
1

Lecture 7
ILP, ILP Limits, and TLP

(Ch.3)

Cristinel Ababei
Dept. of Electrical and Computer Engineering

COEN-4730/EECE-5730 Computer Architecture

1Credits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier

Outline

•Hardware Based Speculation

•Multiple Issue Processors

•Limits of ILP

•TLP - Multithreading

2

1

2

2

Hardware Based Speculation
• Combines three key ideas:

1. Dynamic branch prediction to choose which
instructions to execute

2. Speculation to allow execution of instructions
before control dependences are resolved
+ ability to undo effects of incorrectly speculated

sequence
3. Dynamic scheduling to deal with scheduling of

different combinations of basic blocks

Extending Tomasulo’s Algorithm to
Support Speculation

•Must separate execution from allowing instruction to finish
or “commit”
•This additional step called instruction commit
•When an instruction is no longer speculative, allow it to

update the register file or memory
•Requires additional set of buffers to hold results of

instructions that have finished execution but have not
committed
•This Reorder Buffer (ROB) is also used to pass results

among instructions that may be speculated

3

4

3

Reorder Buffer (ROB)
•In Tomasulo’s algorithm, once an instruction writes its result,

any subsequently issued instructions will find result in the
register file

•With speculation, the register file is not updated until the
instruction commits
 (we know definitively that the instruction should execute)

•Thus, the ROB supplies operands in interval between
completion of instruction execution and instruction commit
 ROB is a source of operands for instructions, just as reservation stations (RS)

provide operands in Tomasulo’s algorithm
 ROB extends architecture registers like Reservation Stations (RS) do

ROB Details: Fields of Reorder Buffer Entry
Each entry in the ROB contains four fields:
1. Instruction type

• a branch (has no destination result), a store (has a memory address
destination), or a register operation (ALU operation or load, which has register
destinations)

2. Destination
• Register number (for loads and ALU operations) or

memory address (for stores) where the instruction result should be written

3. Value
• Value of instruction result until the instruction commits

4. Ready
• Indicates that instruction has completed execution, and the value is ready

5

6

4

• Holds instructions in FIFO order, exactly as issued

• When instructions complete, results placed into ROB
– Supplies operands to other instruction between execution

complete & commit  more registers like RS

– Tag results with ROB buffer number instead of reservation station

• When instructions commit values at head of ROB placed in registers

• As a result, easy to undo
speculated instructions
on mispredicted branches
or on exceptions – basically,

 FLUSH the ROB!

Reorder

BufferFP

Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

Commit path

Reorder Buffer Operation

1. Issue—get instruction from FP Op Queue
 If reservation station and reorder buffer slot free, issue instr & send operands & reorder

buffer no. for destination (this stage sometimes called “dispatch”)

2. Execution—operate on operands (EX)
 When both operands ready then execute; if not ready, watch CDB for result; when both

in reservation station, execute; checks RAW (this stage sometimes called “issue”)

3. Write result—finish execution (WB)
 Write on Common Data Bus to all awaiting FUs

& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result
 When instr. at head of reorder buffer & result present, update register with result (or

store to memory) and remove instr from reorder buffer. Mispredicted branch at head of
ROB flushes ROB. (this state sometimes called “graduation”)

4 Steps of Speculative Tomasulo Algorithm

7

8

5

Example: ROB/Tomasulo

9

10

6

11

12

7

13

14

8

15

16

9

17

18

10

19

20

11

21

22

12

23

24

13

Outline

•Hardware Based Speculation

•Multiple Issue Processors

•Limits of ILP

•TLP - Multithreading

26

25

26

14

Getting CPI less than 1

Superscalar and VLIW processors
• Trade-off between static and dynamic instruction scheduling

– Static scheduling places burden on software

– Dynamic scheduling places burden on hardware

• Superscalar processors issue a variable number of
instructions per cycle, up to a maximum, using static
(compiler) or dynamic (hardware) scheduling

• VLIW processors issue a fixed number of instructions per
cycle, seen as a packet (potentially with empty slots), and
created and scheduled statically by the compiler

Superscalar Execution
• A superscalar architecture is one in which several

instructions can be initiated simultaneously and executed
independently.

• Pipelining allows several instructions to be executed at the
same time, but they have to be in different pipeline stages
at a given moment.

• Superscalar architectures include all features of pipelining
but, in addition, there can be several instructions executing
simultaneously in the same pipeline stage.

