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Why study chip-level networks?
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The future of multicore
• Parallelism replaces clock frequency scaling and 

core complexity
• Resulting Challenges…

– Scalability, Programming, Power
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Introduction

5

• Evolution of on-chip communication architectures
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• Network-on-chip (NoC) is a packet switched on-
chip communication network designed using a 
layered methodology. NoC is a communication 
centric design paradigm for System-on-Chip (SoC).

• Rough classification:
– Homogeneous

– Heterogeneous

Introduction
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 Open Systems Interconnect (OSI) network protocol stack 
model
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• NoCs borrow ideas and concepts from computer networks → apply them to the 
embedded SoC domain.

• NoCs use packets to route data from the source PE to the destination PE 
via a network fabric that consists of 
– Network interfaces/adapters (NI)

– Routers (a.k.a. switches)

– interconnection links (channels, wires bundles)
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Tile = processing element (PE) +

           network interface (NI) + router/switch (R) 

3x3 homogeneous NoC
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Homogeneous vs. Heterogeneous

• Homogenous: 
– Each tile is a simple 

processor
– Tile replication (scalability, 

predictability)
– Less performance
– Low network resource 

utilization

• Heterogeneous:
– IPs can be: General purpose/DSP 

processor, Memory, FPGA, IO core
– Better fit to application domain
– Most modern systems are 

heterogeneous
– Topology synthesis: more difficult
– Needs specialized routing

7

8



5

NoC properties

• Reliable and predictable electrical and 
physical properties → Predictability

• Regular geometry → Scalability

• Flexible QoS guarantees

• Higher bandwidth

• Reusable components
–Buffers, arbiters, routers, protocol stack

9

Building blocks: NI
• Session-layer (P2P) interface with nodes

• Back-end manages interface with switches
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Standardized node interface @ session layer 
Initiator vs. target distinction is blurred
1. Supported transactions (e.g. QoS read…)
2. Degree of parallelism
3. Session prot. control flow & negotiation

NoC specific backend (layers 1-4)
1. Physical channel interface
2. Link-level protocol
3. Network-layer (packetization)
4. Transport layer (routing)

PE
Node

Switches

Standard P2P Node protocol Proprietary link protocol

Decoupling logic & synchronization
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Building blocks: NI
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Router Router

Core

NI

Memory

NI

Transmitter side
- Packetize

Receiver side
- Depacketize

Building blocks: Router 
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• Router: receives and forwards packets
• Buffers: 

– Queuing
– Decouple the allocation of adjacent channels in time
– Can be organized as virtual channels.

N

S

E

W

PE

N

S

E

W

PE

Routing
VC alloc.
Arbiter

11

12



7
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Building blocks: Links
• Connects two routers in both directions on a number of 

wires (e.g., 32 bits)

• In addition, wires for control are part of the link too

• Can be pipelined (include handshaking for asynchronous)

Outline
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NoC topologies

15

• “The topology is the network of streets, the roadmap”.

Direct topologies
• Direct Topologies

– Each node has direct point-to-point link to a subset of other nodes in the 
system called neighboring nodes

– As the number of nodes in the system increases, the total available 
communication bandwidth also increases

– Fundamental trade-off is between connectivity and cost

• Most direct network topologies have an orthogonal 
implementation, where nodes can be arranged in an 
n-dimensional orthogonal space
– e.g. n-dimensional mesh, torus, folded torus, hypercube, and octagon
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2D-mesh

• It is most popular topology

• All links have the same length
– eases physical design

• Area grows linearly with the 
number of nodes

• Must be designed in such a way 
as to avoid traffic accumulating 
in the center of the mesh

17

Torus
• Torus topology, also called a k-ary n-cube, is an n-dimensional 

grid with k nodes in each dimension
• k-ary 1-cube (1-D torus) is essentially a ring network with k 

nodes
– limited scalability as performance decreases when more nodes

• k-ary 2-cube (i.e., 2-D torus) topology is similar to a regular 
mesh 
– except that nodes at the edges are connected to switches at the 

opposite edge via wrap-around channels
– long end-around connections can, however, lead to excessive delays

