
1

Lecture 8
Thread Level Parallelism and Coherence

(Ch.5)

Cristinel Ababei
Dept. of Electrical and Computer Engineering

COEN-4730/EECE-5730 Computer Architecture

1Credits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier

Outline

•Shared-centralized vs. Distributed Memory

•Challenges of Parallel Processing

•Centralized shared-memory architecture

•Snoop based Coherence

•Directory based Coherence

2

1

2

2

Back to Basics
• “A parallel computer = a collection of processing elements that

cooperate and communicate to solve large problems fast.”

• Parallel Architecture = Computer Architecture +

 Communication Architecture

• Two classes of multiprocessors WRT memory:

1. Centralized Memory Multiprocessor
• < few dozen processor chips (and < 100 cores)

• Small enough to share single, centralized memory

2. Physically Distributed Memory multiprocessor
• Larger number chips and cores

• BW demands Memory distributed among processors 3

Centralized vs. Distributed Memory
MultiProcessors

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Shared cache

Main Mem

1. Centralized Shared-memory

Multiprocessor

2. Distributed-memory

Multiprocessor

Scale

4

3

4

3

1. Centralized Memory
MultiProcessor

• Also called Symmetric MultiProcessors (SMPs) because single
main memory has a symmetric relationship to all processors

• Large caches single memory can satisfy memory demands of
small number of processors

• Can scale to a few dozen processors by using a switch and by using
many memory banks

• Although scaling beyond that is technically conceivable, it
becomes less attractive as the number of processors sharing
centralized memory increases

5

Centralized Memory Multiprocessor

6

5

6

4

SMP Examples: Commodity processors

Note size of

crossbar:

about die

area of one

core

7

2. Distributed Shared Memory (DSM)
MultiProcessor

• Also called Non Uniform Memory Access (NUMA) since
the access time depends on the location of a data word
in memory

• Pros:
 Cost-effective way to scale memory bandwidth

• If most accesses are to local memory

 Reduces latency of local memory accesses

• Cons:
 Communicating data between processors more complex

 Must change software to take advantage of increased memory BW 8

7

8

5

Distributed Shared Memory Multiprocessor

9

NUMA Example

10

9

10

6

Two Models for Communication and Memory Architecture

1. Communication in DSM and SMP occurs through a
shared address space (via loads and stores):
shared memory multiprocessors either
• UMA (Uniform Memory Access time) for shared address, centralized memory

MP
• NUMA (Non-Uniform Memory Access time multiprocessor) for shared

address, distributed memory MP

2. Communication occurs by explicitly passing
messages among the processors:
message-passing multiprocessors
• Mostly clusters and warehouse scale systems

11

Outline

•Shared-centralized vs. Distributed Memory

•Challenges of Parallel Processing

•Centralized shared-memory architecture

•Snoop based Coherence

•Directory based Coherence

12

11

12

7

Challenges of Parallel Processing
• First challenge: percentage of program that is

inherently sequential
• Suppose we want to achieve 80X speedup from

100 processors. What fraction of original program
can be sequential?

a.10%
b.5%
c.1%
d.<1%
e.Impossible

13

Amdahl’s Law in Action

()

()

()

%75.992.79/79Fraction

Fraction8.0Fraction8079

1)
100

Fraction
 Fraction 1(80

100

Fraction
 Fraction 1

1
 08

Speedup

Fraction
 Fraction 1

1
 Speedup

parallel

parallelparallel

parallel

parallel

parallel

parallel

parallel

parallel

parallel

overall

==

−=

=+−

+−

=

+−

=

13

14

8

Challenges of Parallel Processing
• Second challenge: long latency to remote

memory
• Suppose 32 CPU MP, 2GHz, 200ns to handle

remote memory accesses; all local accesses hit
memory hierarchy and Base CPI is 0.5. (Remote
access = 200/0.5 = 400 clock cycles)

• What is performance impact if 0.2% instructions
involve remote access?
a. 1.5X
b. 2.0X
c. 2.5X 15

CPI Equation
• CPI = Base CPI +

 Remote request rate x Remote request cost

• CPI = 0.5 + 0.2% x 400 = 0.5 + 0.8 = 1.3

• So, multiprocessor with all local references is 1.3/0.5 =
2.6 times faster, than if 0.2% instructions involved
remote access!

