bits read/
written at each pipe stage

= Appears to software (including 0OS) as multiple, albeit slower, CPUs

60

30

1. Fine-Grained Multithreading

eSwitches between threads on each cycle, causing the
execution of multiples threads to be interleaved

OUsuaI(ij done in a round-robin fashion, skipping any stalled
threads

e CPU must be able to switch threads every clock

e Advantage is it can hide both short and long stalls, since
ngs’lclructlons from other threads executed when one thread
stalls

eDisadvantage is it slows down execution of individual
threads, since a thread ready to execute without stalls will
be delayed by instructions from other threads

eUsed on Sun’s T1 (2005) and T2 (Niagara, 2007)

61
o o L] o
Fine-Grained Multithreading on the Sun T1
e Circa 2005; first major processor to focus on TLP rather than ILP
Characteristic SunT1
Multiprocessor and Eight cores per chip: four threads per core. Fine-grained thread
multithreading scheduling. One shared floating-point unit for eight cores.
support Supports only on-chip multiprocessing.
Pipeline structure Simple, in-order, six-deep pipeline with three-cycle delays for
loads and branches.
L1 caches 16 KB instructions; 8 KB data. 64-byte block size. Miss to L2 is
23 cycles, assuming no contention.
L2 caches Four separate L2 caches, each 750 KB and associated with a
memory bank. 64-byte block size. Miss to main memory is 110
clock cycles assuming no contention.
Initial implementation 90 nm process; maximum clock rate of 1.2 GHz; power 79 W;
300 M transistors; 379 mm? die.
62

31

CPlonSunT1

Benchmark Per-thread CPI Per-core CPI
TPC-C 7.2 1.80
SPECIBB 5.6 1.40
SPECWeb99 6.6 1.65

e T1 has 8 cores; with 4 threads/core
¢ |deal effective CPI per thread?
¢ |deal per-core CPI?

¢ |n 2005 when it was introduced, the Sun T1 processor had the best
performance on integer applications with extensive TLP and demanding
memory performance, such as SPECJBB and transaction processing workloads

63

2. Course-Grained Multithreading

eSwitches threads only on costly stalls, such as L2 cache
misses

e Advantages

° Relieves need to have very fast thread-switching

° Doesn’t slow down thread, since instructions from other threads issued only when the thread encounters a
costly stall

eDisadvantage is hard to overcome throughput losses from
shorter stalls, due to pipeline start-up costs

° Since CPU issues instructions from 1 thread, when a stall occurs, the pipeline must be emptied or frozen
° New thread must fill pipeline before instructions can complete

eBecause of this start-up overhead, coarse-ﬁrained
multithreading is better for reducing penalty of high cost
stalls, where pipeline refill time << stall time

eUsed in IBM AS/400, but not in modern processors

64

32

3. Simultaneous MultiThreading (SMT) for OoO superscalars

eTechniques presented so far have all been
“vertical” multithreading where each pipeline
stage works on one thread at a time

oSMT uses fine-grain control already present
inside an 000 superscalar to allow instructions
from multiple threads to enter execution on
same clock cycle. Gives better utilization of
machine resources.

65

Simultaneous Multithreading (SMT)

e Simultaneous multithreading (SMT): a variation of fine-grained
multithreading implemented on top of a multiple-issue,
dynamically scheduled processor

e Add multiple contexts and fetch engines and allow instructions
fetched from different threads to issue simultaneously

e Utilize wide out-of-order superscalar processor issue queue to
find instructions to issue from multiple threads

¢ 000 instruction window already has most of the circuitry
required to schedule from multiple threads

e Any single thread can utilize whole machine
eUsed in Core i7 (2008) and IBM Power 7 (2010)

66

33

lllustration of Multithreading Categories

p Execution slots Simultaneous

Superscalar Fine-Grained Coarse-Grained Multipracessing pyltithreading
—. HECL WEEO0 mEmoo I% N
s D00 S8N00 mOO0O0 | BEE
g ER0DO0D D000 EEO0 EEsSO SO0
s EER0 EHEREULD EERL EESL BEESU
o UOO0O BOOD 8800 mOldd NEEH
g Uil mEEE S8E80 0O EEEN
s ERLD NNN0O 8NN0 O L COOBEO
e muu0 ool 0O0dd . ENCE
= HERL B000 0000 | O HEXO
0000 HEEEE 0000 EEO0 BESS0
OO0 EER0D BEd0lD moONld EEEO
l ERCO NOOO0 s00dd DOeN NEsEU
B Thread 1] Thread 3 BH Thread 5
Thread 2 Thread 4 L] Idle slot

Example 1: Intel Core i7

eAggressive out-of-order speculative microarchitecture

eTotal pipeline depth is 14 stages; branch
mispredictions cost 17 cycles

48 |load and 32 store buffers

eSix independent functional units can each begin
execution of a ready micro-op in the same cycle

eUses a 36-entry centralized reservation station shared
by six functional units, with ROB

° Up to six micro-ops may be dispatched to functional units
every cycle

Intel Core i7 Performance: CPI

2.5

0.5

B!
Fo¥ F O & E O LS PSSP
& & C F LB E & FFost P

Q& ‘2§ e&f& 069 &é‘ &f
The CPI for the 19 SPECCPU2006 benchmarks shows an average CPI of 0.83

for both the FP and integer benchmarks. SMT further improves performance
by 15-30% (according to Intel)

