COEN-4730/EECE-5730 Computer Architecture

Lecture 9
Introduction to

Graphics Processing Units (GPUs)
(Ch.4)

Cristinel Ababei
Dept. of Electrical and Computer Engineering

pﬁrﬂ MARQUETTE
liFM UNIVERSITY

BE THE DIFFERENCE.

Credits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier

Flynn’s Classification (1966)

Broad classification of parallel computing systems
e SISD: Single Instruction, Single Data

o

conventional uniprocessor

e SIMD: Single Instruction, Multiple Data
° one instruction stream, multiple data paths
° distributed memory SIMD

o

shared memory SIMD
e MIMD: Multiple Instruction, Multiple Data

o

conventional multiprocessors
° message passing machines
° non-cache-coherent shared memory machines

o

cache-coherent shared memory machines

e MISD: Multiple Instruction, Single Data

° Not a practical configuration

Types of Parallelism

eInstruction-Level Parallelism (ILP)

° Execute independent instructions from one instruction stream in parallel
(pipelining, superscalar, VLIW)

eThread-Level Parallelism (TLP)

© Execu)te independent instruction streams in parallel (multithreading, multiple
cores

e Data-Level Parallelism (DLP)
° Execute multiple operations of the same type in parallel (vector/SIMD execution)

eWhich is easiest to program?

eWhich is most flexible form of parallelism?
° j.e., can be used in more situations

e\Which is most efficient?
° i.e., greatest tasks/second/area, lowest energy/task

Resurgence of DLP

eConvergence of application demands and technology
constraints drives architecture choice

eNew applications, such as graphics, machine vision,
speech recognition, machine learning, etc. - all require
large numerical computations that are often trivially data
parallel

eS|MD-based architectures (vector-SIMD, subword-SIMD,
SIMT/GPUs) are most efficient way to execute these
algorithms

SIMD

[] [e]
width=2

eSingle Instruction Multiple Data (SIMD) architectures make
use of data parallelism

e \We care about SIMD because of area and power efficiency
concerns
° Amortize control overhead over SIMD width

eParallelism exposed to programmer & compiler

Graphics Processing Units (GPUs)

eOriginal GPUs were dedicated fixed-function devices for
generating 3D graphics (mid-late 1990s) including high-
performance floating-point units
° Provide workstation-like graphics for PCs
° Programmability was an afterthought

eQOver time, more programmability added (2001-2005)
°E.g., New language Cg (“C for graphics” from Nvidia) for writing
small programs run on each vertex or each pixel, also Windows
DirectX variants
° Massively parallel (millions of vertices or pixels per frame) but
very constrained programming model

Historical PC vs. Contemporary: Intel, AMD

Intel
CPU

x16 PCI-Express Link i Fentskenas
CPU

North DDR2
display Bridge Memory
t Front Side Bus x4 PCI-Express Link 1 |za-m:
i 667 MT/s
North g South
| Memo x
Bridge Memory Y Bridge
(a)
PCI Bus
AMD
CPU cPU
South Framebuffer s
i 128-bit
Bridge Memory internal bus t o8
t t North DDR2
VGA Bridge Memory
LAN UART _‘Q Display

x16 PCI-Express Link } HyperT

Chipset
display

GPU
Memory

ransport 1.03

(b)

A Shift in the GPU Landscape

eSome users noticed they could do general-purpose

computation by mapping input and output data to

images, and computation to vertex and pixel shading
computations

eReferred to as general-purpose computing on graphics
processing units (GP-GPU)

eIncredibly difficult programming model — it had to use

graphics pipeline model for general computation
° A programming revolution was needed!

General-Purpose GPUs (GP-GPUs)

¢ In 2006, Nvidia introduced GeForce 8800 GPU supporting a new programming
language:
° CUDA “Compute Unified Device Architecture”
© Sdubsequently, broader industry pushing for OpenCL, a vendor-neutral version of same
ideas.

e Idea: Take advantage of GPU computational performance and memory bandwidth
to accelerate some kernels for general-purpose computing

e Attached processor model: host CPU issues data-parallel kernels to GP-GPU for
execution