15

16

9

Challenges of Parallel Processing
Possible solutions to the two challenges:
1. Application parallelism primarily via new algorithms

that have better parallel performance
2. Long remote latency impact both by architect and by

the programmer
• For example, reduce freq. of remote accesses by:

 Caching shared data (HW), or
 Restructuring the data layout to make more accesses local (SW)

17

Outline

•Shared-centralized vs. Distributed Memory

•Challenges of Parallel Processing

•Centralized shared-memory architecture

•Snoop based Coherence

•Directory based Coherence

18

17

18

10

Symmetric Shared-Memory Architecture

•Caches both:
 Private data - used by a single processor
 Shared data - used by multiple processors

•Caching shared data
 reduces latency to shared data, memory bandwidth
for shared data, and interconnect bandwidth

•But caching creates a cache coherence problem

19

Example: Cache Coherence Problem

• Processors see different values for u after event 3
•Unacceptable for programming, and it is frequent!
•Reading an address should return the last value written to that address

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u=5
1

u=5

2

u=5

3

u=7

20

19

20

11

Defining Coherent Memory System
1. Preserve Program Order: A read by processor P to location

X that follows a write by P to X, with no writes of X by
another processor occurring between the write and the
read by P, always returns the value written by P

2. Coherent view of memory: Read by a processor to
location X that follows a write by another processor to X
returns the written value if the read and write are
sufficiently separated in time and no other writes to X
occur between the two accesses

3. Write serialization: 2 writes to same location by any 2
processors are seen in the same order by all processors
 For example, if values 1 and then 2 are written to a location, processors

can never read the value of the location as 2 and then later read it as 1
21

Write Consistency
• For now assume:

1. A write does not complete (and allow the next write to occur) until all
processors have seen the effect of that write

2. The processor does not change the order of any write with respect to any other
memory access

 If a processor writes location A followed by location
B, any processor that sees the new value of B must
also see the new value of A

• These restrictions allow the processor to reorder
reads, but forces the processor to finish writes in
program order

22

21

22

12

Migration and Replication
•In a coherent multiprocessor, caches provide both

migration and replication

•Migration and replication: key to performance of shared
data
1. Migration - data can be moved to a local cache and used there

in a transparent fashion
▪ Reduces both latency to access shared data that is allocated remotely and

bandwidth demand on the shared memory

2. Replication - for shared data being simultaneously read, since
caches make a copy of data in local cache
▪ Reduces both latency of access and contention for read shared data

23

Enforcing Coherence
Two Classes of Cache Coherence Protocols

SMPs use a HW protocol to maintain coherent caches

1. Snooping - Every cache with a copy of data also has a copy of
sharing status of block, but no centralized state is kept
• All caches are accessible via some broadcast medium (a bus or

switch)

• All cache controllers monitor or snoop on the medium to determine
whether or not they have a copy of a block that is requested on a bus
or switch access

2. Directory based - Sharing status of a block of physical
memory is kept in just one location, the directory 24

23

24

13

Outline

•Shared-centralized vs. Distributed Memory

•Challenges of Parallel Processing

•Centralized shared-memory architecture

•Snoop based Coherence

•Directory based Coherence

25

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Snoopy Cache-Coherence Protocols

•Cache Controller “snoops” all transactions on the shared
medium (bus or switch)
 Relevant transaction if transaction if for a block the cache contains
 Take action to ensure coherence

• invalidate, update, or supply value

 Depends on state of the block and the protocol

State

Address

Data

26

25

26

14

Example: Write Invalidate

•Must invalidate before Step 3

•All recent MPUs use write invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

u = 7

27

Architectural Building Blocks
•Cache block state transition diagram

 FSM specifying how disposition of block changes
• invalid, valid, dirty

•Broadcast Medium (e.g., bus)
 Fundamental system design abstraction
 Logically single set of wires connect several devices
 Protocol: arbitration, command/address, data
 Every device observes every transaction

•Broadcast medium enforces serialization of read or write
accesses Write serialization
 1st processor to get medium invalidates others copies
 Implies cannot complete write until it obtains bus
 All coherence schemes require serializing accesses to same cache block

•Also, need mechanism to find up-to-date copy of cache block
 Easy for write-thru; more challenging for write-back

