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Lecture 9
Introduction to 

Graphics Processing Units (GPUs)
(Ch.4)

Cristinel Ababei
Dept. of Electrical and Computer Engineering

COEN-4730/EECE-5730 Computer Architecture

1Credits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier

Flynn’s Classification (1966)
Broad classification of parallel computing systems

• SISD: Single Instruction, Single Data
 conventional uniprocessor

• SIMD: Single Instruction, Multiple Data
 one instruction stream, multiple data paths

 distributed memory SIMD 

 shared memory SIMD 

• MIMD: Multiple Instruction, Multiple Data
 conventional multiprocessors

 message passing machines 

 non-cache-coherent shared memory machines 

 cache-coherent shared memory machines 

• MISD: Multiple Instruction, Single Data
 Not a practical configuration
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Types of Parallelism
•Instruction-Level Parallelism (ILP)

 Execute independent instructions from one instruction stream in parallel 
(pipelining, superscalar, VLIW)

•Thread-Level Parallelism (TLP)
 Execute independent instruction streams in parallel (multithreading, multiple 

cores)

•Data-Level Parallelism (DLP)
 Execute multiple operations of the same type in parallel (vector/SIMD execution)

•Which is easiest to program?
•Which is most flexible form of parallelism?

 i.e., can be used in more situations

•Which is most efficient?
 i.e., greatest tasks/second/area, lowest energy/task

Resurgence of DLP
•Convergence of application demands and technology 

constraints drives architecture choice
•New applications, such as graphics, machine vision, 

speech recognition, machine learning, etc. - all require 
large numerical computations that are often trivially data 
parallel
•SIMD-based architectures (vector-SIMD, subword-SIMD, 

SIMT/GPUs) are most efficient way to execute these 
algorithms
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a

SIMD

•Single Instruction Multiple Data (SIMD) architectures make 
use of data parallelism

•We care about SIMD because of area and power efficiency 
concerns
 Amortize control overhead over SIMD width

•Parallelism exposed to programmer & compiler
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Graphics Processing Units (GPUs)
•Original GPUs were dedicated fixed-function devices for 

generating 3D graphics (mid-late 1990s) including high-
performance floating-point units
 Provide workstation-like graphics for PCs
 Programmability was an afterthought 

•Over time, more programmability added (2001-2005)
 E.g., New language Cg (“C for graphics” from Nvidia) for writing 

small programs run on each vertex or each pixel, also Windows 
DirectX variants

Massively parallel (millions of vertices or pixels per frame) but 
very constrained programming model
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Historical PC vs. Contemporary: Intel, AMD 

A Shift in the GPU Landscape
•Some users noticed they could do general-purpose 

computation by mapping input and output data to 
images, and computation to vertex and pixel shading 
computations

•Referred to as general-purpose computing on graphics 
processing units (GP-GPU)

•Incredibly difficult programming model – it had to use 
graphics pipeline model for general computation
 A programming revolution was needed!
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General-Purpose GPUs (GP-GPUs)
• In 2006, Nvidia introduced GeForce 8800 GPU supporting a new programming 

language: 
 CUDA “Compute Unified Device Architecture”
 Subsequently, broader industry pushing for OpenCL, a vendor-neutral version of same 

ideas.

• Idea: Take advantage of GPU computational performance and memory bandwidth 
to accelerate some kernels for general-purpose computing

• Attached processor model: host CPU issues data-parallel kernels to GP-GPU for 
execution

Basic Unified GPU Architecture

Example GPU with 112 streaming processor (SP) cores organized in 14 streaming multiprocessors (SMs); the cores are highly 

multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The processors connect with four 64-bit-wide DRAM 

partitions via an interconnection network. Each SM has eight SP cores, two special function units (SFUs), instruction and constant caches, 

a multithreaded instruction unit, and a shared memory. 

Multithreaded 
SIMD processor
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CUDA Revolution!
• CUDA Community Showcase

 http://www.nvidia.com/object/gpu-applications.html 
 Computational fluid dynamics, EDA, finance, life sciences, signal processing, …
 Speed-up’s of >300x for some applications

• GPU Technology Conference
 http://www.gputechconf.com/page/home.html
 Include archive of previous editions

• Download CUDA
 https://developer.nvidia.com/cuda-downloads
 And start using it!

