COEN-4730 Computer Architecture
Info on GEM5, McPAT, and More

Cristinel Ababei
Dept. of Electrical and Computer Engineering
Marquette University

Resources

GEMS5 Resources
» http://www.m5sim.org/Tutorials
» http://www.m5sim.org/Documentation
» http://www.m5sim.org/wiki/index.php/Tutorials
» http://www.gemb5.org/dist/tutorials/isca pres 2011.pdf
» http://gem5.org/dist/tutorials/hipeac2012/gem5 hipeac.pdf
» http://www.m5sim.org/Ruby
GEMS Resources
— http://research.cs.wisc.edu/gems/
— http://lists.cs.wisc.edu/mailman/listinfo/gems-users
You can find (some) answers at:
— http://blog.gmane.org/gmane.comp.emulators.mb.users
— http://www.mail-archive.com/gem5-users@gemb5.org/
— http://www.m5sim.org/Frequently Asked Questions
— http://ga.gem5.ora/
Check periodically the status matrix of GEM5:
— http://www.m5sim.org/Status Matrix

http://www.m5sim.org/Documentation
http://www.m5sim.org/Documentation
http://www.m5sim.org/wiki/index.php/Tutorials
http://www.gem5.org/dist/tutorials/isca_pres_2011.pdf
http://gem5.org/dist/tutorials/hipeac2012/gem5_hipeac.pdf
http://www.m5sim.org/Ruby
http://research.cs.wisc.edu/gems/
http://lists.cs.wisc.edu/mailman/listinfo/gems-users
http://blog.gmane.org/gmane.comp.emulators.m5.users
http://www.mail-archive.com/gem5-users@gem5.org/
http://www.m5sim.org/Frequently_Asked_Questions
http://qa.gem5.org/
http://www.m5sim.org/Status_Matrix

* Refresher

CMP Cache Organizations
(Private L2 Cache)

CPU Core

P

CPU Core

v

CPU Core

o

CPU Core

P

L11$ | |[L1D$

el B
! i]
v v e

. 4 .

Memory Memory Memory Memory
Channel Channel Channel Channel

CMP Cache Organizations
(Shared L2 Cache)

=1 [==] [=

Router

Router Router

,_
o
©

[[I I
Memory Memory Memory Memory
Channel Channel Channel Channel

CMP Cache Coherence

Snoop based:

— All caches on the bus snoop the bus to determine if they have
a copy of the block of data that is requested on the bus.
Multiple copies of a data block can be read without any
coherence problems; however, a processor must have
exclusive access (either invalidate or update other copies) to
the bus in order to write.

— Enough for small-scale CMPs with bus interconnection

Directory based

— the data being shared is tracked in a common directory that
maintains the coherence between caches. When a cache line
is changed the directory either updates or invalidates the
other caches with that cache line.

— Necessary for many-core CMPs with such interconnection as
mesh

Multicore vs. Multiprocessor

Processor @ Processsr 1
Coml Coral Core 2 Cored
IEH || ||| B
|11 Gache || || L1Gache | [Goeme | | |11 Gache |

[+]

Multicore
One or more One or more One or more One or more
levels of levels of levels of levels of

cache cache cache cache

|

1

multi-core chip
Main memory

single physical processor contains the 4 Logic core

Ll

Dual —core dual-processor system

* GEM5 = M5 + GEMS (i.e., mainly Ruby part of it)

GEMS5 = M5 + GEMS (i.e., Ruby only)
« GEM5

— Supports both functional and timing simulation

— Has two simulation modes: full-system (FS) and syscall
emulation (SE)

— Supports multiple ISAs
» ALPHA: well-developed to support both FS and SE modes
— It models
» Processor Cores + Memory Hierarchy + 1/0 Systems
— Written by using C++, Python & Swig, and totally open-source

« More things about M5

— http://www.m5sim.org/wiki/index.php/Main_Page

— The most important document:
http://www.mb5sim.org/wiki/index.php/Tutorials

Capabilities

L]

Execution modes: System-call Emulation (SE) &
Full-System (FS)

ISAs: Alpha, ARM, MIPS, Power, SPARC, x86
CPU models: AtomicSimple, TimingSimple, InOrder, and O3

Cache coherence protocols: broadcast-based, directories,
etc.