27

28

15

Superscalar execution illustrated

Example: Loop unrolling and instruction scheduling

29

30

16

Loop unrolling and instruction scheduling

Loop unrolling in single-issue processor

Loop unrolling;

4 iterations

Improved instruction

scheduling

31

32

17

Loop unrolling in superscalar processor

Loop unrolling and static scheduling in superscalar

33

34

18

Superscalar processor with dynamic scheduling

•Extend Tomasulo’s algorithm to handle
multiple issue

•Instructions issued in program order

•Cannot issue multiple dependent
instructions in the same cycle.

Dual-issue pipeline with Tomasulo

35

36

19

Limitations of multiple-issue processors

Outline

•Hardware Based Speculation

•Multiple Issue Processors

•Limits of ILP (Not included in Ed.6,
2019)

•TLP - Multithreading

38

37

38

20

Extracting more ILP

•Speculation
 Look for parallelism beyond branches

 Need easy roll-back – ROB

 Combined with multiple-issue regains performance loss

•Multiple instructions issued per cycle
 Natural parallelism in loops

 Increased hardware complexity

 More ports to register files, memory, other resources

 Branch predictors, potentially for multiple branches simultaneously

 Complex issue logic and control logic

40

Limits to ILP
•How much ILP is available using existing
mechanisms with increasing HW
budgets?

•Do we need to invent new HW/SW
mechanisms to keep on processor
performance curve?

39

40

21

Limits to ILP: Quantitative Analysis
Assumptions for ideal/perfect machine (all constraints on ILP are

removed):
 1. Register renaming – infinite virtual registers

=> all register WAW & WAR hazards are avoided
 2. Branch prediction – perfect; no mispredictions
 3. Jump prediction – all jumps perfectly predicted (returns, case

statements)
2 & 3  no control dependencies; perfect speculation & an
unbounded buffer of instructions available

 4. Memory-address alias analysis – addresses known & a load can be
moved before a store provided that the addresses are not equal; 1&4
eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions (FP *,/);
unlimited instructions issued/clock cycle;

Model Power 5
Instructions Issued
per clock

Infinite 4

Instruction Window
Size

Infinite 200

Renaming
Registers

Infinite 48 integer +
40 Fl. Pt.

Branch Prediction Perfect 2% to 6%
misprediction

(Tournament
Branch Predictor)

Cache Perfect 64KI, 32KD, 1.92MB
L2, 36 MB L3

Memory Alias
Analysis

Perfect ??

Limits to ILP HW Model comparison

41

42

22

Upper Limit to ILP: Ideal Machine

Programs

In
s
tr

u
c

ti
o

n
 I

s
s

u
e

s
 p

e
r

c
y

c
le

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doducd tomcatv

54.8
62.6

17.9

75.2

118.7

150.1

Integer: 18 - 63

FP: 75 - 150

In
s

tr
u

c
ti

o
n

 i
s

s
u

e
s

 /
 C

y
c

le

New Model Model Power 5

Instructions
Issued per
clock

Infinite Infinite 4

Instruction
Window Size

Infinite, 2K, 512,
128, 32

Infinite 200

Renaming
Registers

Infinite Infinite 48 integer +
40 Fl. Pt.

Branch
Prediction

Perfect Perfect 2% to 6%
misprediction

(Tournament Branch
Predictor)

Cache Perfect Perfect 64KI, 32KD, 1.92MB
L2, 36 MB L3

Memory
Alias

Perfect Perfect ??

Limits to ILP HW Model comparison

43

44

23

55
63

18

75

119

150

36
41

15

61 59 60

10
15 12

49

16

45

10 13 11

35

15

34

8 8 9
14

9
14

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doduc tomcatv

In
st

ru
c
ti

o
n

 i
ss

u
e

s
P

e
r

C
lo

c
k

Infinite 2048 512 128 32

More Realistic HW: Window Impact
Change from Infinite window
2048, 512, 128, 32 FP: 9 - 150

Integer: 8 - 63

New Model Model Power 5

Instructions
Issued per
clock

64 Infinite 4

Instruction
Window Size

2048 Infinite 200

Renaming
Registers

Infinite Infinite 48 integer +
40 Fl. Pt.

Branch
Prediction

Perfect vs. 8K
Tournament vs.
512 2-bit vs.
profile vs. none

Perfect 2% to 6%
misprediction

(Tournament Branch
Predictor)

Cache Perfect Perfect 64KI, 32KD, 1.92MB
L2, 36 MB L3

Memory
Alias

Perfect Perfect ??

