
1

COEN-4730 Computer Architecture

Lecture 8 (part 2)
Networks-on-Chip (NoC)

(Ch.5)

1

Cris Ababei
Dept. of Electrical and Computer Engr., Marquette University

2

Why study chip-level networks?

1

2

2

3

The future of multicore
• Parallelism replaces clock frequency scaling and

core complexity
• Resulting Challenges…

– Scalability, Programming, Power

Outline

• Introduction
• NoC Topology
• Routing algorithms
• Switching strategies
• Flow control schemes
• Clocking schemes
• QoS
• NoC Architecture Examples
• NoC prototyping
• Bus based vs. NoC based SoC
• Design flow/methodology
• Status and Open Problems
• Trends
• Companies, simulators

4

3

4

3

Introduction

5

• Evolution of on-chip communication architectures

uP

NI

DSP

NIFPGA

NI

Mem

NI

ASIC

NI

• Network-on-chip (NoC) is a packet switched on-
chip communication network designed using a
layered methodology. NoC is a communication
centric design paradigm for System-on-Chip (SoC).

• Rough classification:
– Homogeneous

– Heterogeneous

Introduction

6

 Open Systems Interconnect (OSI) network protocol stack
model

5

6

4

• NoCs borrow ideas and concepts from computer networks → apply them to the
embedded SoC domain.

• NoCs use packets to route data from the source PE to the destination PE
via a network fabric that consists of
– Network interfaces/adapters (NI)

– Routers (a.k.a. switches)

– interconnection links (channels, wires bundles)

7

Tile = processing element (PE) +

 network interface (NI) + router/switch (R)

3x3 homogeneous NoC

PE

R

Router: 6.6-20% of Tile area

Physical link (channel)

e.g., 64 bits

N

S

E

W

PE

N

S

E

W

PE

Routing
VC alloc.
Arbiter

8

Homogeneous vs. Heterogeneous

• Homogenous:
– Each tile is a simple

processor
– Tile replication (scalability,

predictability)
– Less performance
– Low network resource

utilization

• Heterogeneous:
– IPs can be: General purpose/DSP

processor, Memory, FPGA, IO core
– Better fit to application domain
– Most modern systems are

heterogeneous
– Topology synthesis: more difficult
– Needs specialized routing

7

8

5

NoC properties

• Reliable and predictable electrical and
physical properties → Predictability

• Regular geometry → Scalability

• Flexible QoS guarantees

• Higher bandwidth

• Reusable components
–Buffers, arbiters, routers, protocol stack

9

Building blocks: NI
• Session-layer (P2P) interface with nodes

• Back-end manages interface with switches

10

F
ro

n
t e

n
d

B
a
ck

e
n
d

Standardized node interface @ session layer
Initiator vs. target distinction is blurred
1. Supported transactions (e.g. QoS read…)
2. Degree of parallelism
3. Session prot. control flow & negotiation

NoC specific backend (layers 1-4)
1. Physical channel interface
2. Link-level protocol
3. Network-layer (packetization)
4. Transport layer (routing)

PE
Node

Switches

Standard P2P Node protocol Proprietary link protocol

Decoupling logic & synchronization

9

10

6

Building blocks: NI

11

Router Router

Core

NI

Memory

NI

Transmitter side
- Packetize

Receiver side
- Depacketize

Building blocks: Router

12

• Router: receives and forwards packets
• Buffers:

– Queuing
– Decouple the allocation of adjacent channels in time
– Can be organized as virtual channels.

N

S

E

W

PE

N

S

E

W

PE

Routing
VC alloc.
Arbiter

11

12

7

13

Building blocks: Links
• Connects two routers in both directions on a number of

wires (e.g., 32 bits)

• In addition, wires for control are part of the link too

• Can be pipelined (include handshaking for asynchronous)

Outline

14

• Introduction
• NoC Topology
• Routing algorithms
• Switching strategies
• Flow control schemes
• Clocking schemes
• QoS
• NoC Architecture Examples
• NoC prototyping
• Bus based vs. NoC based SoC
• Design flow/methodology
• Status and Open Problems
• Trends
• Companies, simulators

13

14

8

NoC topologies

15

• “The topology is the network of streets, the roadmap”.