Interconnection networks: Simple & Garnet (Princeton,
MIT)

Devices: NICs, IDE controller, etc.
Multiple systems: communicate over TCP/IP

L]

L]

L]

L]

L]

L]

10

http://www.m5sim.org/wiki/index.php/Main_Page
http://www.m5sim.org/wiki/index.php/Tutorials

gem>5 has two fundamental modes

= Full system (FS)
= For booting operating systems
= Models bare hardware, including devices
= |nterrupts, exceptions, privileged instructions, fault handlers
= Simulated UART output
= Simulated frame buffer output

= Syscall emulation (SE)
= For running individual applications, or set of applications on MP
= Models user-visible ISA plus common system calls
= System calls emulated, typically by calling host OS
= Simplified address translation model, no scheduling

= Now dependent on how you run the binary
= No longer need to compile different binaries

11

CPU Models Overview

» Supported CPU Models
— AtomicSimpleCPU
— TimingSimpleCPU
— InOrderCPU
— O3CPU

« CPU Model Internals

— Parameters
— Time Buffers
— Key Interfaces

CPU Models - System Level View

CPU Models are designed to be “hot pluggable” with arbitrary
ISAs and Memory Systems

CPU)
/ ISA Model Type

Memory

sendTiming

\ sre/cpul{simplefinorder/o3j*

srelcpul® src/memf™ cems

Supported CPU Models

+ Simple CPUs
— Models Single-Thread 1 CPI Machine
— Two Types: AtomicSimpleCPU and TimingSimpleCPU
— Common Uses:

» Fast, Functional Simulation: 2.9 million and 1.2 million
instructions per second on the “twolf’ benchmark

» Warming Up Caches
» Studies that do not require detailed CPU modeling

* Detailed CPUs
— Parameterizable Pipeline Models w/SMT support
— Two Types: InOrderCPU and O3CPU
— “Execute in Execute”, detailed modeling

— Slower than SimpleCPUs: 200K instructions per second on the
“twolf” benchmark

» Models the timing for each pipeline stage
» Forces both timing and execution of simulation to be accurate
» Important for Coherence, 1/0, Multiprocessor Studies, etc.

At0m|CS|mp|eCPU src/ecpu/simple/atomic/*.hh, ce

« On every CPU *“tick()”, Cycle
perform all necessary 0
operations for an instruction

tick()

e Memory accesses are
atomic

o Fastest functional simulation tickl)

recvAtomic(

sendAtomic(
r—

recvAtomic(]

src/cpulsimple/atomic/* cems

118

T|m|ngS|mp|eCPU src/cpu/simple/timing/*.hh, ce
. Memory accesses use
timing path

e CPU waits until memory
access returns

e Fast, provides some level of
timing

srefepulsimpleftiming

cems

119

|nOI’C|eI’ CPU MOdel sre/cpu/inorder/*.hh, cc

¢ Detailed in-order CPU

e InOrderis a new feature to the gem5 Simulator
¢ Default 5-stage pipeline
¢ Fetch, Decode, Execute, Memory, Writeback

Cycle InOrderCPU

of [

: lﬂ o |

2

3 - .

JeEm W

| EE W 2.

120

|nOI’C|eI’ CPU MOdel sre/cpu/inorder/*.hh, cc

e Detailed in-order CPU
¢ Default 5-stage pipeline
e Fetch, Decode, Execute, Memory, Writeback
¢ Key Resources
» CacheUnit, ExecutionUnit, BranchPredictor, etc.
¢ Key Parameters
e Pipeline Stages, Hardware Threads
e Implementation: Customizable Set of Pipeline Components
o Pipeline stages interact with Resource Pool
¢ Pipeline defined through Instruction Schedules
e Each instruction type defines what resources they need in a
particular stage
e [fan ingtruction can't. complete all it's resource requests in ong
stage, it blocks the pipeline €