Basic Unified GPU Architecture

i Me
[Hosicru_ eioe | Multithreaded

GPU SIMD processor
Host Interface I I]
| Viewport/Clip/ | P SM
Setup/Raster/ 7
Input Assembler ZCull y
I T ’
| s | | msme | || G | —
I — i =i e
TPC TPC TPC TPC TPC TPC TEC 2 |I
Z ’
=dn |
SM sM_|[s SM SM
[— I:‘ —
== = | [HHN
- ﬁ‘ I i - I
66T || B9 i | \ S8 e -.
58 || S e | EHsH || EEEE e
B =S 88 o EEE
o o o o OO0
=1 =l
e S = I .
S I SR SO A R ER— I EE—) E—
Interconnection Network | p—)\ Shared
*D}j *D}Zl *D}Zl —E}j— -
m Dnsplay Interface

DHAM || oram || oram || DFIAM | Dlsplay

Example GPU with 112 streaming processor (SP) cores organized in 14 streaming multiprocessors (SMs); the cores are highly
multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The processors connect with four 64-bit-wide DRAM
partitions via an interconnection network. Each SM has eight SP cores, two special function units (SFUs), instruction and constant caches,
a multithreaded instruction unit, and a shared memory.

10

CUDA Revolution!

e CUDA Community Showcase
° http://www.nvidia.com/object/gpu-applications.html
° Computational fluid dynamics, EDA, finance, life sciences, signal processing, ...
° Speed-up’s of >300x for some applications

e GPU Technology Conference
° http://www.gputechconf.com/page/home.html
° Include archive of previous editions

e Download CUDA
° https://developer.nvidia.com/cuda-downloads
° And start using it!

e NVIDIA YouTube Videos:

° https://www.youtube.com/user/nvidia/videos

e Many universities have already courses dedicated to teaching and using CUDA for
research

11

CUDA Programming Model

e GPU is viewed as a compute device that:

— Is acoprocessor to the host CPU

— Has its own DRAM (device memory)

— Runs many threads in parallel
» Hardware switching between threads (in 1 cycle) on long-latency memory reference
» Overprovision (1000’s of threads) = hide latencies

Kernels which run in parallel on many threads
e Differences between GPU and CPU threads

— GPU threads are extremely lightweight
» Very little creation overhead

— GPU needs 1000’s of threads for full efficiency
» Multi-core CPU needs only a few

e Data-parallel portions of an application are executed on the device as

12

http://www.nvidia.com/object/gpu-applications.html
http://www.gputechconf.com/page/home.html
https://developer.nvidia.com/cuda-downloads
https://www.youtube.com/user/nvidia/videos

Basic Steps

¢ Device allocation, CPU-GPU transfer, and GPU-CPU transfer
- cudaMalloc() ;
- cudaMemcpy () ;

malloc (input, ...);

cudaMalloc(d_input, ...);

cudaMemcpy (d_input, input, ..., HostToDevice);

malloc (output, ...);

cudaMalloc(d_output, ...);

gpu_kernel<<<blocks, threads>>> (d _output, d input, ...);

cudaDeviceSynchronize () ;

cudaMemcpy (output, d output, ..., DeviceToHost) ;

13

Example 1: Vector Addition kernel

// Compute vector sum C = A+B Device Code

// Each thread performs one pair-wise addition

__global_ void vecAdd(float* A, float* B, float* C)

{

int i |= threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[i];

Host Code
int main()
{
// Run N/256 blocks of 256 threads each

vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

14

Example 2: Changing an Array

* The code has been divided into two files:
* simple.c
* simple.cu

*simple.cis ordinary code in C

* It allocates an array of integers, initializes it to values
corresponding to the indices in the array and prints the
array

* It calls a function that modifies the array
*The array is printed again

15

#include <stdio.h>

#define SIZEOFARRAY 64 H
extern void fillArray(int *a, int size); Slmple.c

/* The main program */
int main(int argc, char *argv|[])

/* Declare the array that will be modified by the GPU */
int a[SIZEOFARRAY];
int i;
/* Initialize the array */
for (i=0; i < SIZEOFARRAY; i++) {
a[1]—1

/* Print the initial array */

printf("Initial state of the arra \n") ;

for(i = 0; i < SIZEOFARRAY; i++) ¥
printf("%d ",a[i]);

printf ("\n") ;

/* Call the function that will in turn call the function in

the GPU that will fill the array */
fillArray (a, SIZEOFARRAY) ;

/* Now print the array after calllng flllArray */
printf ("Final state of the arra
for(i = 0; i < SIZEOFARRAY; 1++¥ {

printf("%d ",a[i]);

prlntf("\n") ;
return 0;

16

simple.cu

*simple.cu contains two functions

A function that will be executed on the
and which takes care of:
* Allocating variables in the global GPU memory
* Copying the array from the host to the GPU memory
* Setting the grid and block sizes
* Invoking the kernel that is executed on the GPU
* Copying the values back to the host memory
* Freeing the GPU memory