Direct topologies
• Direct Topologies

– Each node has direct point-to-point link to a subset of other nodes in the
system called neighboring nodes

– As the number of nodes in the system increases, the total available
communication bandwidth also increases

– Fundamental trade-off is between connectivity and cost

• Most direct network topologies have an orthogonal
implementation, where nodes can be arranged in an
n-dimensional orthogonal space
– e.g. n-dimensional mesh, torus, folded torus, hypercube, and octagon

16

15

16

9

2D-mesh

• It is most popular topology

• All links have the same length
– eases physical design

• Area grows linearly with the
number of nodes

• Must be designed in such a way
as to avoid traffic accumulating
in the center of the mesh

17

Torus
• Torus topology, also called a k-ary n-cube, is an n-dimensional

grid with k nodes in each dimension
• k-ary 1-cube (1-D torus) is essentially a ring network with k

nodes
– limited scalability as performance decreases when more nodes

• k-ary 2-cube (i.e., 2-D torus) topology is similar to a regular
mesh
– except that nodes at the edges are connected to switches at the

opposite edge via wrap-around channels
– long end-around connections can, however, lead to excessive delays

18

17

18

10

Folding torus

• Folding torus topology overcomes the long link
limitation of a 2-D torus links have the same size

• Meshes and tori can be extended by adding
bypass links to increase performance at the cost
of higher area

19

Octagon
• Octagon topology is another example of a direct

network
– messages being sent between any 2 nodes require at

most two hops
– more octagons can be tiled together to accommodate

larger designs by using one of the nodes as a bridge node

20

19

20

11

Indirect topologies
• Indirect Topologies

– each node is connected to an external switch, and switches have
point-to-point links to other switches

– switches do not perform any information processing, and
correspondingly nodes do not perform any packet switching

– e.g. SPIN, crossbar topologies

• Fat tree topology
– nodes are connected only to the leaves of the tree
– more links near root, where bandwidth requirements are higher

21

Butterfly
• k-ary n-fly butterfly network

– blocking multi-stage network – packets may be
temporarily blocked or dropped in the network if
contention occurs

– kn nodes, and n stages of kn-1 k x k crossbar
– e.g., 2-ary 3-fly butterfly network

22

21

22

12

Irregular topologies

• Irregular or ad-hoc network topologies
– customized for an application
– usually a mix of shared bus, direct, and indirect network

topologies
– e.g., reduced mesh, cluster-based hybrid topology

23

Outline

• Introduction
• NoC Topology
• Routing algorithms
• Switching strategies
• Flow control schemes
• Clocking schemes
• QoS
• NoC Architecture Examples
• NoC prototyping
• Bus based vs. NoC based SoC
• Design flow/methodology
• Status and Open Problems
• Trends
• Companies, simulators

24

23

24

13

Routing algorithms
• Routing is the route/path (a sequence of channels) of streets from

source to destination. “The routing method steers the car”.
• Routing determines the path followed by a message through the

network to its final destination.
• Responsible for correctly and efficiently routing packets or circuits

from the source to the destination
– Path selection between a source and a destination node in a particular

topology

• Ensure load balancing
• Latency minimization
• Flexibility w.r.t. faults in the network
• Deadlock and livelock free solutions
• Routing schemes/techniques/algos can be classified/looked-at as:

– Static or dynamic routing
– Distributed or source routing
– Minimal or non-minimal routing

25

Static/deterministic vs. Dynamic/adaptive Routing

• Static routing: fixed paths are used to transfer data
between a particular source and destination
– does not take into account current state of the network

• advantages of static routing:
– easy to implement, since very little additional router

logic is required
– in-order packet delivery if single path is used

• Dynamic/adaptive routing: routing decisions are
made according to the current state of the network
– considering factors such as availability and load on links

• path between source and destination may change
over time
– as traffic conditions and requirements of the

application change

• more resources needed to monitor state of the
network and dynamically change routing paths

• able to better distribute traffic in a network

26

25

26

14

Example: Dimension-order Routing
• Static XY routing (commonly used):

– a deadlock-free shortest path routing which routes packets in
the X-dimension first and then in the Y-dimension

• Used for tori and mesh topologies
• Destination address expressed as absolute coordinates
• It may introduce imbalance → low bandwidth

27

00 10 20

01 11 21

02 12 22

03 13 23

-x

+y

00 10 20

01 11 21

02 12 22

03 13 23

For torus, a preferred direction

may have to be selected.