Limits to ILP HW Model comparison

45

46

24

35

41

16

58

60

9

12

10

48

15

46

6
7 6

46

13

45

6 6 7

45

14

45

2 2 2

29

4

19

0

10

20

30

40

50

60

gcc espresso li fpppp doducd tomcatv

In
s
tr

u
c
ti

o
n

 i
s
s
u

e
s
 p

e
r

c
y
c
le

Program

Perfect Selective predictor Standard 2-bit Static None

More Realistic HW: Branch Impact
Change from Infinite window
to examine to 2048 and
maximum issue of 64
instructions per clock cycle

ProfileBHT (512)TournamentPerfect No prediction

FP: 15 - 48

Integer: 6 - 12

IP
C

Misprediction Rates

1%

5%

14%
12%

14%
12%

1%

16%
18%

23%

18%

30%

0%

3%
2% 2%

4%
6%

0%

5%

10%

15%

20%

25%

30%

35%

tomcatv doduc fpppp li espresso gcc

M
is

p
re

d
ic

ti
o

n
 R

a
te

Profile-based 2-bit counter Tournament

47

48

25

New Model Model Power 5

Instructions
Issued per
clock

64 Infinite 4

Instruction
Window Size

2048 Infinite 200

Renaming
Registers

Infinite v. 256,
128, 64, 32, none

Infinite 48 integer +
40 Fl. Pt.

Branch
Prediction

8K 2-level Perfect Tournament Branch
Predictor

Cache Perfect Perfect 64KI, 32KD, 1.92MB
L2, 36 MB L3

Memory
Alias

Perfect Perfect ??

Limits to ILP HW Model comparison

11

15

12

59

29

54

10

15

12

49

16

45

10

13
12

35

15

44

9
10

11

20

11

28

5 5
6 5 5

7

4 4
5

4
5 5

0

10

20

30

40

50

60

70

gcc espresso li fpppp doducd tomcatv

In
s
tr

u
c
ti

o
n

 i
s
s
u

e
s
 p

e
r

c
y
c
le

Program

Infinite 256 128 64 32 None

More Realistic HW:
Renaming Register Impact (N int + N fp)

Change 2048 instr
window, 64 instr issue,
8K 2 level Prediction

64 None256Infinite 32128

Integer: 5 - 15

FP: 11 - 45

IP
C

49

50

26

51

New Model Model Power 5

Instructions
Issued per
clock

64 Infinite 4

Instruction
Window Size

2048 Infinite 200

Renaming
Registers

256 Int + 256 FP Infinite 48 integer +
40 Fl. Pt.

Branch
Prediction

8K 2-level Perfect Tournament

Cache Perfect Perfect 64KI, 32KD, 1.92MB
L2, 36 MB L3

Memory
Alias

Perfect v. Stack
v. Inspect v.
none

Perfect ??

Limits to ILP HW Model comparison

Program

In
s

tr
u

c
ti

o
n

 i
s
s

u
e

s
 p

e
r

c
y

c
le

0

5

10

15

20

25

30

35

40

45

50

gcc espresso li fpppp doducd tomcatv

10

15

12

49

16

45

7 7

9

49

16

4
5 4 4

6
5

3
5

3 3 4 4

45

Perfect Global/stack Perfect Inspect ion None

More Realistic HW:
Memory Address Alias Impact

Change 2048 instr
window, 64 instr issue,
8K 2 level Prediction, 256
renaming registers

NoneGlobal/Stack perf;

heap conflicts

Perfect Inspec.

Assem.

FP: 4 - 45

(Fortran,

no heap)

Integer: 4 - 9

IP
C

51

52

27

New Model Model Power 5

Instructions
Issued per
clock

64 (no
restrictions)

Infinite 4

Instruction
Window Size

Infinite vs. 256,
128, 64, 32

Infinite 200

Renaming
Registers

64 Int + 64 FP Infinite 48 integer +
40 Fl. Pt.

Branch
Prediction

1K 2-level Perfect Tournament

Cache Perfect Perfect 64KI, 32KD, 1.92MB
L2, 36 MB L3

Memory
Alias

HW
disambiguation

Perfect Perfect

Limits to ILP HW Model comparison

Program

In
s

tr
u

c
ti

o
n

 i
s
s

u
e

s
 p

e
r

c
y

c
le

0

10

20

30

40

50

60

gcc expresso li fpppp doducd tomcatv

10

15

12

52

17

56

10

15

12

47

16

10

13
11

35

15

34

9
10 11

22

12

8 8 9

14

9

14

6 6 6
8

7
9

4 4 4 5
4

6

3 2 3 3 3 3

45

22

Infinite 256 128 64 32 16 8 4

Realistic HW: Window Impact
Perfect disambiguation (HW), 1K
Selective Prediction, 16 entry return, 64
registers, issue as many as window