28

27

28

15

Locate up-to-date copy of data
• Write-through: get up-to-date copy from memory

 Write through simpler if enough memory BW

• Write-back (WB) is harder
 Most recent copy can be in a cache

• Can use same snooping mechanism!
1. Snoop every address placed on the bus
2. If a processor finds that it has dirty copy of requested cache block, it provides it

in response to a read request and aborts the memory access
 Complexity from retrieving cache block from a processor cache, which can take

longer than retrieving it from memory

• Write-back needs lower memory bandwidth
 Support larger numbers of faster processors
 Most multiprocessors use write-back

29

Cache Resources for WB Snooping
•Normal cache tags can be used for
snooping
•Valid bit per block makes invalidation easy
•Read misses easy since rely on snooping
•Writes Need to know whether any other
copies of the block are cached
No other copies No need to place write on bus for WB
Other copies Need to place invalidate on bus

30

29

30

16

Cache Resources for WB Snooping
•To track whether a cache block is shared, add extra state bit

(“shared”) associated with each cache block, like “valid” bit
and “dirty” bit
 Write to Shared block Need to place invalidate on bus and mark cache block as private

 No further invalidations will be sent for that block

 This processor called owner of cache block

 Owner then changes state from shared to unshared (or exclusive)

•Recall:
 Valid bit: says whether or not this cache entry contains a valid address

 Dirty bit: status bit that indicates whether the block in cache is dirty (modified while in the
cache) or clean (not modified). If clean, the block is not written back on a miss, since
identical information to the cache is found in lower levels. 31

Example Snooping Coherence Protocol

•Snooping coherence protocol is usually
implemented by incorporating a finite-
state controller in each node

•Logically, think of a separate controller
associated with each cache block
 That is, snooping operations or cache requests for different

blocks can proceed independently

32

31

32

17

Write-Back Snoopy Protocol
•Invalidation protocol, write-back cache

 Snoops every address on bus

•Each memory block is in one state:
 Clean in all caches and up-to-date in main memory (Shared)

 OR Dirty in exactly one cache (Modified)

 OR Not in any caches

•Each cache block is in one state:
 Shared: block can be read

 OR Modified: cache has only copy, it’s writeable, and dirty

 OR Invalid: block contains no data 33

CPU Read hit

Write-Back State Machine – Requests from CPU

• State machine
for CPU requests
for each
cache block

• Non-resident
blocks invalid

Invalid

Modified

(read/write)

CPU Read

CPU Write

Place read miss

on bus

Place Write

Miss on bus

CPU Write

Place Write Miss on Bus

CPU Write Miss (?)

Write back cache block

Place write miss on bus

CPU read hit

CPU write hit

Cache Block

State

CPU Read miss

Place read miss

on bus

Shared

(read/only)

34

33

34

18

Write-Back State Machine – Requests from Bus
• State machine

for bus requests
 for each
cache block

• Labels = commands
received from bus

Invalid
Shared

(read/only)

Modified

(read/write)

Write Back

Block; (abort

memory access)

Write miss

for this block

Read miss

for this block

Write miss

for this block

Write Back

Block; (abort

memory access)

35

Place read miss

on bus

Write-Back State Machine - Complete

• State machine
for CPU requests
for each
cache block and
 for bus requests
 for each
cache block

Invalid
Shared

(read/only)

Modified

(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write

Miss on bus

CPU read miss

Write back block,

Place read miss

on bus CPU Write

Place Write Miss on Bus

CPU Read miss

Place read miss

on bus

CPU Write Miss

Write back cache block

Place write miss on bus

CPU read hit

CPU write hit

Cache Block

State

Write miss

for this block

Write Back

Block; (abort

memory

access)

Write miss

for this block

Read miss

for this block

Write Back

Block; (abort

memory access)