18
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Folding torus

• Folding torus topology overcomes the long link 
limitation of a 2-D torus links have the same size

• Meshes and tori can be extended by adding 
bypass links to increase performance at the cost 
of higher area

19

Octagon
• Octagon topology is another example of a direct 

network 
– messages being sent between any 2 nodes require at 

most two hops 
– more octagons can be tiled together to accommodate 

larger designs by using one of the nodes as a bridge node

20
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Indirect topologies
• Indirect Topologies

– each node is connected to an external switch, and switches have 
point-to-point links to other switches

– switches do not perform any information processing, and 
correspondingly nodes do not perform any packet switching

– e.g. SPIN, crossbar topologies 

• Fat tree topology
– nodes are connected only to the leaves of the tree
– more links near root, where bandwidth requirements are higher

21

Butterfly
• k-ary n-fly butterfly network

– blocking multi-stage network – packets may be 
temporarily blocked or dropped in the network if 
contention occurs

– kn nodes, and n stages of kn-1 k x k crossbar
– e.g., 2-ary 3-fly butterfly network

22
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Irregular topologies

• Irregular or ad-hoc network topologies
– customized for an application
– usually a mix of shared bus, direct, and indirect network 

topologies
– e.g., reduced mesh, cluster-based hybrid topology

23
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Routing algorithms
• Routing is the route/path (a sequence of channels) of streets from 

source to destination. “The routing method steers the car”.
• Routing determines the path followed by a message through the 

network to its final destination.
• Responsible for correctly and efficiently routing packets or circuits 

from the source to the destination
– Path selection between a source and a destination node in a particular 

topology

• Ensure load balancing
• Latency minimization
• Flexibility w.r.t. faults in the network
• Deadlock and livelock free solutions
• Routing schemes/techniques/algos can be classified/looked-at as:

– Static or dynamic routing
– Distributed or source routing
– Minimal or non-minimal routing

25

Static/deterministic vs. Dynamic/adaptive Routing

• Static routing:  fixed paths are used to transfer data 
between a particular source and destination
– does not take into account current state of the network

• advantages of static routing:
– easy to implement, since very little additional router 

logic is required
– in-order packet delivery if single path is used

• Dynamic/adaptive routing: routing decisions are 
made according to the current state of the network
– considering factors such as availability and load on links

• path between source and destination may change 
over time
– as traffic conditions and requirements of the 

application change

• more resources needed to monitor state of the 
network and dynamically change routing paths

• able to better distribute traffic in a network

26

25

26



14

Example: Dimension-order Routing
• Static XY routing (commonly used):

– a deadlock-free shortest path routing which routes packets in 
the X-dimension first and then in the Y-dimension

• Used for tori and mesh topologies
• Destination address expressed as absolute coordinates
• It may introduce imbalance → low bandwidth

27
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For torus, a preferred direction

may have to be selected.

For mesh, the preferred direction

is the only valid direction.

Example: Dynamic Routing

• A locally optimum decision may lead to a globally 
sub-optimal route
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Routing mechanics: Distributed vs. Source Routing

• Routing mechanics refers to the mechanism used to implement any routing 
algorithm.