cemd

121

03 CPU MOdel sre/cpu/o3/+.hh, ce

e Detailed out-of-order CPU
« Default 7-stage pipeline
o Fetch, Decode, Rename, IEW,Commit
e |EW <=>Issue, Execute, and Writeback
e Model varying amount of pipeline stages by changing delays
between pipeline stages (e.q. fetchToDecodeDelay)
o Key Resources
¢ Physical Register (PR) File, 1Q, LSQ, ROB, Functional Unit
(FU) Pool
¢ Key Parameters
¢ [nterstage pipeline delays, Hardware threads, |IQ/LSQ/ROB/PR
entries, FU Delays
e Other Key Features
e Support for CISC decoding (e.g. x86)
e Renaming with a Physical Register (PR) File
Functional units with varying latencies 2
Branch Prediction

Lo cem>
Memory dependence prediction

122

Sample Run — Behind the scenes

Example Python script
({e.g. configs/example/se.py)
instantiating simulation objects
and setting their parameters

@ < P
Python interpreter compiled Library of simulation
objects described in Python

into gem5

iys

Corresponding C++ simulation
objects assembled and configured

according to Python script

~

Actual simulation ‘

20

10

What output is generated?

= Files describing the configuration

= config.ini — ini formatted file that has all the objects and their
parameters

= config.json — json formatted file which is easy to parse for input into
other simulators (e.g. power)

= Statistics
= stats.txt — You've seen several examples of this
= Checkpoints

= cpt.<cycle number> -- Each checkpoint has a cycle number. The —r N
parameter restores the Nth checkpoint in the directory

= Qutput
= *terminal — Serial port output from the simulation
= frames_<system> — Framebuffer output

* Read more at:
— http://gem5.org/Configuration / Simulation Scripts

21

Introduction to M5

 M5’s Source Tree Structure

=

system docs configs src util ext
alpha mips sparc dnet libelf ply

arch base Cpu dev encumbered kern mem python sim

22

11

http://gem5.org/Configuration_/_Simulation_Scripts

Introduction to M5

+ CPU Modeled by M5
— SimpleCPU
— TimingCPU
— O3CPU

+ Demonstrated on out-of-order pipeline ...
» Red is a time bufter

A

Fehﬂn—.—aneuude—a.—)ﬂem—.—r“;ﬁzit;‘—'—»cmﬁ

23

Overview of M5 with references to
source code

mE /mem/bus /¥
m& /mem,cache/* |

Simple: m&fcpu/simple/*

Funclional:
Detailed (new): m5/cpufol/* ms fmem/ functional /* -
Detailed (old): Timing: m&/mem/timing/*
mb fencumberedfcpu/full/*

Simulator internals
mE/eim/*

12

Inside Gem5: Memory Model

* General Memory System
— Ports
— Packets
— Requests
— Atomic/Timing/Functional accesses

« Two memory system models
1. Classic
2. Ruby

1: Classic Memory System

Classic Memory Hierarchy
Modeled by M5, the first of the | L1l Cache

L1D Cache

two memory models supported Port

Port

by GEM5 3

'

Read more at: Port

Port

— http://www.m5sim.org/Classic_Memor L2 Cache

y System

In classic memory system Port
A

coherence is a MOESI

Bus

snooping protocol

You do not need to run

GEMS5 with —ruby option in Memory

this case

26

13

http://www.m5sim.org/Classic_Memory_System

Example of P e cry

possible system [e |
hierarchy ok | emeow Lo
1 -
T ‘
System Bus ‘
PCI Bridge
|

2: RUBY memory model

* GEMS includes RUBY, the second of the two memory models
supported by GEM5

* An Overview of GEMS:

Random ”
R
Tester alle ©
= ° =
Y% £l [X J e
glls c
\gy gl|E =
Ok ”
Microbenchmarks

\

Ruby Software Structure (within GEMS software framework:

http://research.cs.wisc.edy
Chip

tutorial.html as of 2005)

