
1

COEN-4730 Computer Architecture

Info on GEM5, McPAT, and More

Cristinel Ababei
Dept. of Electrical and Computer Engineering

Marquette University

1

Resources

• GEM5 Resources

• http://www.m5sim.org/Tutorials

• http://www.m5sim.org/Documentation

• http://www.m5sim.org/wiki/index.php/Tutorials

• http://www.gem5.org/dist/tutorials/isca_pres_2011.pdf

• http://gem5.org/dist/tutorials/hipeac2012/gem5_hipeac.pdf

• http://www.m5sim.org/Ruby

• GEMS Resources

– http://research.cs.wisc.edu/gems/

– http://lists.cs.wisc.edu/mailman/listinfo/gems-users

• You can find (some) answers at:

– http://blog.gmane.org/gmane.comp.emulators.m5.users

– http://www.mail-archive.com/gem5-users@gem5.org/

– http://www.m5sim.org/Frequently_Asked_Questions

– http://qa.gem5.org/

• Check periodically the status matrix of GEM5:

– http://www.m5sim.org/Status_Matrix

2

http://www.m5sim.org/Documentation
http://www.m5sim.org/Documentation
http://www.m5sim.org/wiki/index.php/Tutorials
http://www.gem5.org/dist/tutorials/isca_pres_2011.pdf
http://gem5.org/dist/tutorials/hipeac2012/gem5_hipeac.pdf
http://www.m5sim.org/Ruby
http://research.cs.wisc.edu/gems/
http://lists.cs.wisc.edu/mailman/listinfo/gems-users
http://blog.gmane.org/gmane.comp.emulators.m5.users
http://www.mail-archive.com/gem5-users@gem5.org/
http://www.m5sim.org/Frequently_Asked_Questions
http://qa.gem5.org/
http://www.m5sim.org/Status_Matrix

2

• Refresher

3

4

CMP Cache Organizations
(Private L2 Cache)

3

5

CMP Cache Organizations
(Shared L2 Cache)

6

CMP Cache Coherence

1. Snoop based:
– All caches on the bus snoop the bus to determine if they have

a copy of the block of data that is requested on the bus.
Multiple copies of a data block can be read without any
coherence problems; however, a processor must have
exclusive access (either invalidate or update other copies) to
the bus in order to write.

– Enough for small-scale CMPs with bus interconnection

2. Directory based
– the data being shared is tracked in a common directory that

maintains the coherence between caches. When a cache line
is changed the directory either updates or invalidates the
other caches with that cache line.

– Necessary for many-core CMPs with such interconnection as
mesh

4

7

Multicore vs. Multiprocessor

• GEM5 = M5 + GEMS (i.e., mainly Ruby part of it)

8

5

9

• GEM5
– Supports both functional and timing simulation

– Has two simulation modes: full-system (FS) and syscall
emulation (SE)

– Supports multiple ISAs

» ALPHA: well-developed to support both FS and SE modes

– It models

» Processor Cores + Memory Hierarchy + I/O Systems

– Written by using C++, Python & Swig, and totally open-source

• More things about M5
– http://www.m5sim.org/wiki/index.php/Main_Page

– The most important document:
http://www.m5sim.org/wiki/index.php/Tutorials

GEM5 = M5 + GEMS (i.e., Ruby only)

10

http://www.m5sim.org/wiki/index.php/Main_Page
http://www.m5sim.org/wiki/index.php/Tutorials

6

11

CPU Models Overview

• Supported CPU Models
– AtomicSimpleCPU

– TimingSimpleCPU

– InOrderCPU

– O3CPU

• CPU Model Internals
– Parameters

– Time Buffers

– Key Interfaces

7

Supported CPU Models

• Simple CPUs
– Models Single-Thread 1 CPI Machine

– Two Types: AtomicSimpleCPU and TimingSimpleCPU

– Common Uses:

» Fast, Functional Simulation: 2.9 million and 1.2 million
instructions per second on the “twolf” benchmark

» Warming Up Caches

» Studies that do not require detailed CPU modeling

• Detailed CPUs
– Parameterizable Pipeline Models w/SMT support

– Two Types: InOrderCPU and O3CPU

– “Execute in Execute”, detailed modeling

– Slower than SimpleCPUs: 200K instructions per second on the
“twolf” benchmark

» Models the timing for each pipeline stage

» Forces both timing and execution of simulation to be accurate

» Important for Coherence, I/O, Multiprocessor Studies, etc.