• NVIDIA YouTube Videos:
 https://www.youtube.com/user/nvidia/videos 

• Many universities have already courses dedicated to teaching and using CUDA for 
research

CUDA Programming Model
• GPU is viewed as a compute device that:

– Is a coprocessor to the host CPU

– Has its own DRAM (device memory)

– Runs many threads in parallel

» Hardware switching between threads (in 1 cycle) on long-latency memory reference

» Overprovision (1000’s of threads) → hide latencies

• Data-parallel portions of an application are executed on the device as 
Kernels which run in parallel on many threads

• Differences between GPU and CPU threads 
– GPU threads are extremely lightweight

» Very little creation overhead

– GPU needs 1000’s of threads for full efficiency

» Multi-core CPU needs only a few
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// Allocate input

 malloc(input, ...);

 cudaMalloc(d_input, ...);

 cudaMemcpy(d_input, input, ..., HostToDevice); // Copy to device memory

 // Allocate output

 malloc(output, ...);

 cudaMalloc(d_output, ...);

 // Launch GPU kernel

 gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);

 // Synchronize

 cudaDeviceSynchronize();

 // Copy output to host memory

 cudaMemcpy(output, d_output, ..., DeviceToHost);

Basic Steps
• Device allocation, CPU-GPU transfer, and GPU-CPU transfer

– cudaMalloc();

– cudaMemcpy();

Example 1: Vector Addition kernel
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Example 2: Changing an Array

•The code has been divided into two files:
• simple.c
• simple.cu

• simple.c is ordinary code in C
• It allocates an array of integers, initializes it to values 

corresponding to the indices in the array and prints the 
array
• It calls a function that modifies the array
•The array is printed again

#include <stdio.h>

#define SIZEOFARRAY 64 
extern void fillArray(int *a, int size);

/* The main program */
int main(int argc, char *argv[])
{
  /* Declare the array that will be modified by the GPU */
  int a[SIZEOFARRAY];
  int i;
  /* Initialize the array */
  for(i=0; i < SIZEOFARRAY; i++) {
    a[i]=i;
  }
  /* Print the initial array */
  printf("Initial state of the array:\n");
  for(i = 0; i < SIZEOFARRAY; i++) {
    printf("%d ",a[i]);
  }
  printf("\n");

  /* Call the function that will in turn call the function in

     the GPU that will fill the array */
  fillArray(a,SIZEOFARRAY);

  /* Now print the array after calling fillArray */
  printf("Final state of the array:\n");
  for(i = 0; i < SIZEOFARRAY; i++) {
    printf("%d ",a[i]);
  }
  printf("\n");
  return 0;
}

simple.c
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simple.cu

•simple.cu contains two functions
1. fillArray(): A function that will be executed on the 
host and which takes care of:

• Allocating variables in the global GPU memory
• Copying the array from the host to the GPU memory
• Setting the grid and block sizes
• Invoking the kernel that is executed on the GPU
• Copying the values back to the host memory
• Freeing the GPU memory

fillArray
(part 1)

#define BLOCK_SIZE 32

extern "C" void fillArray(int *array, int arraySize) 

{

 /* array_d is the GPU counterpart of the array that

     exists on the host memory */

 int *array_d;

 cudaError_t result; 

 /* allocate memory on device */

 /* cudaMalloc allocates space in memory of GPU card */

 result = cudaMalloc((void**)&array_d, sizeof(int)*arraySize);

 /* copy array into the variable array_d in the device */

 /* The memory from the host is being copied 

     to corresponding variable in the GPU global memory */

 result = cudaMemcpy(array_d,array, sizeof(int)*arraySize,

           cudaMemcpyHostToDevice); 
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/* execution configuration... */

 /* Indicate the dimension of the block */

 dim3 dimblock(BLOCK_SIZE);

 /* Indicate the dimension of the grid in blocks */

 dim3 dimgrid(arraySize/BLOCK_SIZE);

 /* actual computation: Call the kernel, the 

     function that is executed by each and every

     processing element on the GPU card */

 cu_fillArray<<<dimgrid, dimblock>>>(array_d);

 /* read results back: */

 /* Copy results from GPU back to memory on the host */

 result = cudaMemcpy(array, array_d, sizeof(int)*arraySize,  

           cudaMemcpyDeviceToHost);

 /* Release the memory on the GPU card */

 cudaFree(array_d);

}

fillArray
(part 2)

simple.cu (cont.)