36

35

36

19

Example

P1 P2 Bus Memory

step State Addr ValueState Addr ValueActionProc.Addr ValueAddrValue

P1: Write 10 to A1

P1: Read A1

P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

P1: Read A1

P2: Read A1

P1 Write 10 to A1

P2: Write 20 to

P2: Write 40 to

Assumes A1 and A2 map to same cache block,

initial cache state is invalid

A1

A2

37

Example

P1 P2 Bus Memory

step State Addr ValueState Addr ValueActionProc.Addr ValueAddrValue

P1: Write 10 to A1 Mod. A1 10 WrMs P1 A1

P1: Read A1

P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

P1: Read A1

P2: Read A1

P1 Write 10 to A1

P2: Write 20 to

P2: Write 40 to

Assumes A1 and A2 map to same cache block

A1

A2

38

37

38

20

Example

P1 P2 Bus Memory

step State Addr ValueState Addr ValueActionProc.Addr ValueAddrValue

P1: Write 10 to A1 Mod. A1 10 WrMs P1 A1

P1: Read A1 Mod. A1 10

P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

P1: Read A1

P2: Read A1

P1 Write 10 to A1

P2: Write 20 to

P2: Write 40 to

Assumes A1 and A2 map to same cache block

A1

A2

39

Example

P1 P2 Bus Memory

step State Addr ValueState Addr ValueActionProc.Addr ValueAddrValue

P1: Write 10 to A1 Mod. A1 10 WrMs P1 A1

P1: Read A1 Mod. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10

Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1

P2: Write 40 to A2

P1: Read A1

P2: Read A1

P1 Write 10 to A1

P2: Write 20 to

P2: Write 40 to

Assumes A1 and A2 map to same cache block

A1

A2

40

39

40

21

Example

P1 P2 Bus Memory

step State Addr ValueState Addr ValueActionProc.Addr ValueAddrValue

P1: Write 10 to A1 Mod. A1 10 WrMs P1 A1

P1: Read A1 Mod. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10

Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Mod. A1 20 WrMs P2 A1 A1 10

P2: Write 40 to A2

P1: Read A1

P2: Read A1

P1 Write 10 to A1

P2: Write 20 to

P2: Write 40 to

Assumes A1 and A2 map to same cache block

A1

A2

41

Example

P1 P2 Bus Memory

step State Addr ValueState Addr ValueActionProc.Addr ValueAddrValue

P1: Write 10 to A1 Mod. A1 10 WrMs P1 A1

P1: Read A1 Mod. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10

Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Mod. A1 20 WrMs P2 A1 A1 10

P2: Write 40 to A2 WrMs P2 A2 A1 10

Mod. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1

P2: Read A1

P1 Write 10 to A1

P2: Write 20 to

P2: Write 40 to

Assumes A1 and A2 map to same cache block,

but A1 != A2

A1

A2

42

41

42

22

Extensions to the Basic Snoopy Coherence Protocol

•Simple three-state protocol is often referred to by the first letter of
the states, making it a MSI (Modified, Shared, Invalid) protocol

•Extensions to MSI are created by adding additional states and
transactions, which optimize certain behaviors, resulting in
improved performance

•Three popular extensions:

1. MESI
 Adds the state Exclusive to the basic MSI protocol to indicate when a cache block is resident only

in a single cache but is clean

 If a block is in the E state, it can be written without generating any invalidates => optimizes the
case where a block is read by a single cache before being written by that same cache

43

2. MESIF
 Intel i7 uses a variant of a MESI protocol, called MESIF, which adds a state (Forward) to designate

which sharing processor should respond to a request
• In MESI, a cache line request that is received by multiple caches may either be satisfied from (slow) main

memory, or all the sharing caches could respond, bombarding the requestor with redundant responses

3. MOESI
 Adds the state Owned to the MESI protocol to indicate that the associated block is owned by that

cache and out-of-date in memory
 In MSI and MESI protocols, when there is an attempt to share a block in the M state, the state is

changed to S (in both the original and newly sharing cache), and the block must be written back
to memory

 In MOESI, the block can be changed from the Modified to Owned state in the original cache
without writing it to memory

 Other caches, which are newly sharing the block, keep the block in the S state; the O state, which
only the original cache holds, indicates that main memory copy is out of date and that the
designated cache is the owner.

 owner of the block must supply it on a miss
 AMD Opteron uses the MOESI protocol

Extensions to the Basic Snoopy Coherence Protocol

44

43

44

23

Limitations in Symmetric Shared-Memory
Multiprocessors and Snooping Protocols

•Single memory accommodates all CPUs
 Multiple memory banks

•Bus-based multiprocessor, bus must support
both coherence traffic & normal memory traffic

 Multiple buses or interconnection networks
(cross bar or small point-to-point)

45

Outline

•Shared-centralized vs. Distributed Memory

•Challenges of Parallel Processing

•Centralized shared-memory architecture

•Snoop based Coherence

•Directory based Coherence

46

45

46

24

Scalable Approach: Directories
•Each memory block has associated directory information

 keeps track of copies of cached blocks and their states

 on a miss, find directory entry, look it up, and communicate only with the nodes
that have copies if necessary

 in scalable networks, communication with directory and copies is through network
transactions

•Example: Intel core i7
 keep a bit vector of size equal to number of cores for each L3 block

 bit vector indicates which private caches may have copies of a block that is in L3

 invalidations are only sent to those caches

•Many alternatives for organizing directory information
47

Basic Operation of Directory

• k processors.