• Distributed routing: each packet carries the destination address

– e.g. XY co-ordinates or number identifying destination node/router

– routing decisions are made in each router by looking up the destination 
addresses in a routing table or by executing a hardware function

• Source routing: packet carries routing information

– pre-computed routing tables are stored at NI

– routing information is looked up at the source NI and routing 
information is added to the header of the packet (increasing packet size)

– when a packet arrives at a router, the routing information is extracted 
from the routing field in the packet header 

– does not require a destination address in a packet, any intermediate 
routing tables, or functions needed to calculate the route

29

Minimal vs. Non-minimal Routing
• Minimal routing: length of the routing path from the source to the 

destination is the shortest possible length between the two nodes
– source does not start sending a packet if minimal path is not available

• Non-minimal routing: can use longer paths if a minimal path not 
available
– by allowing non-minimal paths, the number of alternative paths is 

increased, which can be useful for avoiding congestion
– disadvantage: overhead of additional power consumption

30
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Minimal adaptive routing
is unable to avoid congested links
in the absence of minimal path diversity
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No winner routing algorithm

Routing Algorithm Requirements
• Routing algorithm must ensure freedom from deadlocks

– Deadlock: occurs when a group of agents, usually packets, are unable to 
progress because they are waiting on one another to release resources 
(usually buffers and channels).

– common in WH switching
– e.g. cyclic dependency shown below
– freedom from deadlocks can be ensured by allocating additional hardware 

resources or imposing restrictions on the routing
– usually dependency graph of the shared network resources is built and 

analyzed either statically or dynamically

32
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Routing Algorithm Requirements

• Routing algorithm must ensure freedom from livelocks
– livelocks are similar to deadlocks, except that states of the 

resources involved constantly change with regard to one 
another, without making any progress

– occurs especially when dynamic (adaptive) routing is used
– e.g. can occur in a deflective “hot potato” routing if a packet is 

bounced around over and over again between routers and 
never reaches its destination

– livelocks can be avoided with simple priority rules

• Routing algorithm must ensure freedom from starvation
– under scenarios where certain packets are prioritized during 

routing, some of the low priority packets never reach their 
intended destination

– can be avoided by using a fair routing algorithm, or reserving 
some bandwidth for low priority data packets

33
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Switching strategies

35

• Switching establishes the type of connection between source and 
destination. It is tightly coupled to routing. Can be seen as a flow 
control mechanism, as a problem of resource allocation.

• Allocation of network resources (bandwidth, buffer capacity, etc.) to 
information flows
– Phit is a unit of data that is transferred on a link in a single cycle
– Typically, phit size = flit size

• Two main switching schemes:
1. Circuit (or “path”) switching
2. Packet switching

36

1. Pure Circuit Switching
• It is a form of bufferless flow control
• Advantage: Easier to make latency guarantees (after circuit 

reservation)
• Disadvantage: does not scale well with NoC size

– several links are occupied for the duration of the transmitted data, 
even when no data is being transmitted

Circuit set-up

Two traversals – latency overhead

Waste of bandwidth

Request packet can be buffered
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00 10 20

01 11 21

02 12 22

03 13 23

Circuit utilization

Third traversal – latency overhead

Contention-free transmission

Poor resource utilization
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Virtual Circuit Switching
• Multiple virtual circuits (channels) multiplexed on a single physical link.
• Virtual-channel flow control decouples the allocation of channel state 

from channel bandwidth.
• Allocate one buffer per virtual link

– can be expensive due to the large number of shared buffers

• Allocate one buffer per physical link
– uses time division multiplexing (TDM) to statically schedule usage
– less expensive routers

Node 1 Node 2 Node 3 Node 4 Node 5
Destination of B

Block

Node 1 Node 2 Node 3 Node 4 Node 5 Destination of B

A

B

38

2. Packet Switching

• It is a form of buffered flow control

• Packets are transmitted from source and make 
their way independently to receiver

– possibly along different routes and with different 
delays

• Zero start up time, followed by a variable 
delay due to contention in routers along 
packet path

– QoS guarantees are harder to make

37
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Three main packet switching scheme variants
1. Store and Forward (SAF) switching

– packet is sent from one router to the next only if the receiving router has buffer 
space for entire packet

– buffer size in the router is at least equal to the size of a packet
– Disadvantage: excessive buffer requirements

2. Virtual Cut Through (VCT) switching
– forwards first flit of a packet as soon as space for the entire packet is available in 

the next router
– reduces router latency over SAF switching
– same buffering requirements as SAF switching

3. Wormhole (WH) switching
– flit is forwarded to receiving router if space exists for that flit

(1) After A receives a flit of the packet, 
 A asks B if B is ready to receive a flit
(2) B → A, ack
(3) A sends a flit to B.