64 16256Infinite 32128 8 4

Integer: 6 - 12

FP: 8 - 45

IP
C

53

54

28

Limits to ILP

•Advances in compiler technology + significantly
new and different hardware techniques may be
able to overcome limitations assumed in
studies

•However, unlikely such advances when coupled
with realistic hardware will overcome these
limits in near future

Outline

•Hardware Based Speculation

•Multiple Issue Processors

•Limits of ILP

•TLP - Multithreading

56

55

56

29

Performance Beyond Traditional ILP
•There can be much higher natural parallelism in

some applications (e.g., Database or Scientific
codes)
•Explicit

 Thread Level Parallelism (TLP) or
 Data Level Parallelism (DLP)

•Thread: light-weight process with own instructions
and data
 Each thread has all the state (instructions, data, PC, register state, and so on)

necessary to allow it to execute

•Data Level Parallelism: Perform identical operations
on data, and lots of data

Thread Level Parallelism (TLP)
• Goal: Improve Uniprocessor Throughput
• ILP exploits implicit parallel operations within a

loop or straight-line code segment
• TLP explicitly represented by the use of multiple

threads of execution that are inherently parallel
• Goal: Use multiple instruction streams to improve

1.Throughput of computers that run many programs
2.Execution time of multithreaded programs

• TLP could be more cost-effective to exploit than
ILP

57

58

30

Multithreaded Execution
•Multithreading: multiple threads to share the functional units of 1

processor via overlapping
 Processor must duplicate independent state of each thread e.g., a separate copy of register file, a

separate PC, and for running independent programs, a separate page table

 Memory shared through the virtual memory mechanisms, which already support multiple
processes

 HW for fast thread switch; much faster than full process switch (which can take 100s to 1000s of
clocks)

• Single process might contain multiple threads; all threads within a process share the same
memory space, and can communicate with each other directly, because they share the same
variables

•When to switch between threads?
1.Alternate instruction per thread (fine grain)

2.When a thread is stalled, perhaps for a cache miss, another thread can be executed (coarse grain)

HW: Simple Multithreaded Pipeline

59

60

31

1. Fine-Grained Multithreading
•Switches between threads on each cycle, causing the

execution of multiples threads to be interleaved
•Usually done in a round-robin fashion, skipping any stalled

threads
•CPU must be able to switch threads every clock
•Advantage is it can hide both short and long stalls, since

instructions from other threads executed when one thread
stalls
•Disadvantage is it slows down execution of individual

threads, since a thread ready to execute without stalls will
be delayed by instructions from other threads
•Used on Sun’s T1 (2005) and T2 (Niagara, 2007)

Fine-Grained Multithreading on the Sun T1
• Circa 2005; first major processor to focus on TLP rather than ILP

61

62

32

CPI on Sun T1

• T1 has 8 cores; with 4 threads/core

• Ideal effective CPI per thread?

• Ideal per-core CPI?

• In 2005 when it was introduced, the Sun T1 processor had the best
performance on integer applications with extensive TLP and demanding
memory performance, such as SPECJBB and transaction processing workloads

2. Course-Grained Multithreading

•Switches threads only on costly stalls, such as L2 cache
misses
•Advantages

 Relieves need to have very fast thread-switching
 Doesn’t slow down thread, since instructions from other threads issued only when the thread encounters a

costly stall

•Disadvantage is hard to overcome throughput losses from
shorter stalls, due to pipeline start-up costs
 Since CPU issues instructions from 1 thread, when a stall occurs, the pipeline must be emptied or frozen
 New thread must fill pipeline before instructions can complete

•Because of this start-up overhead, coarse-grained
multithreading is better for reducing penalty of high cost
stalls, where pipeline refill time << stall time
•Used in IBM AS/400, but not in modern processors

63

64

33

•Techniques presented so far have all been
“vertical” multithreading where each pipeline
stage works on one thread at a time

•SMT uses fine-grain control already present
inside an OoO superscalar to allow instructions
from multiple threads to enter execution on
same clock cycle. Gives better utilization of
machine resources.