For mesh, the preferred direction

is the only valid direction.

Example: Dynamic Routing

• A locally optimum decision may lead to a globally
sub-optimal route

28

00 10 20

01 11 21

02 12 22

03 13 23

To avoid slight congestion

in (01-02), packets then incur

more congested links

27

28

15

Routing mechanics: Distributed vs. Source Routing

• Routing mechanics refers to the mechanism used to implement any routing
algorithm.

• Distributed routing: each packet carries the destination address

– e.g. XY co-ordinates or number identifying destination node/router

– routing decisions are made in each router by looking up the destination
addresses in a routing table or by executing a hardware function

• Source routing: packet carries routing information

– pre-computed routing tables are stored at NI

– routing information is looked up at the source NI and routing
information is added to the header of the packet (increasing packet size)

– when a packet arrives at a router, the routing information is extracted
from the routing field in the packet header

– does not require a destination address in a packet, any intermediate
routing tables, or functions needed to calculate the route

29

Minimal vs. Non-minimal Routing
• Minimal routing: length of the routing path from the source to the

destination is the shortest possible length between the two nodes
– source does not start sending a packet if minimal path is not available

• Non-minimal routing: can use longer paths if a minimal path not
available
– by allowing non-minimal paths, the number of alternative paths is

increased, which can be useful for avoiding congestion
– disadvantage: overhead of additional power consumption

30
00 10 20

01 11 21

02 12 22

03 13 23

Minimal adaptive routing
is unable to avoid congested links
in the absence of minimal path diversity

29

30

16

31

No winner routing algorithm

Routing Algorithm Requirements
• Routing algorithm must ensure freedom from deadlocks

– Deadlock: occurs when a group of agents, usually packets, are unable to
progress because they are waiting on one another to release resources
(usually buffers and channels).

– common in WH switching
– e.g. cyclic dependency shown below
– freedom from deadlocks can be ensured by allocating additional hardware

resources or imposing restrictions on the routing
– usually dependency graph of the shared network resources is built and

analyzed either statically or dynamically

32

31

32

17

Routing Algorithm Requirements

• Routing algorithm must ensure freedom from livelocks
– livelocks are similar to deadlocks, except that states of the

resources involved constantly change with regard to one
another, without making any progress

– occurs especially when dynamic (adaptive) routing is used
– e.g. can occur in a deflective “hot potato” routing if a packet is

bounced around over and over again between routers and
never reaches its destination

– livelocks can be avoided with simple priority rules

• Routing algorithm must ensure freedom from starvation
– under scenarios where certain packets are prioritized during

routing, some of the low priority packets never reach their
intended destination

– can be avoided by using a fair routing algorithm, or reserving
some bandwidth for low priority data packets

33

Outline

• Introduction
• NoC Topology
• Routing algorithms
• Switching strategies
• Flow control schemes
• Clocking schemes
• QoS
• NoC Architecture Examples
• NoC prototyping
• Bus based vs. NoC based SoC
• Design flow/methodology
• Status and Open Problems
• Trends
• Companies, simulators

34

33

34

18

Switching strategies

35

• Switching establishes the type of connection between source and
destination. It is tightly coupled to routing. Can be seen as a flow
control mechanism, as a problem of resource allocation.