A B
Pipelining on a flit 
(flow control unit) basis

flit size < packet size
Smaller data space
is needed than
store-and-forward

40

Wormhole Switching Issues
• Wormhole switching suffers from packet blocking problems
• An idle channel cannot be used because it is owned by a 

blocked packet…
– Although another packet could use it!

• Using virtual channels helps address this

A

X
IdleBlocked

B

2 virtual
channels

A

B

Wormhole
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Flow control
• Flow control dictates which messages get access to particular network 

resources over time. It manages the allocation of resources to packets 
as they progress along their route. “It controls the traffic lights: when a 
car can advance or when it must pull off into a parking lot to allow 
other cars to pass”. 

• Can be viewed as either a problem of resource allocation (switching 
strategy) or/and one of contention resolution.

• Recover from transmission errors
• Commonly used schemes:

– STALL-GO flow control
– ACK-NACK flow control
– Credit based flow control

42

A B C Block
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full
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Buffer 
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“Backpressure”
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STALL/GO
• low overhead scheme
• requires only two control wires

– one going forward and signaling data availability
– the other going backward and signaling either a condition of 

buffers filled (STALL) or of buffers free (GO)

• can be implemented with distributed buffering (pipelining) 
along link

• good performance – fast recovery from congestion
• does not have any provision for fault handling

– higher level protocols responsible for handling flit interruption

43

ACK/NACK

• when flits are sent on a link, a local copy is kept in a buffer by sender
• when ACK received by sender, it deletes copy of flit from its local buffer
• when NACK is received, sender rewinds its output queue and starts 

resending flits, starting from the corrupted one
• implemented either end-to-end or switch-to-switch
• sender needs to have a buffer of size 2N + k

– N is number of buffers encountered between source and destination
– k depends on latency of logic at the sender and receiver

• fault handling support comes at cost of greater power, area overhead

44
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Credit Based
• Round trip time between buffer empty and flit arrival

• More efficient buffer usage; error control pushed at a 
higher layer

45
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Clocking schemes
• Fully synchronous

– single global clock is distributed to synchronize entire chip
– hard to achieve in practice, due to process variations and clock 

skew

• Mesochronous
– local clocks are derived from a global clock
– not sensitive to clock skew
– phase between clock signals in different modules may differ 
– deterministic for regular topologies (e.g. mesh)
– non-deterministic for irregular topologies
– synchronizers needed between clock domains

• Pleisochronous
– clock signals are produced locally

• Asynchronous
– clocks do not have to be present at all

47
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Quality of Service (QoS)

• QoS refers to the level of commitment for packet 
delivery
– refers to bounds on performance (bandwidth, delay, and 

jitter=packet delay variation)

• Two basic categories
– Best effort (BE) 

• only correctness and completion of communication is 
guaranteed

• usually packet switched

• worst case times cannot be guaranteed

– Guaranteed service (GS)
• makes a tangible guarantee on performance, in addition to basic 

guarantees of correctness and completion for communication

• usually (virtual) circuit switched
49
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Early Examples
• Æthereal Developed by Philips

• HERMES Developed at the Faculdade de Informática PUCRS, Brazil

• MANGO Developed at the Technical University of Denmark

• Nostrum Developed at KTH in Stockholm

• Octagon Developed by STMicroelectronics

• QNoC Developed at Technion in Israel

• SOCBus Developed at Linköping University

• SPIN Micronetwork Université Pierre et Marie Curie, Paris, France

• Xpipes Developed by the Univ. of Bologna and Stanford University

• CHAIN (Silistix) Developed at the University of Manchester

• …
51
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Intel’s Teraflops Research Processor (2008)