___ gy provcojpn_ Suec 4
I I Ruby *
Sequencer
system/Sequencer.h Caches Directory
Network sytem/CacheMemory.h system/DirectoryMemory.h
Ports
buffer/MessageBuffefh Ruby *
sLicc *
Cache Line
Directory
State

generatfed/ <protocof/L1Cache_Entry.h

generated/<pfotocol>/Directory_Entry.h

Directory
Controller

Cache
Controllers

generated/<protocol>/L1Cache_Controller.h
generated/<protocol>/L2Cache_Controller.h

generated/ <protocol>/Directory_Controller.h

Ruby Memory Model

* Flexible Memory System
— Rich configuration - Just run it

» Simulate combinations of caches, coherence,

interconnect, etc...
— Rapid prototyping - Just create it

» Domain-Specific Language (SLICC) for coherence

protocols
» Modular components

» Detailed statistics

— e.g., Request size/type distribution, state transition

frequencies, etc...
» Detailed component simulation

— Network (fixed/flexible pipeline and simple)

— Caches (Pluggable replacement policies)
— Memory (DDR2)

15

Ruby Memory Model

* Can build many different memory systems
— CMPs, SMPs, SCMPs
— 1/2/3 level caches
— Pt2Pt/Torus/Mesh Topologies
— MESI/MOESI coherence

* Each componentis individually configurable
— Build heterogeneous cache architectures (new)
— Adjust cache sizes, bandwidth, link latencies, etc...

Configuration Examples

© 8 core CMP, 2-Level, MESI protocol, 32K L1s, 8MB 8-banked
L2s, crossbar interconnect

® scons build/ALPHA FS/goms.opt PROTOCCOL=MESI CMP_diroctory RUBY=Trua

® /build/ALPHA FS/goms.opt configs/oxample/ruby fs.py -n 8 —111_sizo=32kD

--11d_sire=32kB —12 sizo=EMB --num-12Zcachos=g8 —topology=Crosshar --timing

© 64 socket SMP, 2-Level on-chip Caches, MOESI protocol,
32K L1s, 8MB L2 per chip, mesh interconnect

® scons build/ALPHA FS/gomS.opt PROTOCOL=MOESI_CMP_diroctory RUBY=Trua
® /build/ALPEA FS/mS.o0pt conrigs/example/ruby Is.py -0 64 —-111_size=32kB

—-11d s1zg=32kB —12_s51zg=512ME —-num-12Zcachas=64 —topology=Mash —timing

« Many other configuration options
« Protocols only work with specific architectures (see wiki) gﬁ

cems

16

Ruby Memory Model

» Domain-Specific Language
— Syntatically similar to C/C++
— Like HDLs, constrains operations to be hardware-like (e.g., no
loops)
+ Two generation targets
— C++ for simulation
» Coherence controller object
— HTML for documentation

» Table-driven specification (State x Event -> Actions & next
state)

[="Runs with Alphaand X86

Ruby for Networks and Coherence

= As an alternative to the conventional memory system gemb
also integrates Ruby

= Create networked interconnects based on domain-specific
language (SLICC) for coherence protocols

= Detailed statistics

= e.g., Request size/type distribution, state transition frequencies, efc...

= Detailed component simulation
= Network (fixed/flexible pipeline and simple)
= Caches (Pluggable replacement policies)

|

= Limited support for functional accesses

* Read more at:
— http://www.m5sim.org/Ruby

34

17

http://www.m5sim.org/Ruby

Introduction to Ruby

* Essential Components in Ruby
— (1) Caches & (2) Memory
— (3) Coherence Protocols

* The following cache coherence protocols are supported:
— MI_example: example protocol, 1-level cache.

— MESI _CMP_directory: single chip, 2-level caches, strictly-inclusive
hierarchy.

— MOESI_CMP_directory: multiple chips, 2-level caches, non-
inclusive (neither strictly inclusive nor exclusive) hierarchy.

— MOESI CMP token: 2-level caches. TODO.

— MOESI _hammer: single chip, 2-level private caches, strictly-exclusive
hierarchy.

— Network test: dummy protocol to operate the network tester, 1-level
cache.