•The other function in simple.cu is
2. cu_fillArray():

• This is the kernel that will be executed in every Stream 
Processor (SP) in the GPU

• It is identified as a kernel by the use of the keyword: 
__global__

• This function uses the built-in variables
• blockIdx.x
• threadIdx.x

   to identify a particular position in the array
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cu_fillArray
__global__ void cu_fillArray(int *array_d) 

{

  int x;

 /* blockIdx.x is a built-in variable in CUDA

     that returns the blockId in the x axis

     of the block that is executing this block of code

     threadIdx.x is another built-in variable in CUDA

     that returns the threadId in the x axis

     of the thread that is being executed by this

     stream processor in this particular block

  */

 x = blockIdx.x*BLOCK_SIZE + threadIdx.x;

 array_d[x] += array_d[x];

}

>  nvcc  simple.c  simple.cu  -o simple

• CPU code is compiled by the host C compiler and the GPU code 
(kernel) is compiled by the CUDA compiler

• Separate binaries are produced

CUDA Compilation
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OpenCL – Open Compute Language 
• CUDA alternative

• Developed by Khronos 
 Industry Consortium that includes: AMD, ARM, Intel, and NVIDIA 

• Designed as an open standard for cross-platform parallel programming 

• Allows for more general programming across multiple GPUs/CPUs 

• Not as popular as CUDA, at least initially…

Quick Guide 
to GPU Terms

A major obstacle to 

understanding GPUs 

has been the jargon, 

with some terms even 

having misleading 

names. This obstacle 

has been surprisingly 

difficult to overcome.
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Programmer’s View of Execution

Create enough blocks to 

cover input vector

(NVIDIA calls this set of 

blocks a Grid, can be 2-

dimensional)

Conditional 
(i<n) turns off 

unused threads 

in last Block

blockDim = 512 

(programmer 

can choose)

Warp

CUDA Thread

Thread Block

Thread Batching: Grids and Blocks
• Kernel executed as a grid of thread blocks

– All threads share data memory space

• Thread Block is a batch of threads, can 
cooperate with each other by:

– Synchronizing their execution:
For hazard-free shared memory 
accesses

– Efficiently sharing data through a low 
latency shared memory

• Two threads from two different blocks 
cannot cooperate

– (Unless thru slow global memory)

• Threads and Blocks have IDs

Host

Kern

el 1

Kern

el 2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)
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Execution Model
Multiple levels of parallelism

• Thread Block
– Max. 1024 threads/block 

– Communication through shared memory 
(fast)

– Thread guaranteed to be resident

– threadIdx, blockIdx

• Grid of thread blocks
– F<<<nblocks, nthreads>>>(a, b, c)

GPU

Hardware Execution Model

•GPU is built from multiple parallel Cores
 Each core contains a Multithreaded SIMD Processor with multiple lanes but with 

no scalar processor

•CPU sends whole “Grid” (i.e., vectorizable loop) over to GPU, 
which distributes thread blocks among cores (each thread block 
executes on one Core)
 Programmer unaware of number of cores

Core 0

Lane 0 

Lane 1

Lane 15

Core 1

Lane 0 

Lane 1

Lane 15

Core 15

Lane 0 

Lane 1

Lane 15

GPU Memory

CPU

CPU Memory

Multithreaded 
SIMD 

Processor
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Simplified Diagram of Multithreaded SIMD Processor

CUDA Thread Scheduling

•GPU hardware has two levels of 
hardware schedulers: 

1) Thread Block Scheduler (top level) that assigns 
Thread Blocks to multithreaded SIMD 
processors, which ensures that thread blocks are 
assigned to the processors whose local 
memories have corresponding data

2) SIMD Thread Scheduler (lower level) (warp 
scheduler) within a SIMD Processor, which 
schedules when threads of SIMD instructions 
should run
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“Single Instruction Multiple Thread”
•GPUs use a SIMT model, where individual scalar instruction streams 

for each CUDA thread are grouped together for SIMD execution on 
hardware (NVIDIA groups 32 CUDA threads into a Warp)

µT0 µT1 µT2 µT3 µT4 µT5 … µT31

ld x
mul a
ld y
add
st y

Scalar 

instruction 

stream

SIMD execution 

across Warp

“CUDA Threads”

GPU Memory Hierarchy
• (1)

• (3)

• (4)

• (2)Thread

Per-thread
Local Memory

Block

Per-block
Shared
Memory

Kernel 0

. . 

. Per-device
Global

Memory

. . .