• Allocation of network resources (bandwidth, buffer capacity, etc.) to
information flows
– Phit is a unit of data that is transferred on a link in a single cycle
– Typically, phit size = flit size

• Two main switching schemes:
1. Circuit (or “path”) switching
2. Packet switching

36

1. Pure Circuit Switching
• It is a form of bufferless flow control
• Advantage: Easier to make latency guarantees (after circuit

reservation)
• Disadvantage: does not scale well with NoC size

– several links are occupied for the duration of the transmitted data,
even when no data is being transmitted

Circuit set-up

Two traversals – latency overhead

Waste of bandwidth

Request packet can be buffered

00 10 20

01 11 21

02 12 22

03 13 23

00 10 20

01 11 21

02 12 22

03 13 23

Circuit utilization

Third traversal – latency overhead

Contention-free transmission

Poor resource utilization

35

36

19

37

Virtual Circuit Switching
• Multiple virtual circuits (channels) multiplexed on a single physical link.
• Virtual-channel flow control decouples the allocation of channel state

from channel bandwidth.
• Allocate one buffer per virtual link

– can be expensive due to the large number of shared buffers

• Allocate one buffer per physical link
– uses time division multiplexing (TDM) to statically schedule usage
– less expensive routers

Node 1 Node 2 Node 3 Node 4 Node 5
Destination of B

Block

Node 1 Node 2 Node 3 Node 4 Node 5 Destination of B

A

B

38

2. Packet Switching

• It is a form of buffered flow control

• Packets are transmitted from source and make
their way independently to receiver

– possibly along different routes and with different
delays

• Zero start up time, followed by a variable
delay due to contention in routers along
packet path

– QoS guarantees are harder to make

37

38

20

39

Three main packet switching scheme variants
1. Store and Forward (SAF) switching

– packet is sent from one router to the next only if the receiving router has buffer
space for entire packet

– buffer size in the router is at least equal to the size of a packet
– Disadvantage: excessive buffer requirements

2. Virtual Cut Through (VCT) switching
– forwards first flit of a packet as soon as space for the entire packet is available in

the next router
– reduces router latency over SAF switching
– same buffering requirements as SAF switching

3. Wormhole (WH) switching
– flit is forwarded to receiving router if space exists for that flit

(1) After A receives a flit of the packet,
 A asks B if B is ready to receive a flit
(2) B → A, ack
(3) A sends a flit to B.

A B
Pipelining on a flit
(flow control unit) basis

flit size < packet size
Smaller data space
is needed than
store-and-forward

40

Wormhole Switching Issues
• Wormhole switching suffers from packet blocking problems
• An idle channel cannot be used because it is owned by a

blocked packet…
– Although another packet could use it!

• Using virtual channels helps address this

A

X
IdleBlocked

B

2 virtual
channels

A

B

Wormhole

39

40

21

41

Outline

• Introduction
• NoC Topology
• Routing algorithms
• Switching strategies
• Flow control schemes
• Clocking schemes
• QoS
• NoC Architecture Examples
• NoC prototyping
• Bus based vs. NoC based SoC
• Design flow/methodology
• Status and Open Problems
• Trends
• Companies, simulators

Flow control
• Flow control dictates which messages get access to particular network

resources over time. It manages the allocation of resources to packets
as they progress along their route. “It controls the traffic lights: when a
car can advance or when it must pull off into a parking lot to allow
other cars to pass”.

• Can be viewed as either a problem of resource allocation (switching
strategy) or/and one of contention resolution.

• Recover from transmission errors
• Commonly used schemes:

– STALL-GO flow control
– ACK-NACK flow control
– Credit based flow control

42

A B C Block

Buffer

full

Don’t

send
Buffer

full

Don’t

send

“Backpressure”

41

42

22

STALL/GO
• low overhead scheme
• requires only two control wires

– one going forward and signaling data availability
– the other going backward and signaling either a condition of

buffers filled (STALL) or of buffers free (GO)

• can be implemented with distributed buffering (pipelining)
along link

• good performance – fast recovery from congestion
• does not have any provision for fault handling

– higher level protocols responsible for handling flit interruption

43

ACK/NACK

• when flits are sent on a link, a local copy is kept in a buffer by sender
• when ACK received by sender, it deletes copy of flit from its local buffer
• when NACK is received, sender rewinds its output queue and starts

resending flits, starting from the corrupted one
• implemented either end-to-end or switch-to-switch
• sender needs to have a buffer of size 2N + k