8

9

10

20

11

21

• Read more at:
– http://gem5.org/Configuration_/_Simulation_Scripts

22

Introduction to M5

• M5’s Source Tree Structure

http://gem5.org/Configuration_/_Simulation_Scripts

12

23

Introduction to M5

• CPU Modeled by M5
– SimpleCPU

– TimingCPU

– O3CPU

Overview of M5 with references to
source code

13

Inside Gem5: Memory Model

• General Memory System
– Ports

– Packets

– Requests

– Atomic/Timing/Functional accesses

• Two memory system models
1. Classic

2. Ruby

26

1: Classic Memory System

• Classic Memory Hierarchy
Modeled by M5, the first of the
two memory models supported
by GEM5

• Read more at:
– http://www.m5sim.org/Classic_Memor

y_System

• In classic memory system
coherence is a MOESI
snooping protocol

• You do not need to run
GEM5 with –ruby option in
this case

L1I Cache L1D Cache

Port

Port

Port

Port

L2 Cache

Memory

Port

Port

Bus

http://www.m5sim.org/Classic_Memory_System

14

27

Example of
possible system
hierarchy

2: RUBY memory model

• GEMS includes RUBY, the second of the two memory models
supported by GEM5

• An Overview of GEMS:

Detailed

Processor

Model

OpalSimics

Microbenchmarks

Random

Tester

D
e
te

rm
in

is
ti

c

C
o

n
te

n
d

e
d

 l
o

c
k

s

T
ra

c
e

 f
li

e

15

Ruby Software Structure (within GEMS software framework:
http://research.cs.wisc.edu/gems/tutorial.html as of 2005)

Chip

Directory

Sequencer

Caches

Cache

Controllers

Cache Line

Directory

State

system/DirectoryMemory.hsystem/CacheMemory.h

Directory

Controller

SLICC

system/Sequencer.h

Network

Ports

buffer/MessageBuffer.h

generated/<protocol>/Chip.h SLICC

generated/<protocol>/L1Cache_Controller.h generated/<protocol>/Directory_Controller.h

generated/<protocol>/L2Cache_Controller.h

Ruby

Ruby

generated/<protocol>/L1Cache_Entry.h

generated/<protocol>/Directory_Entry.h

Ruby Memory Model

• Flexible Memory System
– Rich configuration - Just run it

» Simulate combinations of caches, coherence,
interconnect, etc...

– Rapid prototyping - Just create it

» Domain-Specific Language (SLICC) for coherence
protocols

» Modular components

• Detailed statistics
– e.g., Request size/type distribution, state transition

frequencies, etc...

• Detailed component simulation
– Network (fixed/flexible pipeline and simple)

– Caches (Pluggable replacement policies)

– Memory (DDR2)

16

Ruby Memory Model

• Can build many different memory systems
– CMPs, SMPs, SCMPs

– 1/2/3 level caches

– Pt2Pt/Torus/Mesh Topologies

– MESI/MOESI coherence

• Each component is individually configurable
– Build heterogeneous cache architectures (new)

– Adjust cache sizes, bandwidth, link latencies, etc...

17

Ruby Memory Model

• Domain-Specific Language
– Syntatically similar to C/C++

– Like HDLs, constrains operations to be hardware-like (e.g., no
loops)

• Two generation targets
– C++ for simulation

» Coherence controller object

– HTML for documentation

» Table-driven specification (State x Event -> Actions & next
state)

34

• Read more at:
– http://www.m5sim.org/Ruby

http://www.m5sim.org/Ruby

18

35

• Essential Components in Ruby
– (1) Caches & (2) Memory

– (3) Coherence Protocols

• The following cache coherence protocols are supported:
– MI_example: example protocol, 1-level cache.

– MESI_CMP_directory: single chip, 2-level caches, strictly-inclusive
hierarchy.

– MOESI_CMP_directory: multiple chips, 2-level caches, non-
inclusive (neither strictly inclusive nor exclusive) hierarchy.

– MOESI_CMP_token: 2-level caches. TODO.

– MOESI_hammer: single chip, 2-level private caches, strictly-exclusive
hierarchy.

– Network_test: dummy protocol to operate the network tester, 1-level
cache.

Introduction to Ruby

36

Introduction to Ruby

• Essential Components in Ruby
– (4) Interconnection Networks

» Either be automatically generated by default

– Intra-chip network: Single on-chip switch

– Inter-chip network: 4 included

» Or be customized by users

– Defined in *_FILE_SPECIFIED.txt under the directory
“$GEMS_ROOT_DIR/ruby/network/simple/Network_Files
”

http://www.m5sim.org/MI_example
http://www.m5sim.org/MESI_CMP_directory
http://www.m5sim.org/MOESI_CMP_directory
http://www.m5sim.org/MOESI_CMP_token
http://www.m5sim.org/MOESI_hammer
http://www.m5sim.org/Network_test

19

37

38

20

39

40

21

• Read more at:
– http://www.m5sim.org/Coherence-Protocol-Independent_Memory_Components