17

. #define BLOCK SIZE 32
fillArray

extern "C" void fillArray(int *array, int arraySize)
(part 1)

/* array d is the GPU counterpart of the array that
exists on the host memory */
int *array d;

cudaError_t result;

/* allocate memory on device */
/* cudaMalloc allocates space in memory of GPU card */

result = cudaMalloc((void**) &array d, sizeof (int)*arraySize);

/* copy array into the variable array d in the device */
/* The memory from the host is being copied

to corresponding variable in the GPU global memory */
result = cudaMemcpy (array d,array, sizeof(int)*arraySize,

cudaMemcpyHostToDevice) ;

18

/*

fillArray /-
(part 2)

/*

execution configuration... */
Indicate the dimension of the block */

dim3 dimblock (BLOCK_SIZE) ;

Indicate the dimension of the grid in blocks */

dim3 dimgrid(arraySize/BLOCK SIZE) ;

/*

cu

/*
/*

actual computation: Call the kernel, the
function that is executed by each and every
processing element on the GPU card */

_fillArray<<<dimgrid, dimblock>>>(array d);

read results back: */
Copy results from GPU back to memory on the host */

result = cudaMemcpy (array, array d, sizeof (int)*arraySize,

/*

cudaMemcpyDeviceToHost) ;

Release the memory on the GPU card */

cudaFree (array d);

19
simple.cu (cont.)
*The other function in simple.cu is
2.
* This is the kernel that will be executed in every Stream
Processor (SP) in the
* It is identified as a kernel by the use of the keyword:
__global
* This function uses the built-in variables
* blockldx.x
* threadldx.x
to identify a particular position in the array
20

10

. __global _ void cu_fillArray(int *array d)
cu_fillArray |

int x;

/* blockIdx.x is a built-in variable in CUDA
that returns the blockId in the x axis
of the block that is executing this block of code
threadIdx.x is another built-in variable in CUDA
that returns the threadId in the x axis
of the thread that is being executed by this
stream processor in this particular block

*/

x = blockIdx.x*BLOCK_SIZE + threadIdx.x;
array d[x] += array d[x];

}

21

CUDA Compilation

e CPU code is compiled by the host C compiler and the GPU code
(kernel) is compiled by the CUDA compiler

e Separate binaries are produced

7T N
\
void serial_function(..) {
S C CUDA Rest of C
void other_function(int ...) { Key Kernels App"catlon
e / v L2
}

&= R : ' Nvce CPU Compiler
. } :

Write Parallel

Eh. A JEclUDA%ods CUDA object M CPU object
void main() { files Linker files

float x;
saxpy._serial(..); l

) U-GPU
Executable

22

OpenCL — Open Compute Language

CUDA alternative
Developed by Khronos

Industry Consortium that includes: AMD, ARM, Intel, and NVIDIA

Designed as an open standard for cross-platform parallel programming
Allows for more general programming across multiple GPUs/CPUs