– N is number of buffers encountered between source and destination
– k depends on latency of logic at the sender and receiver

• fault handling support comes at cost of greater power, area overhead

44

43

44

23

Credit Based
• Round trip time between buffer empty and flit arrival

• More efficient buffer usage; error control pushed at a
higher layer

45

2

1 H

0 B

H

0

B H

0

B

credit

1 credit

1 T

1 credit

No of credits

Rx Buffer

Receiver gives N credits to sender

Sender decrements count

Stops sending if zero

Receiver sends back

 credit as it drains its buffer

Bundle credits to

 reduce overhead

Outline

• Introduction
• NoC Topology
• Routing algorithms
• Switching strategies
• Flow control schemes
• Clocking schemes
• QoS
• NoC Architecture Examples
• NoC prototyping
• Bus based vs. NoC based SoC
• Design flow/methodology
• Status and Open Problems
• Trends
• Companies, simulators

46

45

46

24

Clocking schemes
• Fully synchronous

– single global clock is distributed to synchronize entire chip
– hard to achieve in practice, due to process variations and clock

skew

• Mesochronous
– local clocks are derived from a global clock
– not sensitive to clock skew
– phase between clock signals in different modules may differ
– deterministic for regular topologies (e.g. mesh)
– non-deterministic for irregular topologies
– synchronizers needed between clock domains

• Pleisochronous
– clock signals are produced locally

• Asynchronous
– clocks do not have to be present at all

47

Outline

• Introduction
• NoC Topology
• Routing algorithms
• Switching strategies
• Flow control schemes
• Clocking schemes
• QoS
• NoC Architecture Examples
• NoC prototyping
• Bus based vs. NoC based SoC
• Design flow/methodology
• Status and Open Problems
• Trends
• Companies, simulators

48

47

48

25

Quality of Service (QoS)

• QoS refers to the level of commitment for packet
delivery
– refers to bounds on performance (bandwidth, delay, and

jitter=packet delay variation)

• Two basic categories
– Best effort (BE)

• only correctness and completion of communication is
guaranteed

• usually packet switched

• worst case times cannot be guaranteed

– Guaranteed service (GS)
• makes a tangible guarantee on performance, in addition to basic

guarantees of correctness and completion for communication

• usually (virtual) circuit switched
49

Outline

• Introduction
• NoC Topology
• Routing algorithms
• Switching strategies
• Flow control schemes
• Clocking schemes
• QoS
• NoC Architecture Examples
• NoC prototyping
• Bus based vs. NoC based SoC
• Design flow/methodology
• Status and Open Problems
• Trends
• Companies, simulators

50

49

50

26

Early Examples
• Æthereal Developed by Philips

• HERMES Developed at the Faculdade de Informática PUCRS, Brazil

• MANGO Developed at the Technical University of Denmark

• Nostrum Developed at KTH in Stockholm

• Octagon Developed by STMicroelectronics

• QNoC Developed at Technion in Israel

• SOCBus Developed at Linköping University

• SPIN Micronetwork Université Pierre et Marie Curie, Paris, France

• Xpipes Developed by the Univ. of Bologna and Stanford University

• CHAIN (Silistix) Developed at the University of Manchester

• …
51

52

Intel’s Teraflops Research Processor (2008)

• Goals:
• Deliver Tera-scale performance

– Single precision TFLOP at desktop
power

– Frequency target 5GHz
– Bi-section B/W order of Terabits/s
– Link bandwidth in hundreds of GB/s

• Prototype two key technologies
– On-die interconnect fabric
– 3D stacked memory

• Develop a scalable design
methodology
– Tiled design approach
– Mesochronous clocking
– Power-aware capability

I/O Area

I/O Area

PLL

single tile

1.5mm

2.0mm

TAP

2
1
.7
2
m
m

I/O Area

PLL TAP

12.64mm

65nm, 1 poly, 8 metal (Cu)Technology

100 Million (full-chip)

1.2 Million (tile)

Transistors

275mm2 (full-chip)

3mm2 (tile)

Die Area

8390C4 bumps #

65nm, 1 poly, 8 metal (Cu)Technology

100 Million (full-chip)

1.2 Million (tile)

Transistors

275mm2 (full-chip)

3mm2 (tile)

Die Area

8390C4 bumps #

[Vangal08]

51

52

27

Intel (2018)

53

• Loihi was fabbed in Intel’s 14-nm FinFET process. The chip instantiates a total of 2.07 billion
transistors and 33 MB of SRAM over its 128 neuromorphic cores and three x86 cores, with a
die area of 60 mm2. The device is functional over a supply voltage range of 0.50 V to 1.25 V.