3. Simultaneous MultiThreading (SMT) for OoO superscalars

Simultaneous Multithreading (SMT)
•Simultaneous multithreading (SMT): a variation of fine-grained

multithreading implemented on top of a multiple-issue,
dynamically scheduled processor

•Add multiple contexts and fetch engines and allow instructions
fetched from different threads to issue simultaneously

•Utilize wide out-of-order superscalar processor issue queue to
find instructions to issue from multiple threads

•OoO instruction window already has most of the circuitry
required to schedule from multiple threads

•Any single thread can utilize whole machine

•Used in Core i7 (2008) and IBM Power 7 (2010)

65

66

34

Illustration of Multithreading Categories
T

im
e

(p
ro

ce
ss

or
 c

yc
le

)

Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

Execution slots

Example 1: Intel Core i7
•Aggressive out-of-order speculative microarchitecture
•Total pipeline depth is 14 stages; branch

mispredictions cost 17 cycles
•48 load and 32 store buffers
•Six independent functional units can each begin

execution of a ready micro-op in the same cycle
•Uses a 36-entry centralized reservation station shared

by six functional units, with ROB
Up to six micro-ops may be dispatched to functional units

every cycle

67

68

35

Intel Core i7 Performance: CPI

The CPI for the 19 SPECCPU2006 benchmarks shows an average CPI of 0.83

for both the FP and integer benchmarks. SMT further improves performance

by 15-30% (according to Intel)

Example 2: ARM Cortex A8
•13-stage pipeline, dual-issue, statically scheduled

superscalar with dynamic issue detection, which allows the
processor to issue one or two instructions per clock
•Dynamic branch predictor with a 512-entry two-way set

associative branch target buffer and a 4K-entry global
history buffer, indexed by branch history and current PC
 incorrect prediction results in a 13-cycle penalty as pipeline is flushed
 eight-entry return stack is kept to track return addresses

•Has an ideal CPI of 0.5 due to its dual-issue structure
•Hazards:

 Functional and data (compiler must handle; otherwise issue 1 instr/cycle)
 Control (arise only when branches are mispredicted)

69

70

36

ARM Cortex A8 Performance: CPI

11/3/2024

Pipeline stalls created

significant performance

losses

ARM Cortex A9 vs. A8

• The insight that the pipeline stalls created significant performance losses probably played a key
role in the decision to make the ARM Cortex-A9 a dynamically scheduled superscalar w/
speculation

• A9 uses a more powerful branch predictor, OO execution, instruction cache prefetch, faster
multiply pipeline and a nonblocking L1 data cache

71

72

37

ARM A Series Processors

~40% faster than A9

 up to 8 cores

~50% faster than A8

The Future?

•Moving away from ILP enhancements

73

74

	Slide 1: Lecture 7 ILP, ILP Limits, and TLP (Ch.3)
	Slide 2: Outline
	Slide 3: Hardware Based Speculation
	Slide 4: Extending Tomasulo’s Algorithm to Support Speculation
	Slide 5: Reorder Buffer (ROB)
	Slide 6: ROB Details: Fields of Reorder Buffer Entry
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Outline
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Example: Loop unrolling and instruction scheduling
	Slide 31: Loop unrolling and instruction scheduling
	Slide 32
	Slide 33
	Slide 34: Loop unrolling and static scheduling in superscalar
	Slide 35: Superscalar processor with dynamic scheduling
	Slide 36
	Slide 37
	Slide 38: Outline
	Slide 39: Extracting more ILP
	Slide 40
	Slide 41: Limits to ILP: Quantitative Analysis
	Slide 42
	Slide 43
	Slide 44
	Slide 45: More Realistic HW: Window Impact
	Slide 46
	Slide 47: More Realistic HW: Branch Impact
	Slide 48: Misprediction Rates
	Slide 49
	Slide 50: More Realistic HW: Renaming Register Impact (N int + N fp)
	Slide 51
	Slide 52: More Realistic HW: Memory Address Alias Impact
	Slide 53
	Slide 54: Realistic HW: Window Impact
	Slide 55: Limits to ILP
	Slide 56: Outline
	Slide 57: Performance Beyond Traditional ILP
	Slide 58: Thread Level Parallelism (TLP)
	Slide 59: Multithreaded Execution
	Slide 60: HW: Simple Multithreaded Pipeline
	Slide 61: 1. Fine-Grained Multithreading
	Slide 62
	Slide 63
	Slide 64: 2. Course-Grained Multithreading
	Slide 65: 3. Simultaneous MultiThreading (SMT) for OoO superscalars
	Slide 66: Simultaneous Multithreading (SMT)
	Slide 67: Illustration of Multithreading Categories
	Slide 68: Example 1: Intel Core i7
	Slide 69: Intel Core i7 Performance: CPI
	Slide 70: Example 2: ARM Cortex A8
	Slide 71: ARM Cortex A8 Performance: CPI
	Slide 72: ARM Cortex A9 vs. A8
	Slide 73: ARM A Series Processors
	Slide 74: The Future?