Kernel 1

Sequential

Kernels

Device 0
memory

Device 1
memory

Host memory cudaMemcpy()
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CUDA Device Memory Space Overview

• Each Thread can:

– R/W per-thread registers

– R/W per-thread local memory

– R/W per-block shared memory

– R/W per-grid global memory

– Read only per-grid constant memory

– Read only per-grid texture memory

• Host can R/W global, constant, and texture 
memories

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host

Global, Constant, and Texture Memories (Long 
Latency Accesses)

• Global memory
– Main means of communicating 

R/W Data between host and device

– Contents visible to all threads

• Texture and Constant 
Memories
– Constants initialized by host 

– Contents visible to all threads
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Example: Tesla Architecture

⚫ Used for Technical and Scientific Computing

⚫ L1/L2 Data Cache

— Allows for caching of global and local data

— Same on-chip memory used for Shared and L1

— Configurable at kernel invocation

Example: 
Nvidia Tesla K20

https://www.nvidia.com/content/PDF/kepler/te
sla-k20-active-bd-06499-001-v03.pdf
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Evolution of NVIDIA GPUs
Single GPU performance scaling

Source: W. J. Dally, S. W. Keckler and D. B. Kirk, "Evolution of the Graphics Processing 
Unit (GPU)," IEEE Micro, vol. 41, no. 6, pp. 42-51, 1 Nov.-Dec. 2021, doi: 
10.1109/MM.2021.3113475.

CPU vs. GPU

• GPU
– More transistors devoted to computation, instead of caching or flow control

– Suitable for data-intensive computation

» High arithmetic/memory operation ratio

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU
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CPU vs. GPU memory hierarchies

Entire system view: CPU + discrete GPU
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Unified Memory 
• Unified Virtual Address

• Since CUDA 6.0: Unified Memory

• Since CUDA 8.0 + Pascal: GPU page faults

More information:

https://developer.nvidia.com/blog/unified-memory-in-cuda-6/ 

https://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf 

https://www.olcf.ornl.gov/wp-content/uploads/2019/06/06_Managed_Memory.pdf 

// Allocate input

 malloc(input, ...);

 cudaMallocManaged(d_input, ...);

 memcpy(d_input, input, ...); // Copy to managed memory

 // Allocate output

 cudaMallocManaged(d_output, ...);

 // Launch GPU kernel

 gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);

 // Synchronize

 cudaDeviceSynchronize();

Unified Memory 
• Simpler Programming and Memory Model

• Performance Through Data Locality
– cudaMallocManaged();
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• Case studies using CPU and GPU

• Kernel launches are asynchronous
 CPU can work while waits for GPU to finish

 Traditionally, this is the most efficient way to exploit 
heterogeneity

• Fine-grain heterogeneity becomes possible with 
Pascal/Volta architecture

• Pascal/Volta Unified Memory
 CPU-GPU memory coherence

 System-wide atomic operations

• Benefits of Collaboration - Example: Bézier Surfaces
 [1] J. Gomez-Luna et. al, Chai: Collaborative Heterogeneous 

Applications for Integrated-architectures, ISPASS 2017. 

 Data partitioning improves performance

• AMD Kaveri (4 CPU cores + 8 GPU CUs)

Collaborative Computing Algorithms

GPUs for Mobile Clients and Servers
Goal is for the graphics quality of a movie such as Avatar to be achieved in 
real time on a server GPU in 2015 and on your mobile GPU in 2020
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Comparison of a GPU and a MIMD with Multimedia SIMD
Purpose is not to determine how much faster one product is than another, but to 
try to understand the relative value of features of these two contrasting 
architecture styles

Relative Performance
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Reasons for Differences from Intel
•GPU has 4.4× the memory bandwidth

 Explains why LBM and SAXPY run 5.0 and 5.3× faster; their working sets are hundreds of 
megabytes and hence don’t fit into the Core i7 cache

•Five of the remaining Kernels are compute-bound:
 SGEMM, Conv, FFT, MC, and Bilat
 GTX 280 single precision is 3 to 6× faster; DP performance is only 1.5× faster; has direct support 

for transcendental functions lacking in i7

•Cache blocking optimizations benefit i7
 Convert RC, Search, Sort, SGEMM, FFT, and SpMV from memory-bound to compute-bound

•Multimedia SIMD extensions are of little help if the data are 
scattered throughout main memory
 Reinforces the importance of gather-scatter to vector and GPU architectures that is missing 

from SIMD extensions

Conclusion 
•GPU: A type of Vector Processor originally optimized for graphics 

processing
 Has become general purpose (hence GPGPU) with introduction of CUDA
 “CUDA Threads” grouped into “Warps” automatically (32 threads)
 “Thread Blocks” (with up to 512 CUDA Threads) dynamically assigned to processors 

(since number of processors/system varies)

•High-end desktops have separate GPU chip, but trend towards 
integrating GPU on same die as CPU
 Advantage is shared memory with CPU, no need to transfer data
 Disadvantage is reduced memory bandwidth compared to dedicated smaller-capacity 

specialized memory system
• Graphics DRAM (GDDR) versus regular DRAM (DDR3)

•Unified Memory
 Collaborative computing
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