35

Introduction to Ruby

+ Essential Components in Ruby
— (4) Interconnection Networks
» Either be automatically generated by default
— Intra-chip network: Single on-chip switch
— Inter-chip network: 4 included
» Or be customized by users

— Defined in *_FILE_SPECIFIED.txt under the directory
“$GEMS_ROOT_DIR/ruby/network/simple/Network_Files

36

18

http://www.m5sim.org/MI_example
http://www.m5sim.org/MESI_CMP_directory
http://www.m5sim.org/MOESI_CMP_directory
http://www.m5sim.org/MOESI_CMP_token
http://www.m5sim.org/MOESI_hammer
http://www.m5sim.org/Network_test

Caches

= Single cache model with several components:
= Cache: request processing, miss handling, coherence
Tags: data storage and replacement (LRU, IIC, etc.)
Prefetcher: N-Block Ahead, Tagged Prefetching, Stride Prefetching
MSHR & MSHRQueue: track pending/outstanding requests
= Also used for write buffer

Parameters: size, hit latency, block size, associativity, number of
MSHRs (max outstanding requests)

37

Coherence protocol

= MOESI bus-based snhooping protocol

= Support nearly arbitrary multi-level hierarchies at the expense of
some realism

= Does not enforce inclusion

= Magic “express snhoops” propagate upward in zero time
= Avoid complex race conditions when snoops get delayed
= Timing is similar to some real-world configurations
= L2 keeps copies of all L1 tags
= L2 and L1s snooped in parallel

38

19

Detailed Component Simulation: Caches

Set-Associative Caches
Each CacheMemory object represents one bank of cache
Configurable bit select for indexing

Modular replacement policy

» Tree-based pseudo-LRU
« LRU

See src/mem/ruby/system/CacheMemory.hh

39

Memory

= All memories in the system inherit from AbstractMemory
= Encapsulates basic “memory behaviour”:
= Has an address range with a start and size
= Can perform a zero-time functional access and normal access
= SimpleMemory is currently the only subclass
= Multi-port memory controller
= Fixed-latency memory (possibly with a variance)
= [nfinite throughput

40

20

 Read more at:

— http://www.m5sim.org/Coherence-Protocol-Independent Memory Components

Detailed Component Simulation: Memory

+I+ T

Fl E l Fl '_l_] E 2|
__________ a [e
EEEE[EEEE

Memory controller models a single channel DDR2 controller

« Implements closed-page policy
« Can configure ranks, tCAS, refresh, etc.. cems
e See src/mem/ruby/system/MemoryConfroller. hh 41
Interconnection Network
* Read more at:
— http://www.m5sim.org/Interconnection Network
[_J [J
L1 Cache L1 Cache
Controller Comroller ® ®
4

21

http://www.m5sim.org/Coherence-Protocol-Independent_Memory_Components
http://www.m5sim.org/Interconnection_Network

Network Topologies

Crossbar

@ Cache/Dir
[Router

Folded Torus

43
Topology Parameters
— Link latency
» Auto-generated
+ ON_CHIP_LINK_LATENCY
« NETWORK_LINK_LATENCY
» Customized
« “link_latency:’
— Link bandwidth
» Auto-generated
* On-chip = 10 x g_endpoint_bandwidth
« Off-chip = g_endpoint_bandwidth
» Customized
« Individual link bandwidth = ‘bw_multiplier:* x g_endpoint_bandwidth
— Buffer size
» Infinite by default
» Customized network supports finite buffering
« Prevent 2D-mesh network deadlock through e-cube restrictive routing
« “link_weight’
— Perfect switch bandwidth
44

22

Detailed Component Simulation: Network

« Simple Network
+ |dealized routers - fixed latency, no internal resources
» Does model link bandwidth

e Garnet Network
« Detailed routers - both fixed and flexible pipeline model
» From Princeton, MIT