• An asynchronous network-on-chip (NoC) transports all communication between cores in the
form of packetized messages.

IBM (2019)

54

• TrueNorth, with 1 million neurons and 256 million synapses distributed across 4,096 neurosynaptic cores
and fabricated in Samsung’s 28-nm low-power process, occupies 430 mm2 of area and consumes on the
order of 100 mW of power during a typical use case.

• NS16e-4 is composed of four component NS16e systems arranged within a 4-U rack-mounted standard
drawer. Each NS16e platform contains 16 TrueNorth processors tiled in a 4 × 4 two-dimensional grid and
connected to one another via TrueNorth’s native interchip input–output (I/O) interfaces, forming a
unified array of 262, 144 neurosynaptic cores totaling 64 million neurons and 16 billion synapses.

• Cores in TrueNorth are interconnected via a network on chip.

53

54

28

Outline

• Introduction
• NoC Topology
• Routing algorithms
• Switching strategies
• Flow control schemes
• Clocking schemes
• QoS
• NoC Architecture Examples
• NoC prototyping
• Bus based vs. NoC based SoC
• Design flow/methodology
• Status and Open Problems
• Trends
• Companies, simulators

55

NoC prototyping: EPFL Emulation Framework

[] N, Genko, D. Atienza, G. De Micheli, L. Benini, "Feature-NoC emulation: a tool and
design flow for MPSoC," IEEE Circuits and Systems Magazine, vol. 7, pp. 42-51, 2007.

56

55

56

29

NoC prototyping: CMU

57
Motion
Est. 2

Frame
Buffer

Input
Buffer

DCT &
Quant.

VLE &
Out. Buffer

Motion
Comp.

Motion
Est.

Inv Quant.
& IDCT

Point-to-point Implementation

Input
Buffer R1 R2

DCT &
Quant.

VLE &
Out. Buffer

Inv Quant.
& IDCT

Motion
Est.

Motion
Comp.

Frame
Buffer

Motion
Est. 2

Input
Buffer

DCT &
Quant.

VLE &
Out. Buffer

Inv Quant.
& IDCT

Motion
Est.

Motion
Comp.

Frame
Buffer

Bus Implementation

Bus Cont.
Unit

Synthesis for Xilinx Virtex II FPGA with CIF (352x288) frames

free

Motion
Est. 2

in-house

Xilinx core generator

• To build prototypes, we will likely use a mix

of free, commercial, and in-house IPs.

[] Umit Y. Ogras, Radu Marculescu,
Hyung Gyu Lee, Puru Choudhary,
Diana Marculescu, Michael
Kaufman, Peter Nelson,
"Challenges and Promising
Results in NoC Prototyping Using
FPGAs," IEEE Micro, vol. 27, no.
5, pp. 86-95, 2007.

Georgia Tech 64-Core 3D-MAPS Many-Core Chip

58
58

Single Core

Single SRAM tile

• 3D-stacked many-core processor
• Fast, high-density face-to-face vias for high bandwidth
• Wafer-to-wafer bonding
• @277MHz, peak data B/W ~ 70.9GB/sec

Data SRAM

F2F via bus

2-way VLIW core

57

58

30

Outline

• Introduction
• NoC Topology
• Routing algorithms
• Switching strategies
• Flow control schemes
• Clocking schemes
• QoS
• NoC Architecture Examples
• NoC prototyping
• Bus based vs. NoC based SoC
• Design flow/methodology
• Status and Open Problems
• Trends
• Companies, simulators

59

Bus based vs. NoC based SoC

60

[Arteris]