e Not as popular as CUDA, at least initially...
T e T
Programming Language C C/C++
Supported GPUs AMD, NVIDIA NVIDIA
Supported CPUs AMD, Intel, ARM None
Method of Creating GPU Work Kernel Kernel
Run-time compilation of kernels Yes No
Multiple Kernel Execution Yes (in certain hardware) Yes (in certain hardware)
Execution Across Multiple Components Yes Yes — only GPUs
Need to Optimize for Best Performance High High
Coding Complexity High Medium
More descrip- Closestoldterm Official CUDA/
Type tive name outside of GPUs ~ NVIDIA GPUterm Book definition
L e Vectorizable Vectorizable Loop Grid A vertorizable loop, executed on the GPU, made
u I c u I e " Loop up of one or more Thread Blocks (bodies of
H vectorized loop) that can execute in parallel.
k-]
1 Body of Body of a Thread Block A vectorized loop executed on a multithreaded
= Vectorized Loop (Strip-Mined) SIMD Processor, made up of one or more threads
-E Vectorized Loop of SIMDinstructions. They can communicate via
0 erms | et
E. Sequence of ‘Ome iteration of CUDA Thread A vertical cut of a thread of SIMD instructions
& SIMD Lane a Scalar Loop comesponding to one clement executed by one
DOiperations SIMD Lane. Result is stored depending on mask
and predicate registcr.
i+ A Thread of Thread of Vector ~ Warp A traditional thread, but it contains just SIMD
H = SIMD Instructions instructions that are executed on a multithreaded
A I I I aJ 0 r 0 bstac I e to Instructions SIMD Processor. Results stored depending on a
- per-clement mask.
u n d e rstan d i n G P U S 5 SIMD Vector Instruction PTX Instruction A single SIMDinstruction executed across SIMD
9 L -
. (Multi A multithreaded SIMD Processor executes
h as bee n th e J arg on SIMD IVecwr Pmmsurl Multiprocessor threads of SIMD instuctions, independent of
! L Processar | ‘ other SIMD Processars.
Wlth Some terms even Scalar Processor 188 Assigns multiple Thread Blocks (bodies of
E Scheduler Engine vectorized loop) to multithreaded SIMD
. . . Processors.
haVl ng n ||S|ead | ng ? SIMDThrad Thread scheduler Warp unit that and issues threads
° Scheduler ina Multithreaded of SIMD instructions when they are ready to
H CPU execute; includes a scarcboard to rack SIMD
names. This obstacle _ Thrsd oo
- SIMD Lane Vector Lane Thread Processor A SIMD Lane executes the operations in a thread
has been Sur rISIn I of SIMD instructions on a single cl Result
p g y stored depending om mask.
d 'ff' I GPU Memory Main Memory Global Memory DRAM memory accessible by all multithreaded
I ICu t to OverC0| I Ie- g SIMD Processors in a GPU.
E Private Stack or Thread Local Memory Particn of DRAM memory private to each SIMD
T Memony Local Storage (OS) Lanc.
=
Local Memory Local Memory Shared Memory Fast local SR-\M for one multithreaded SIMD
E Processor, to other STMD
i SIMD Lane Vector Lane Thread Processor Registers in a single SIMD Lane allocated across
Registers Registers Registers a full thread block (body of vectarized loop).

12

Programmer’s View of Execution

—

AL 0]-=
sMp [AL 1]=

[Thread

1
1

Al 3l J=8[3

Al a2]=8[32

siMp | AL 33]=8B[33

Threag |

Create enough blocks to S
Block Al 63]-8[&

cover input vector o ST

AL 1[4

4m]

A[4801 -8 [480

480

SIMD [3[2817 -

[Thread1 AL
5

481

(NVIDIA calls this set of P

B[il

511

— blockDim =512
(programmer
can choose)

blocks a Grid, can be 2- < szl

Grid

dimensional) A 769] - B 7679

512

7679

7620

T simp | AL 7661] = B [7661

7681

[Threadn

A[7680] = B [7660
Thread Block =

A[7711] =B [7711

*C

7711

Al 7712] =B [7712

*C

71z

e v | AL 7713] = B [7713

*C

7713

Warp =T |

Threaa |

Block n[77‘43] e [n-;u 1 :c[743]

15 AL 774%] =B (7788] * C[7784]

n[31-59] e [51-.59 1 ::[o150]

CUDA Thread Al e1w] =6 [eio0 1+ cl a1o0]

[Threadl
5

SIMD ["a @161] = B 8161 | * C[8161]

n[31-91] e [51"91 1 :c[aan]

Conditional
(i<n) turns off
unused threads

in last Block

25

Thread Batching: Grids and Blocks

Kernel executed as a grid of thread blocks
— All threads share data memory space

Thread Block is a batch of threads, can
cooperate with each other by:

— Synchronizing their execution:
For hazard-free shared memory
accesses

— Efficiently sharing data through a low
latency shared memory

Two threads from two different blocks
cannot cooperate

— (Unless thru slow global memory)
Threads and Blocks have IDs

Host Device
Grid 1
Kern » | Block Block Block
&a ©.0 || 1o || @0
Block-” ' Block " Block
(0,.1) 1,1 (2,1)
/7 Grid?2 0
Kern > |/
el2 7 K '

Block (1, 1)

I[ﬁ [ﬁ [ﬁ"—j‘

|

26

13

e Thread Block

(fast)

— threadldx, blockldx

Multiple levels of parallelism

— Max. 1024 threads/block
— Communication through shared memory

— Thread guaranteed to be resident

¢ Grid of thread blocks

— F<<<nblocks, nthreads>>>(a, b, c)

Execution Model e

g ldentified by threadldx

Thread Block
Identified by blockldx

Grid of Thread Blocks

Result data array

27

CPU

Execution Model

$

CPU Memory

° Each core contains a
no scalar processor

executes on one Core)