• With each cache-block in memory:
k presence-bits, 1 dirty-bit

• With each cache-block in cache:
1 valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i:

• If dirty-bit OFF then { read from main memory; turn p[i] ON; }

• If dirty-bit ON then { recall line from dirty processor (change cache-state to Shared); update
memory; turn dirty-bit OFF; turn p[i] ON; supply recalled data to i; }

• Write to main memory by processor i:

• If dirty-bit OFF then { supply data to i; send invalidations to all caches that have the block; turn
dirty-bit ON; turn p[i] ON; ... }

• ... 48

47

48

25

Directory Protocol
•Similar to Snoopy Protocol: Three states

 Shared: ≥ 1 processors have data, memory up-to-date
 Uncached (no processor has it; not valid in any cache)
 Modified: 1 processor (owner) has data; memory out-of-date

•In addition to cache state, must track which processors have
data when in the shared state (usually bit vector for every
block, 1 if processor has copy)
•No bus and don’t want to broadcast:

 Interconnect no longer single arbitration point!

•Terms: typically 3 processors involved
 Local node where a request originates
 Home node where the memory location and directory of an address resides
 Remote node has a copy of a cache block, whether modified or shared

49

Directory Protocol Messages

P = processor number, A = address, D = Data contents 50

49

50

26

State Transition Diagram for One Cache Block
in Directory Based System

•States identical to snoopy case; transactions very
similar

•Transitions caused by read misses, write misses,
invalidates, data fetch requests

•Generates read miss & write miss messages to
home directory
Write misses that were broadcast on the bus for snooping =>

explicit invalidate & data fetch requests
51

CPU - Cache State Machine

• State machine
for CPU requests
for each
block

• Write miss operation,
which was broadcast on
the bus (or other network)
in the snooping scheme, is
replaced by the data fetch
and invalidate operations
selectively sent by the
directory controller

Gray lines originate

from directory

controller

directives

52

51

52

27

State Transition Diagram for Directory

•Same states & structure as the transition diagram
for an individual cache

•2 actions: update of directory state & send
messages to satisfy requests

•Tracks all copies of memory block

•Also updates the sharing set, Sharers, when
necessary, and sends back the value or invalidate
messages 53

Directory - State Machine
• State machine

for Directory requests
for each
block

• Uncached state
if in memory

Data write back here
refers to writing to DRAM

54

53

54

28

Example Directory Protocol
•Message sent to directory causes two actions:

 Update the directory
 More messages to satisfy request

•Block is in Uncached state: the copy in memory is the current value;
only possible requests for that block are:
 Read miss: requesting processor sent data from memory &requestor made only sharing

node; state of block made Shared.
 Write miss: requesting processor is sent the value & becomes the Sharing node. The block is

made Exclusive to indicate that the only valid copy is cached. Sharers indicates the identity
of the owner.

•Block is Shared => the memory value is up-to-date:
 Read miss: requesting processor is sent back the data from memory & requesting processor

is added to the sharing set.
 Write miss: requesting processor is sent the value. All processors in the set Sharers are sent

invalidate messages, & Sharers is set to identity of requesting processor. The state of the
block is made Exclusive.

55

Example Directory Protocol
•Block is Exclusive: current value of the block is held in the

cache of the processor identified by the set Sharers (the
owner) => three possible directory requests:
 Read miss: owner processor sent data fetch message, causing state of block in

owner’s cache to transition to Shared and causes owner to send data to
directory, where it is written to memory & sent back to requesting processor.
Identity of requesting processor is added to set Sharers, which still contains the
identity of the processor that was the owner (since it still has a readable copy).
State is shared.

 Data write-back: owner processor is replacing the block and hence must write it
back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is now
Uncached, and the Sharer set is empty.

 Write miss: block has a new owner. A message is sent to old owner causing the
cache to send the value of the block to the directory from which it is sent to the
requesting processor, which becomes the new owner. Sharers is set to identity
of new owner, and state of block is made Exclusive.