41

Interconnection Network

• Read more at:
– http://www.m5sim.org/Interconnection_Network

42

http://www.m5sim.org/Coherence-Protocol-Independent_Memory_Components
http://www.m5sim.org/Interconnection_Network

22

43

Network Topologies

44

Topology Parameters

– Link latency

» Auto-generated

• ON_CHIP_LINK_LATENCY

• NETWORK_LINK_LATENCY

» Customized

• ‘link_latency:’

– Link bandwidth

» Auto-generated

• On-chip = 10 x g_endpoint_bandwidth

• Off-chip = g_endpoint_bandwidth

» Customized

• Individual link bandwidth = ‘bw_multiplier:’ x g_endpoint_bandwidth

– Buffer size

» Infinite by default

» Customized network supports finite buffering

• Prevent 2D-mesh network deadlock through e-cube restrictive routing

• ‘link_weight’

– Perfect switch bandwidth

23

45

Run PARSEC 2.1 under FS mode

• PARSEC (from Texas) related:

– Download Parsec benchmarks from here:

» http://www.cs.utexas.edu/~cart/parsec_m5/

– If you generate running scripts .rcS using the
writescripts.pl, you should change the script or
remove from each generated .rcS script the line
containing switchcpu

– Read here for more on those m5ops:

» http://www.m5sim.org/M5ops

• http://www.cs.utexas.edu/~parsec_m5/

• http://www.m5sim.org/PARSEC_benchmarks

http://www.cs.utexas.edu/~cart/parsec_m5/
http://www.m5sim.org/M5ops
http://www.cs.utexas.edu/~parsec_m5/
http://www.m5sim.org/PARSEC_benchmarks

24

Run SPLASH2 under FS mode

• Preparation: put your code into the image

• Run

sudo mount –o loop,offset=32256 linux-latest.img /mnt

sudo mkdir –p /mnt/benchmark/mybench

sudo cp FFT /mnt/benchmark/mybench

sudo umount /mnt

scons build/ALPHA/gem5.opt

./build/ALPHA/gem5.opt configs/example/fs.py

m5term 3456

./FFT -t

Run SPLASH2 under FS mode

• more convenient way?

• Run

vi configs/common/Benchmarks.py

+ ‘fft’: [SysConfig(‘fft.rcS’, ‘512MB’)],

vi configs/boot/ffs.rcS

+ #!/bin/sh

+ cd benchmarks/mybench

+ echo “Running FFT now…”

+ ./FFT –t –p1

+ /sbin/m5 exit

scons build/ALPHA/gem5.opt

./build/ALPHA/gem5.opt configs/example/fs.py –n 1 –b fft

cat m5out/system.terminal

25

Do not forget…

• If you use Ruby (Caches and Garnet networks-
on-chip such as Mesh or Crossbar) models you
must work with ALPHA and X86; because only
those are supported now?

• If you use Ruby memory model (especially if
utilized with any of the Garnet networks), it is
slower than the Classic memory model supported
by GEM5

1. Classic: http://www.m5sim.org/Classic_Memory_System

2. Ruby: http://www.m5sim.org/Ruby

• To read about interconnects and their .py scripts:
– http://www.m5sim.org/Interconnection_Network

49

Do not forget…

• Mesh network:
– This topology requires the number of directories to be equal to the

number of CPUs.

– It can be invoked from command line by --topology=Mesh.

– The number of routers/switches is equal to the number of CPUs in
the system.

– The number of rows in the mesh has to be specified by --mesh-rows.

– Each router/switch is connected to one L1, one L2 (if present), and
one Directory.

50

http://www.m5sim.org/Classic_Memory_System
http://www.m5sim.org/Ruby
http://www.m5sim.org/Interconnection_Network

26

Do not forget…

• How many CPUs can M5 run?

• There is no inherent limit in M5 (other than simulation speed). In SE
mode there are no obstacles to simulating as many CPUs as you
want. However, in FS mode, the real-world Alpha platform we model
(Tsunami) only supports up to 4 processors. To get around this limit,
we defined and implemented a variant of the Tsunami platform (which
we call BigTsunami) that can take up to 64 processors. Note that
BigTsunami does not correspond to any real system. BigTsunami
support is included in the standard M5 Alpha build, but booting with
more than 4 CPUs requires modifications to the PAL code and
kernel as well. Take a look at the Download page for our Linux
patches and modified PAL code. Note that even with the BigTsunami
changes, simulating 64 processors will be quite slow, and the Linux
scheduler doesn't seem particularly good at scheduling a large
number of processors.

• Prebuilt kernel and PAL binaries can be found at:
http://www.cs.utexas.edu/~cart/parsec_m5/

51

http://www.cs.utexas.edu/~cart/parsec_m5/