59

60

31

Outline

• Introduction
• NoC Topology
• Routing algorithms
• Switching strategies
• Flow control schemes
• Clocking schemes
• QoS
• NoC Architecture Examples
• NoC prototyping
• Bus based vs. NoC based SoC
• Design flow/methodology
• Status and Open Problems
• Trends
• Companies, simulators

61

Example: Sunflower Design flow
• David Atienza, Federico Angiolini, Srinivasan Murali, Antonio Pullini, Luca

Benini, Giovanni De Micheli, "Network-on-Chip design and synthesis outlook,”
Integration, the VLSI Journal, vol. 41 no. 3, pp. 340-359, May 2008.

62

61

62

32

Front-end

63

Back-end

64

63

64

33

65

Manual

Sunflower

• 1.33x less power

• 4.3% area increase

Manual vs. Design tool

Outline

• Introduction
• NoC Topology
• Routing algorithms
• Switching strategies
• Flow control schemes
• Clocking schemes
• QoS
• NoC Architecture Examples
• NoC prototyping
• Bus based vs. NoC based SoC
• Design flow/methodology
• Status and Open Problems
• Trends
• Companies, simulators

66

65

66

34

Status and Open Problems
• Design tools (GALS, DVFS, VFI) and benchmarks. HW/SW co-design
• Power

– complex NI and switching/routing logic blocks are power hungry
– several times greater than for current bus-based approaches

• Latency
– additional delay to packetize/de-packetize data at NIs
– flow/congestion control and fault tolerance protocol overheads
– delays at the numerous switching stages encountered by packets
– even circuit switching has overhead (e.g. SOCBUS)
– lags behind what can be achieved with bus-based/dedicated wiring

• Reliability
– Wearout mechanisms (electromigration, NBTI, etc.)
– Reliable/robust NoC designs
– Error correcting codes

• Security
– Attacks (side channel attacks, etc.)

• Simulation speed
– GHz clock frequencies, large network complexity, greater number of PEs slow down simulation
– FPGA accelerators

• Standardization → we gain:
– Reuse of IPs
– Reuse of verification
– Separation of Physical design issues, Communication design, Component design, Verification, System

design

• Prototyping 67

Outline

• Introduction
• NoC Topology
• Routing algorithms
• Switching strategies
• Flow control schemes
• Clocking schemes
• QoS
• NoC Architecture Examples
• NoC prototyping
• Bus based vs. NoC based SoC
• Design flow/methodology
• Status and Open Problems
• Trends
• Companies, simulators

68

67

68

35

Trends

• Hybrid and hierarchical interconnection structures
– NoC and Bus based

– Custom (application specific), heterogeneous topologies

• New interconnect paradigms
– Optical/photonic, Wireless (for latency, power)

• 3D NoC (for latency)

• Reconfigurability features (for
robustness/reliability)

• GALS, DVFS, VFI (for power consumption)

69

Wireless NoC
• A. Sarihi, A. Patooghy, A. Khalid, M. Hasanzadeh, M. Said and A. -H.

A. Badawy, "A Survey on the Security of Wired, Wireless, and 3D
Network-on-Chips," in IEEE Access, vol. 9, pp. 107625-107656,
2021, doi: 10.1109/ACCESS.2021.3100540.

70

69

70

36

Photonic NoC
• T. Alexoudi et al., "Optics in Computing: From Photonic Network-

on-Chip to Chip-to-Chip Interconnects and Disintegrated
Architectures," in Journal of Lightwave Technology, vol. 37, no. 2,
pp. 363-379, 15 Jan.15, 2019, doi: 10.1109/JLT.2018.2875995.

71

Reliable/Robust NoC
• K. Wang and A. Louri, "CURE: A High-Performance, Low-Power, and Reliable

Network-on-Chip Design Using Reinforcement Learning," in IEEE Transactions on
Parallel and Distributed Systems, vol. 31, no. 9, pp. 2125-2138, 1 Sept. 2020, doi:
10.1109/TPDS.2020.2986297.