• Goals:
• Deliver Tera-scale performance

– Single precision TFLOP at desktop 
power

– Frequency target 5GHz
– Bi-section B/W order of Terabits/s
– Link bandwidth in hundreds of GB/s

• Prototype two key technologies
– On-die interconnect fabric
– 3D stacked memory

• Develop a scalable design 
methodology
– Tiled design approach
– Mesochronous clocking
– Power-aware capability

I/O Area

I/O Area

PLL

single tile

1.5mm

2.0mm

TAP

2
1
.7
2
m
m

I/O Area

PLL TAP

12.64mm

65nm, 1 poly, 8 metal (Cu)Technology

100 Million (full-chip) 

1.2 Million (tile)

Transistors

275mm2 (full-chip) 

3mm2 (tile)

Die Area

8390C4 bumps #

65nm, 1 poly, 8 metal (Cu)Technology

100 Million (full-chip) 

1.2 Million (tile)

Transistors

275mm2 (full-chip) 

3mm2 (tile)

Die Area

8390C4 bumps #

[Vangal08]
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Intel (2018)

53

• Loihi was fabbed in Intel’s 14-nm FinFET process. The chip instantiates a total of 2.07 billion 
transistors and 33 MB of SRAM over its 128 neuromorphic cores and three x86 cores, with a 
die area of 60 mm2. The device is functional over a supply voltage range of 0.50 V to 1.25 V.

• An asynchronous network-on-chip (NoC) transports all communication between cores in the 
form of packetized messages.

IBM (2019)

54

• TrueNorth, with 1 million neurons and 256 million synapses distributed across 4,096 neurosynaptic cores 
and fabricated in Samsung’s 28-nm low-power process, occupies 430 mm2 of area and consumes on the 
order of 100 mW of power during a typical use case. 

• NS16e-4 is composed of four component NS16e systems arranged within a 4-U rack-mounted standard 
drawer. Each NS16e platform contains 16 TrueNorth processors tiled in a 4 × 4 two-dimensional grid and 
connected to one another via TrueNorth’s native interchip input–output (I/O) interfaces, forming a 
unified array of 262, 144 neurosynaptic cores totaling 64 million neurons and 16 billion synapses.

• Cores in TrueNorth are interconnected via a network on chip.

53
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NoC prototyping: EPFL Emulation Framework

[] N, Genko, D. Atienza, G. De Micheli, L. Benini, "Feature-NoC emulation: a tool and 
design flow for MPSoC," IEEE Circuits and Systems Magazine, vol. 7, pp. 42-51, 2007. 
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NoC prototyping: CMU

57
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Motion
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Buffer

Bus Implementation

Bus Cont.
Unit

Synthesis for Xilinx Virtex II FPGA with CIF (352x288) frames

free

Motion
Est. 2

in-house

Xilinx core generator

• To build prototypes, we will likely use a mix 

of free, commercial, and in-house IPs. 

[] Umit Y. Ogras, Radu Marculescu, 
Hyung Gyu Lee, Puru Choudhary, 
Diana Marculescu, Michael 
Kaufman, Peter Nelson, 
"Challenges and Promising 
Results in NoC Prototyping Using 
FPGAs," IEEE Micro, vol. 27, no. 
5, pp. 86-95, 2007.

Georgia Tech 64-Core 3D-MAPS Many-Core Chip 

58
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Single Core

Single SRAM tile

• 3D-stacked many-core processor 
• Fast, high-density face-to-face vias for high bandwidth
• Wafer-to-wafer bonding
• @277MHz, peak data B/W ~ 70.9GB/sec

Data SRAM

F2F via bus

2-way VLIW core
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Bus based vs. NoC based SoC

60

[Arteris]
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Example: Sunflower Design flow
• David Atienza, Federico Angiolini, Srinivasan Murali, Antonio Pullini, Luca 