Lane 0 Lane 0 Lane 0
Lane 1 Lane 1 Lane 1

1 1 1 1 1 1
Lane 15 | | Lane 15 |
Core 0 Corel | ______. Core 15

GPU [
$
GPU Memory

eGPU is built from multiple parallel Cores

with multiple lanes but with

e CPU sends whole “Grid” (i.e., vectorizable loop) over to GPU,
which distributes thread blocks among cores (each thread block

° Programmer unaware of number of cores

28

14

Simplified Diagram of Multithreaded SIMD Processor

Warp scheduler Scoreboard
. Warp No. | Address | SIMD instructions Operands?
Instruction | 1 42 Id.global 164 Ready
cache 1 43 mulf64 No
3 95 shl.s32 Ready
3 96 add.s32 No
8 i1 Id.global f64 Ready
8 12 Id.global f64 Ready
T T
Instruction register |

i—;—\!—f—i—‘lll&lllﬁ—i—i—\\‘__\

R R e

Reg- | Reg | Reg | Reg | Reg Reg | Aeg | Reg | Peg | Reg | Feg | meg | meg | Reg |

stars
K332 [1H22 |1KxE2 (1K 82 |1Kx32 132 | 1Kx 32 | 1K 32 | 1K 32 | 1Kx32 | 1K 22 [1K= 32 | 1Kx32 [1Kx32 [1Kx32 [1Kx32

Load | Loed | Load | Load | Load | Load | Load | Losd | Load | Load | Load | Load | Load | Load | Lead | Load
slore | store | store | store | store | store | store | store | store | store | store | store | store | store | store | store
untt | wnit | weit | wnit | wnit | wnit | unt [wnk | uet [ownk | unit | ownit | unit [ounik [unit | unit

FEEEENENENENENENENEEENENENENREN)

Address coalescing unil | | Intsrconnection natwaork |
1) [}
L] [[
Lo ary T
B4KB

29
CUDA Thread Scheduling
eGPU hardware has two levels of SIMD thead schedulor
hardware schedulers: me W
1) Thread Block Scheduler (top level) that assigns | an,t:rfaf?:"ﬁtfﬁu |

Thread Blocks to multithreaded SIMD
processors, which ensures that thread blocks are RN RN AR
assigned to the processors whose local | simD Wﬂﬂ”‘"“‘f“m 95 |

. . IBEEBEEEREEREERE]
memories have corresponding data ..
| N N I N T N I I |
2) SIMD Thread Scheduler (lower level) (warp [SIMD thread 8 instruction 12 |
scheduler) within a SIMD Processor, which AR AN

schedules when threads of SIMD instructions | D read 3 ototon o8

e [0 e emn 3|

30

“Single Instruction

e GPUs use a model, where individual scalar instruction streams
for each CUDA thread are grouped together for SIMD execution on
hardware (NVIDIA groups 32 CUDA threads into a)

“CUDA Threads”
UTO UT1 pT2 pT3 pT4 pTs5 ... uT31
Scalar ngﬁl. ,;
instruction]ﬁi‘%’
stream st y

SIMD execution
across Warp

31
GPU Memory Hierarchy
Block
Thread e (2)
(1) Per-block
Per-thread Shared
Local Memory Memory
) Kernel O
Sequential
Per-device Kernels
Global
Memory
* (4)
Device 0
memory
Host memory cudaMemcpy ()
Device 1
memory
32

16

CUDA Device Memory Space Overview

e Each Thread can: (Device) Grid
— R/W per-thread registers Block (0, 0) Block (1, 0)
— R/W per-thread local memory

— R/W per-block shared memory

— R/W per-grid global memory

Thread (0, 0)| Thread (1, 0) | | Thread (0, 0) |Thread (1, 0)

M i LA M i AhA

— Read only per-grid constant memory

— Read only per-grid texture memory

Host

e Host can R/W global, constant, and texture
memories

33
Global, Constant, and Texture Memories (Long
Latency Accesses)
* Global memory e e
— Main means of communicating Block 0.0 Block (.0
R/W Data between host and device
— Contents visible to all threads ’I ’I ’
¢ TeXture and conSta nt Thread (0, 0) | Thread (1, 0)| || Thread (0, 0) | Thread (1, 0)
Memories
— Constants initialized by host i i i
— Contents visible to all threads
34

17

Example: Tesla Architecture

(%86) Conwol
(Host)
)
Host
Memory
DA
-

Thread Execution Control Unit]
I
[[FI FE' S 54
Thscad Thead Teresd Thwm] Thesd
Processors Procesans Focemon Procesman Fmcemsors