72

71

72

37

Secure NoC
• A. Sarihi, A. Patooghy, A. Khalid, M. Hasanzadeh, M. Said and A. -H. A. Badawy, "A

Survey on the Security of Wired, Wireless, and 3D Network-on-Chips," in IEEE
Access, vol. 9, pp. 107625-107656, 2021, doi: 10.1109/ACCESS.2021.3100540.

73

Outline

• Introduction
• NoC Topology
• Routing algorithms
• Switching strategies
• Flow control schemes
• Clocking schemes
• QoS
• NoC Architecture Examples
• NoC prototyping
• Bus based vs. NoC based SoC
• Design flow/methodology
• Status and Open Problems
• Trends
• Companies, simulators

74

73

74

38

Companies, Simulators

• For info on NoC related companies, simulators,
other tools, conference pointers, etc. please see:

– http://networkonchip.wordpress.com/

75

Summary

• NoC paradigm
–New communication infrastructure for chip

multiprocessors and Systems-on-Chip

–Replaces the Bus for increasingly large
numbers of cores/PEs

• Automated design flow/methodology
–One main challenges

76

75

76

http://networkonchip.wordpress.com/

39

References/Credits

• IEEE Xplore

• Google Scholar

• http://www.diit.unict.it/users/mpalesi/DOWN
LOAD/noc_research_summary-unlv.pdf

77

77

http://www.diit.unict.it/users/mpalesi/DOWNLOAD/noc_research_summary-unlv.pdf
http://www.diit.unict.it/users/mpalesi/DOWNLOAD/noc_research_summary-unlv.pdf

	Slide 1: COEN-4730 Computer Architecture Lecture 8 (part 2) Networks-on-Chip (NoC) (Ch.5)
	Slide 2
	Slide 3
	Slide 4: Outline
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7
	Slide 8
	Slide 9: NoC properties
	Slide 10: Building blocks: NI
	Slide 11: Building blocks: NI
	Slide 12: Building blocks: Router
	Slide 13
	Slide 14: Outline
	Slide 15: NoC topologies
	Slide 16: Direct topologies
	Slide 17: 2D-mesh
	Slide 18: Torus
	Slide 19: Folding torus
	Slide 20: Octagon
	Slide 21: Indirect topologies
	Slide 22: Butterfly
	Slide 23: Irregular topologies
	Slide 24: Outline
	Slide 25: Routing algorithms
	Slide 26: Static/deterministic vs. Dynamic/adaptive Routing
	Slide 27: Example: Dimension-order Routing
	Slide 28: Example: Dynamic Routing
	Slide 29: Routing mechanics: Distributed vs. Source Routing
	Slide 30: Minimal vs. Non-minimal Routing
	Slide 31
	Slide 32: Routing Algorithm Requirements
	Slide 33: Routing Algorithm Requirements
	Slide 34: Outline
	Slide 35: Switching strategies
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Flow control
	Slide 43: STALL/GO
	Slide 44: ACK/NACK
	Slide 45: Credit Based
	Slide 46: Outline
	Slide 47: Clocking schemes
	Slide 48: Outline
	Slide 49: Quality of Service (QoS)
	Slide 50: Outline
	Slide 51: Early Examples
	Slide 52
	Slide 53: Intel (2018)
	Slide 54: IBM (2019)
	Slide 55: Outline
	Slide 56: NoC prototyping: EPFL Emulation Framework
	Slide 57: NoC prototyping: CMU
	Slide 58: Georgia Tech 64-Core 3D-MAPS Many-Core Chip
	Slide 59: Outline
	Slide 60: Bus based vs. NoC based SoC
	Slide 61: Outline
	Slide 62: Example: Sunflower Design flow
	Slide 63: Front-end
	Slide 64: Back-end
	Slide 65: Manual vs. Design tool
	Slide 66: Outline
	Slide 67: Status and Open Problems
	Slide 68: Outline
	Slide 69: Trends
	Slide 70: Wireless NoC
	Slide 71: Photonic NoC
	Slide 72: Reliable/Robust NoC
	Slide 73: Secure NoC
	Slide 74: Outline
	Slide 75: Companies, Simulators
	Slide 76: Summary
	Slide 77: References/Credits