Route
Do - VT Alloeator
Swatch Miocabor
L i mum _
| ve2 [T . | I|’_ .
Inpat 1 2 ll': ! Dutput 1
ven [T} | Il.'
1 Butlirs 1 {
. |'|l.' [}
L]) L)
. i .
e)
ver [TTT 4 | ,"l I':
|l ¥e2 [TT1T3— [/ b
gt & H — — ump-.n's
wen 11+ Cressbar Switch
Input butfors |

cems
~ il bl
Raute Compate | ¥C Alecatien Fr—— | C——

45

Run PARSEC 2.1 under FS mode

+ PARSEC (from Texas) related:
— Download Parsec benchmarks from here:
» http://www.cs.utexas.edu/~cart/parsec m5/

— If you generate running scripts .rcS using the
writescripts.pl, you should change the script or
remove from each generated .rcS script the line
containing switchcpu

— Read here for more on those m5ops:
» http://www.m5sim.org/M50ps
* http://www.cs.utexas.edu/~parsec_m5/
* http://www.m5sim.org/PARSEC _benchmarks

23

http://www.cs.utexas.edu/~cart/parsec_m5/
http://www.m5sim.org/M5ops
http://www.cs.utexas.edu/~parsec_m5/
http://www.m5sim.org/PARSEC_benchmarks

Run SPLASH2 under FS mode

» Preparation: put your code into the image

sudo mount —o loop,offset=32256 linux-latest.img /mnt
sudo mkdir —p /mnt/benchmark/mybench
sudo cp FFT /mnt/benchmark/mybench

sudo umount /mnt

* Run

scons build/ALPHA/gem5.opt
./build/ALPHA/gem5.opt configs/example/fs.py

mb5term 3456
JFFT -t

Run SPLASH?2 under FS mode

* more convenient way?

* Run

vi configs/common/Benchmarks.py
+ fft’: [SysConfig(‘fft.rcS’, ‘5612MB’)],

vi configs/boot/ffs.rcS

+ #!/bin/sh

+ cd benchmarks/mybench
+ echo “Running FFT now...”
+ ./FFT —t—pl

+ /sbin/m5 exit

scons build/ALPHA/gem5.opt
./build/ALPHA/gem5.opt configs/example/fs.py —n 1 —b fft

cat m5out/system.terminal

24

Do not forget...

* If you use Ruby (Caches and Garnet networks-
on-chip such as Mesh or Crossbar) models you
must work with ALPHA and X86; because only
those are supported now?

* If you use Ruby memory model (especially if
utilized with any of the Garnet networks), it is
slower than the Classic memory model supported
by GEM5

1. Classic: http://www.m5sim.org/Classic_Memory System
2. Ruby: http://www.m5sim.org/Ruby

» To read about interconnects and their .py scripts:
— http://www.m5sim.org/Interconnection Network

49

Do not forget...

* Mesh network:

— This topology requires the number of directories to be equal to the
number of CPUs.

— It can be invoked from command line by --topology=Mesh.

— The number of routers/switches is equal to the number of CPUs in
the system.

— The number of rows in the mesh has to be specified by --mesh-rows.

— Each router/switch is connected to one L1, one L2 (if present), and
one Directory.

50

25

http://www.m5sim.org/Classic_Memory_System
http://www.m5sim.org/Ruby
http://www.m5sim.org/Interconnection_Network

Do not forget...

* How many CPUs can M5 run?

* There is no inherent limit in M5 (other than simulation speed). In SE
mode there are no obstacles to simulating as many CPUs as you
want. However, in FS mode, the real-world Alpha platform we model
(Tsunami) only supports up to 4 processors. To get around this limit,
we defined and implemented a variant of the Tsunami platform (which
we call BigTsunami) that can take up to 64 processors. Note that
BigTsunami does not correspond to any real system. BigTsunami
support is included in the standard M5 Alpha build, but booting with
more than 4 CPUs requires modifications to the PAL code and
kernel as well. Take a look at the Download page for our Linux
patches and modified PAL code. Note that even with the BigTsunami
changes, simulating 64 processors will be quite slow, and the Linux
scheduler doesn't seem particularly good at scheduling a large
number of processors.

* Prebuilt kernel and PAL binaries can be found at:
http://www.cs.utexas.edu/~cart/parsec_mb5/

51

http://www.cs.utexas.edu/~cart/parsec_m5/