Specal
Funcion sk

s

Device Memory

e Used for Technical and Scientific Computing
e L1/L2 Data Cache

— Allows for caching of global and local data
— Same on-chip memory used for Shared and L1
— Configurable at kernel invocation

35

TECHNICAL SPECIFICATIONS

A 0 A 0 A 0
Peak double precision floating paint 0.19 teraflops 1.17 teraflops 1.31 teraflops
performance (board)
Peak single precision floating point 4.58 teraflops 3.52 teraflops 3.95 teraflops
performance (board)
Number of GPUs 2 x GK104s 1xGK110
Number of CUDA cores 2x 1536 2496 2688
Memory size per board (GDDRS) 8GB 5GB 4GB
Memory bandwidth for board (ECC off)* 320 GBytes/sec 208 GBytes/sec 250 GBytes/sec

G6PU computing applications

Seismic, image, signal
processing, video analytics

CFD, CAE, financial computing, computational chemistry
and physics, data analytics, satellite imaging, weather

modeling
Graphics Processor Graphics Card Cock Speeds
Architecture features SMX SMX, Dynamic Parallelism, Hyper
GPU Name: GK110 Released: Nov 12th, 2012 GPU Clock: 706 MHz
System Servers only Servers and Workstations ‘ Ser
Process Size: 28 nm Production 1300 MHz
Staws; ACHYe Memory Clock: 5500 \Hz effective
Transistors: 7.080 million
Launch Price: 3,199 USD

https://www.nvidia.com/content/PDF/kepler/te

sla-k20-active-bd-06499-001-v03.pdf

Memory Size: 5120 MB
Render Config
Reference Board Memory Type: ~ GDDRS
Shading Units: 2496
Slot Width: Dual-slat Memory Bus: 320 bit
TMUs: 208
Longth: 108 inches Bandwidth: 208 GB/s
ength:
ROPs: 40 267 mm
SMX Count: 13 TDP: 225W Graphics Features
DirectX: 1.0
Pixel Rate: 36.7 GPixells VGA BIOS
v OpenGL: 44
[[oxteiate: iCTE el Find graphics card BIOS for this card.
Floating-point OpenCL: 1.1
oating-point T
performance: 002+ OFLOPS GPU-Z Validation
Shader Model: 5.0

Example:

Bus Interface: PCle 2.0 x16

Find GPU-Z validations for this card

Nvidia Tesla K20

36

18

Evolution of NVIDIA GPUs

Single GPU performance scaling

20

—8— FP32(TFLOPS)
—e— FP 64 (TFLOPS)

Pascal
GP 100

Throughput (TFLOPS)
3

Kepler
6 GK 110

GeForce
256 680
0 . 4

o~ o ~
o~ o o
o~ o S
- ~

2001
2002
2003
2005

Source: W. J. Dally, S. W. Keckler and D. B. Kirk, "Evolution of the Graphics Processing
Unit (GPU)," IEEE Micro, vol. 41, no. 6, pp. 42-51, 1 Nov.-Dec. 2021, doi:
10.1109/MM.2021.3113475.

CPU vs. GPU

DRAM

CPU GPU

* GPU

— More transistors devoted to computation, instead of caching or flow control
— Suitable for data-intensive computation
» High arithmetic/memory operation ratio

L] []
CPU vs. GPU memory hierarchies
Core 21 GB/sec Memory
L2cae <) "
(256 KB)
(Gigabytes)
L3 cache
o
Core N | (PU:
Big caches, few threads, modest memory BW
Rely mainly on caches and prefetching
GFX
texture
cache
(12KB)
Core1 177 GB/sec Memory
L1 cache DDR5 DRAM
(64 KB)
L2 cache (~1GB)
p=— (768 KB)
texture
B GPU:
CoreN
Small caches, many threads, huge memory BW
v Rely mainly on multi-threading
39
[] [] ° []
Entire system view: CPU + discrete GPU
—
[
B 21GB/sec Memory
DDR3 DRAM
. L3 cache (Gigabytes)
D || (BMB)
5858
| |B 2011 and future:
B PCle x16 bus (o-{ncating (PU+GPU on same chip
Multi-core CPU 8 GB/sec each direction avoids PCle bus bottlel}edf
(also reduces communication latency)
177 GB/sec Mem ory
L DDRS DRAM
(~1MB),
(1-2GB)
Multi-core GPU
40

20

Unified Memory
¢ Unified Virtual Address
e Since CUDA 6.0: Unified Memory
e Since CUDA 8.0 + Pascal: GPU page faults