69

Example 2: ARM Cortex A8

¢ 13-stage pipeline, dual-issue, statically scheduled
superscalar with dynamic issue detection, which allows the
processor to issue one or two instructions per clock

eDynamic branch predictor with a 512-entry two-way set
associative branch target buffer and a 4K-entry global
history buffer, indexed by branch history and current PC

° incorrect prediction results in a 13-cycle penalty as pipeline is flushed
° eight-entry return stack is kept to track return addresses

eHas an ideal CPI of 0.5 due to its dual-issue structure
eHazards:

° Functional and data (compiler must handle; otherwise issue 1 instr/cycle)
° Control (arise only when branches are mispredicted)

70

35

ARM Cortex A8 Performance: CPI

Cycles per instruction
w

gzZp vpr gec

O L2 stallsfinstruction

W L1 stallsfinstruction

O Pipeline stallsinstruction
M Ideal CPI

mel crafty parser eon perbmk gap vortex bzip2

Pipeline stalls created
significant performance
losses

71

ARM Cortex A9 vs. A8

AS performance/A8 performance

1.754

gzip vpr gec mef crafty parser eon perbmk gap vortex bzip2 twolf

e The insight that the pipeline stalls created significant performance losses probably played a key
role in the decision to make the ARM Cortex-A9 a dynamically scheduled superscalar w/

speculation

e A9 uses a more powerful branch predictor, OO execution, instruction cache prefetch, faster
multiply pipeline and a nonblocking L1 data cache

72

36

ARM A Series Processors

Cortex™-A8

ARM CoreSight™ Debug and Trace

NEON™

Dara Engine
ARMv7 32b CPU
Floating Point

Unit

16-32k

16-32k
L1 Instruction Cache L1 Data Cache

Cortex"-A9

ARM CoreSight™ Multicore Debug and Trace

NEON™
Data Engine
ARMv7 32b CPU
Floating Point.

Unit

16-64k
I-Cache

Integrated L2 Cache
64- or 128-bit AMBA3J Bus Interface

ACP scu
Dual 64-bit AMBA3 AXI

~50% faster than A8

Cortex"-A15

ARM CoreSight™ Multicore Debug and Trace

NEON™
Data Engine

ARMv7 32b CPU

Virual 40b PA Floating Point

Unit

32k I-Cache
wiparity

ACP scu L2 Cache W/ECC

128-bit AMBA ACE Coherent Bus Interface

~40% faster than A9

up to 8 cores

73
The Future?
eMoving away from ILP enhancements
Powera Power5 Power6 Power7?
Introduced 2001 2004 2007 2010
Initial clock rate (GHz) 1.3 1.9 4.7 3.6
Transistor count (M) 174 276 790 1200
Izsues per clock 5 5 T 6
Functional units 8 8 9 12
Cores/chip 2 2 2 8
SMT threads 0 2 2 4
Total on-chip cache (MB) 1.5 2 4.1 323
Figure 3.47 Characteristics of four IBM Power processors. All except the Poweré were dynamically scheduled,
which is static, and in-order, and all the processors support two load/store pipelines. The Power6 has the same func-
tional units as the Power5 except for a decimal unit. Power7 uses DRAM for the L3 cache.
74

37

	Slide 1: Lecture 7 ILP, ILP Limits, and TLP (Ch.3)
	Slide 2: Outline
	Slide 3: Hardware Based Speculation
	Slide 4: Extending Tomasulo’s Algorithm to Support Speculation
	Slide 5: Reorder Buffer (ROB)
	Slide 6: ROB Details: Fields of Reorder Buffer Entry
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Outline
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Example: Loop unrolling and instruction scheduling
	Slide 31: Loop unrolling and instruction scheduling
	Slide 32
	Slide 33
	Slide 34: Loop unrolling and static scheduling in superscalar
	Slide 35: Superscalar processor with dynamic scheduling
	Slide 36
	Slide 37
	Slide 38: Outline
	Slide 39: Extracting more ILP
	Slide 40
	Slide 41: Limits to ILP: Quantitative Analysis
	Slide 42
	Slide 43
	Slide 44
	Slide 45: More Realistic HW: Window Impact
	Slide 46
	Slide 47: More Realistic HW: Branch Impact
	Slide 48: Misprediction Rates
	Slide 49
	Slide 50: More Realistic HW: Renaming Register Impact (N int + N fp)
	Slide 51
	Slide 52: More Realistic HW: Memory Address Alias Impact
	Slide 53
	Slide 54: Realistic HW: Window Impact
	Slide 55: Limits to ILP
	Slide 56: Outline
	Slide 57: Performance Beyond Traditional ILP
	Slide 58: Thread Level Parallelism (TLP)
	Slide 59: Multithreaded Execution
	Slide 60: HW: Simple Multithreaded Pipeline
	Slide 61: 1. Fine-Grained Multithreading
	Slide 62
	Slide 63
	Slide 64: 2. Course-Grained Multithreading
	Slide 65: 3. Simultaneous MultiThreading (SMT) for OoO superscalars
	Slide 66: Simultaneous Multithreading (SMT)
	Slide 67: Illustration of Multithreading Categories
	Slide 68: Example 1: Intel Core i7
	Slide 69: Intel Core i7 Performance: CPI
	Slide 70: Example 2: ARM Cortex A8
	Slide 71: ARM Cortex A8 Performance: CPI
	Slide 72: ARM Cortex A9 vs. A8
	Slide 73: ARM A Series Processors
	Slide 74: The Future?