56

55

56

29

Example

P1 P2 Bus Directory Memory

step State Addr ValueState Addr ValueAction Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1

P1: Read A1

P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

57

Example

P1 P2 Bus Directory Memory

step State Addr ValueState Addr ValueAction Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

P1: Read A1

P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

58

57

58

30

Example

P1 P2 Bus Directory Memory

step State Addr ValueState Addr ValueAction Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10

P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

59

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory

step State Addr ValueState Addr ValueAction Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

10

10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

Write Back

A1

60

59

60

31

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory

step State Addr ValueState Addr ValueAction Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1

61

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory

step State Addr ValueState Addr ValueAction Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10

P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20

Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1

62

61

62

32

Distributed Directories
•Single directory is not scalable
•Distributed directory:

 Each directory is responsible for tracking the caches that share the memory addresses
of the portion of memory in the node

63

A Popular Middle Ground
•Two-level “hierarchy”

•Individual nodes are multiprocessors, connected
non-hierachically
 e.g., Mesh of SMPs

•Coherence across nodes is directory-based
 Directory keeps track of nodes, not individual processors

•Coherence within nodes is snooping or directory
 Orthogonal, but needs a good interface of functionality

64

63

64

33

Characteristics of high-end processors

65

Conclusion
•Snooping and Directory Protocols similar; bus makes

snooping easier because of broadcast (snooping
uniform memory access)
•Directory has extra data structure to keep track of state of

all cache blocks
•Distributing directory

 Scalable shared address multiprocessor
 Cache coherent, non uniform memory access
•MPs are highly effective for multiprogramed workloads
•MPs proved effective for intensive commercial workloads

66

65

66

	Slide 1: Lecture 8 Thread Level Parallelism and Coherence (Ch.5)
	Slide 2: Outline
	Slide 3
	Slide 4: Centralized vs. Distributed Memory MultiProcessors
	Slide 5: 1. Centralized Memory MultiProcessor
	Slide 6: Centralized Memory Multiprocessor
	Slide 7: SMP Examples: Commodity processors
	Slide 8: 2. Distributed Shared Memory (DSM) MultiProcessor
	Slide 9: Distributed Shared Memory Multiprocessor
	Slide 10: NUMA Example
	Slide 11: Two Models for Communication and Memory Architecture
	Slide 12: Outline
	Slide 13: Challenges of Parallel Processing
	Slide 14: Amdahl’s Law in Action
	Slide 15: Challenges of Parallel Processing
	Slide 16: CPI Equation
	Slide 17: Challenges of Parallel Processing
	Slide 18: Outline
	Slide 19: Symmetric Shared-Memory Architecture
	Slide 20: Example: Cache Coherence Problem
	Slide 21: Defining Coherent Memory System
	Slide 22: Write Consistency
	Slide 23: Migration and Replication
	Slide 24: Enforcing Coherence Two Classes of Cache Coherence Protocols
	Slide 25: Outline
	Slide 26: Snoopy Cache-Coherence Protocols
	Slide 27: Example: Write Invalidate
	Slide 28: Architectural Building Blocks
	Slide 29: Locate up-to-date copy of data
	Slide 30: Cache Resources for WB Snooping
	Slide 31: Cache Resources for WB Snooping
	Slide 32: Example Snooping Coherence Protocol
	Slide 33: Write-Back Snoopy Protocol
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Example
	Slide 38: Example
	Slide 39: Example
	Slide 40: Example
	Slide 41: Example
	Slide 42: Example
	Slide 43: Extensions to the Basic Snoopy Coherence Protocol
	Slide 44: Extensions to the Basic Snoopy Coherence Protocol
	Slide 45: Limitations in Symmetric Shared-Memory Multiprocessors and Snooping Protocols
	Slide 46: Outline
	Slide 47: Scalable Approach: Directories
	Slide 48: Basic Operation of Directory
	Slide 49: Directory Protocol
	Slide 50: Directory Protocol Messages
	Slide 51: State Transition Diagram for One Cache Block in Directory Based System
	Slide 52: CPU - Cache State Machine
	Slide 53: State Transition Diagram for Directory
	Slide 54: Directory - State Machine
	Slide 55: Example Directory Protocol
	Slide 56: Example Directory Protocol
	Slide 57: Example
	Slide 58: Example
	Slide 59: Example
	Slide 60: Example
	Slide 61: Example
	Slide 62: Example
	Slide 63: Distributed Directories
	Slide 64: A Popular Middle Ground
	Slide 65: Characteristics of high-end processors
	Slide 66: Conclusion