CUDA 6 Unified Memory Pascal Unified Memory

Kepler Pascal

{ § ! ¢

Unified Memory Biticd Memory

(Limited to GPU Memory Size) (Limited to System Memory Size)

i

$ $
More information:

IIIIIIIIIIIHHHHIHHHIIIIIIIIII
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/

https://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2019/06/06 _Managed Memory.pdf

41
Unified Memory
¢ Simpler Programming and Memory Model
¢ Performance Through Data Locality
- cudaMallocManaged() ;
// Allocate input
malloc (input, ...);
cudaMallocManaged(d_input, ...);
memcpy (d_input, input, ...); // Copy to managed memory
// Allocate output
cudaMallocManaged (d_output, ...);
// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);
// Synchronize
cudaDeviceSynchronize () ;
42

21

https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2019/06/06_Managed_Memory.pdf

e Case studies using CPU and GPU

e Kernel launches are asynchronous
° CPU can work while waits for GPU to finish
° Traditionally, this is the most efficient way to exploit
heterogeneity
e Fine-grain heterogeneity becomes possible with
Pascal/Volta architecture

e Pascal/Volta Unified Memory
° CPU-GPU memory coherence
° System-wide atomic operations

e Benefits of Collaboration - Example: Bézier Surfaces

° [1]J. Gomez-Luna et. al, Chai: Collaborative Heterogeneous
Applications for Integrated-architectures, ISPASS 2017.

° Data partitioning improves performance
* AMD Kaveri (4 CPU cores + 8 GPU CUs)

Collaborative Computing Algorithms

4096

—
o
[
~

256

o]
B

Execution Time (ms
>

—o— 12x12 (300x300) Q\B Q\B Q\B
et 88 (300x300) > & ¢
- @ - 4x4 (300x300)

Bézier Surfaces
(up to 47% improvement over GPU only)

43

GPUs for Mobile Clients and Servers

Goal is for the graphics quality of a movie such as Avatar to be achieved in
real time on a server GPU in 2015 and on your mobile GPU in 2020

NVIDIA Tegra 2

NVIDIA Fermi GTX 480

Market

Mobile client

Desktop, server

System processor

Dual-Core ARM Cortex-A9

Not applicable

System interface

Mot applicable

PCI Express 2.0 x 16

System interface

6 GBytes/sec (each

bandwidth Not applicable direction), 12 GBytes/sec
(total)

Clock rate Upto 1| GHz 1.4 GHz

SIMD multiprocessors Unavailable 15

iﬁ‘gﬁ‘:ﬁ?‘m Unavailable 32

Memory interface 32-bit LP-DDR2/DDR2 384-bit GDDRS

Memory bandwidth 2.7 GBytes/sec 177 GBytes/sec

Memory capacity 1 GByte 1.5 GBytes

Transistors 242 M 3030M

Process 40 nm TSMC process G 40 nm TSMC process G

Die area 57 mm? 520 mm?

Power 1.5 watts 167 watts

44

22

Comparison of a GPU and a MIMD with Multimedia SIMD

Purpose is not to determine how much faster one product is than another, but to
try to understand the relative value of features of these two contrasting
architecture styles

Corei7- Ratio Ratio
960 GTX 280 GTX 480 280/i7 480/i7
MNumber of processing elements (cores or SMs) 4 30 15 1.5 38
Clock frequency (GHz) 32 1.3 1.4 041 044
Die size 263 576 520 22 20
Technology Intel 45 nm TSMC 65 nm TSMC 40 nm 1.6 1.0
Power (chip, not module) 130 130 167 1.0 1.3
Transistors TOOM 1400 M 3030 M 2.0 4.4
Memory bandwidth (GBytes/sec) 32 141 177 4.4 55
Single-precision SIMD width 4 8 32 2.0 80
Double-precision SIMD width 2 1 16 0.5 8.0
Peak single-precision scalar FLOPS (GFLOP/Sec) 26 17 63 4.6 25
Peak single-precision SIMD FLOPS (GFLOP/Sec) 102 31110933 5150r1344 3091 6.6-13.1
(SP 1 add or multiply) N.A. (311) (515) (3.00 (6.6)
(SP 1 instruction fused multiply-adds) N.A (622) (1344) (6.1) (13.1)
(Rare SP dual issue fused multiply-add and multiply) N.A. (933) N.A. (9.1) -
Peak double-precision SIMD FLOPS (GFLOP/sec) 51 78 515 1.5 10.1
45
Relative Performance
GTX 280/
Kernel Units Core i7-960 GTX 280 i7-960
SGEMM GFLOPfsec 94 36d 39
MC Billion paths/sec 0.8 1.4 1.8
Conv Million pixels/sec 1250 3500 2.8
FFT GFLOP/sec 1.4 213 3.0
SAXPY GBytes/zec 16.8 88.8 53
LBM Million lockups/sec 85 426 5.0
Solv Frames/sec 103 52 0.5
SpMV GFLOP/sec 4.9 Q.1 1.9
GIK Frames/sec 67 1020 15.2
Sort Million elements/sec 250 198 0.8
RC Frames/sec 5 8.1 1.6
Search Million queries/sec 50 90 1.8
Hist Million pixels/sec 1517 2583 1.7
Bilat Million pixels/sec 83 475 57
46