Benini, Giovanni De Micheli, "Network-on-Chip design and synthesis outlook,” 
Integration, the VLSI Journal, vol. 41 no. 3, pp. 340-359, May 2008.
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Front-end

63

Back-end
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65

Manual

Sunflower

• 1.33x less power

• 4.3% area increase

Manual vs. Design tool

Outline

• Introduction
• NoC Topology
• Routing algorithms
• Switching strategies
• Flow control schemes
• Clocking schemes
• QoS
• NoC Architecture Examples
• NoC prototyping
• Bus based vs. NoC based SoC
• Design flow/methodology
• Status and Open Problems
• Trends
• Companies, simulators

66

65

66



34

Status and Open Problems
• Design tools (GALS, DVFS, VFI) and benchmarks. HW/SW co-design
• Power

– complex NI and switching/routing logic blocks are power hungry
– several times greater than for current bus-based approaches

• Latency
– additional delay to packetize/de-packetize data at NIs
– flow/congestion control and fault tolerance protocol overheads
– delays at the numerous switching stages encountered by packets
– even circuit switching has overhead (e.g. SOCBUS)
– lags behind what can be achieved with bus-based/dedicated wiring

• Reliability 
– Wearout mechanisms (electromigration, NBTI, etc.)
– Reliable/robust NoC designs
– Error correcting codes

• Security
– Attacks (side channel attacks, etc.)

• Simulation speed
– GHz clock frequencies, large network complexity, greater number of PEs slow down simulation
– FPGA accelerators 

• Standardization → we gain:
– Reuse of IPs
– Reuse of verification
– Separation of Physical design issues, Communication design, Component design, Verification, System 

design

• Prototyping 67
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Trends

• Hybrid and hierarchical interconnection structures
– NoC and Bus based

– Custom (application specific), heterogeneous  topologies

• New interconnect paradigms
– Optical/photonic, Wireless (for latency, power)

• 3D NoC (for latency)

• Reconfigurability features (for 
robustness/reliability)

• GALS, DVFS, VFI (for power consumption)

69

Wireless NoC
• A. Sarihi, A. Patooghy, A. Khalid, M. Hasanzadeh, M. Said and A. -H. 

A. Badawy, "A Survey on the Security of Wired, Wireless, and 3D 
Network-on-Chips," in IEEE Access, vol. 9, pp. 107625-107656, 
2021, doi: 10.1109/ACCESS.2021.3100540.
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Photonic NoC
• T. Alexoudi et al., "Optics in Computing: From Photonic Network-

on-Chip to Chip-to-Chip Interconnects and Disintegrated 
Architectures," in Journal of Lightwave Technology, vol. 37, no. 2, 
pp. 363-379, 15 Jan.15, 2019, doi: 10.1109/JLT.2018.2875995.
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Reliable/Robust NoC
• K. Wang and A. Louri, "CURE: A High-Performance, Low-Power, and Reliable 

Network-on-Chip Design Using Reinforcement Learning," in IEEE Transactions on 
Parallel and Distributed Systems, vol. 31, no. 9, pp. 2125-2138, 1 Sept. 2020, doi: 
10.1109/TPDS.2020.2986297.
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Secure NoC
• A. Sarihi, A. Patooghy, A. Khalid, M. Hasanzadeh, M. Said and A. -H. A. Badawy, "A 

Survey on the Security of Wired, Wireless, and 3D Network-on-Chips," in IEEE 
Access, vol. 9, pp. 107625-107656, 2021, doi: 10.1109/ACCESS.2021.3100540.
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Companies, Simulators

• For info on NoC related companies, simulators, 
other tools, conference pointers, etc. please see:

– http://networkonchip.wordpress.com/

75

Summary

• NoC paradigm
–New communication infrastructure  for chip 

multiprocessors and Systems-on-Chip

–Replaces the Bus for increasingly large 
numbers of cores/PEs

• Automated design flow/methodology
–One main challenges
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