23

Reasons for Differences from Intel
eGPU has 4.4x the memory bandwidth

° Explains why LBM and SAXPY run 5.0 and 5.3x faster; their working sets are hundreds of
megabytes and hence don’t fit into the Core i7 cache

eFive of the remaining Kernels are compute-bound:

° SGEMM, Conv, FFT, MC, and Bilat

° GTX 280 single precision is 3 to 6x faster; DP performance is only 1.5x faster; has direct support
for transcendental functions lacking in i7

e Cache blocking optimizations benefit i7
° Convert RC, Search, Sort, SGEMM, FFT, and SpMV from memory-bound to compute-bound
e Multimedia SIMD extensions are of little help if the data are
scattered throughout main memory

° Reinforces the importance of gather-scatter to vector and GPU architectures that is missing
from SIMD extensions

a7

Conclusion

eGPU: A type of Vector Processor originally optimized for graphics
processing
° Has become general purpose (hence GPGPU) with introduction of CUDA
° “CUDA Threads” grouped into “Warps” automatically (32 threads)
° “Thread Blocks” (with up to 512 CUDA Threads) dynamically assigned to processors
(since number of processors/system varies)
e High-end desktops have separate GPU chip, but trend towards
integrating GPU on same die as CPU
° Advantage is shared memory with CPU, no need to transfer data

° Disadvantage is reduced memory bandwidth compared to dedicated smaller-capacity
specialized memory system
e Graphics DRAM (GDDR) versus regular DRAM (DDR3)

e Unified Memory

° Collaborative computing

48

24

	Slide 1: Lecture 9 Introduction to Graphics Processing Units (GPUs) (Ch.4)
	Slide 2: Flynn’s Classification (1966)
	Slide 3: Types of Parallelism
	Slide 4: Resurgence of DLP
	Slide 5: SIMD
	Slide 6: Graphics Processing Units (GPUs)
	Slide 7: Historical PC vs. Contemporary: Intel, AMD
	Slide 8: A Shift in the GPU Landscape
	Slide 9: General-Purpose GPUs (GP-GPUs)
	Slide 10
	Slide 11: CUDA Revolution!
	Slide 12: CUDA Programming Model
	Slide 13
	Slide 14: Example 1: Vector Addition kernel
	Slide 15: Example 2: Changing an Array
	Slide 16: simple.c
	Slide 17: simple.cu
	Slide 18: fillArray (part 1)
	Slide 19
	Slide 20: simple.cu (cont.)
	Slide 21: cu_fillArray
	Slide 22
	Slide 23: OpenCL – Open Compute Language
	Slide 24
	Slide 25: Programmer’s View of Execution
	Slide 26: Thread Batching: Grids and Blocks
	Slide 27: Execution Model
	Slide 28: Hardware Execution Model
	Slide 29
	Slide 30: CUDA Thread Scheduling
	Slide 31: “Single Instruction Multiple Thread”
	Slide 32: GPU Memory Hierarchy
	Slide 33: CUDA Device Memory Space Overview
	Slide 34
	Slide 35: Example: Tesla Architecture
	Slide 36: Example: Nvidia Tesla K20
	Slide 37: Evolution of NVIDIA GPUs
	Slide 38: CPU vs. GPU
	Slide 39: CPU vs. GPU memory hierarchies
	Slide 40: Entire system view: CPU + discrete GPU
	Slide 41
	Slide 42
	Slide 43: Collaborative Computing Algorithms
	Slide 44: GPUs for Mobile Clients and Servers
	Slide 45: Comparison of a GPU and a MIMD with Multimedia SIMD
	Slide 46: Relative Performance
	Slide 47: Reasons for Differences from Intel
	Slide 48: Conclusion

