
1

Lecture 9
Introduction to

Graphics Processing Units (GPUs)
(Ch.4)

Cristinel Ababei
Dept. of Electrical and Computer Engineering

COEN-4730/EECE-5730 Computer Architecture

1Credits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier

Flynn’s Classification (1966)
Broad classification of parallel computing systems

• SISD: Single Instruction, Single Data
 conventional uniprocessor

• SIMD: Single Instruction, Multiple Data
 one instruction stream, multiple data paths

 distributed memory SIMD

 shared memory SIMD

• MIMD: Multiple Instruction, Multiple Data
 conventional multiprocessors

 message passing machines

 non-cache-coherent shared memory machines

 cache-coherent shared memory machines

• MISD: Multiple Instruction, Single Data
 Not a practical configuration

1

2

2

Types of Parallelism
•Instruction-Level Parallelism (ILP)

 Execute independent instructions from one instruction stream in parallel
(pipelining, superscalar, VLIW)

•Thread-Level Parallelism (TLP)
 Execute independent instruction streams in parallel (multithreading, multiple

cores)

•Data-Level Parallelism (DLP)
 Execute multiple operations of the same type in parallel (vector/SIMD execution)

•Which is easiest to program?
•Which is most flexible form of parallelism?

 i.e., can be used in more situations

•Which is most efficient?
 i.e., greatest tasks/second/area, lowest energy/task

Resurgence of DLP
•Convergence of application demands and technology

constraints drives architecture choice
•New applications, such as graphics, machine vision,

speech recognition, machine learning, etc. - all require
large numerical computations that are often trivially data
parallel
•SIMD-based architectures (vector-SIMD, subword-SIMD,

SIMT/GPUs) are most efficient way to execute these
algorithms

3

4

3

a

SIMD

•Single Instruction Multiple Data (SIMD) architectures make
use of data parallelism

•We care about SIMD because of area and power efficiency
concerns
 Amortize control overhead over SIMD width

•Parallelism exposed to programmer & compiler

b

c

a2a1 b2b1

c2c1

+ +SISD
SIMD

width=2

Graphics Processing Units (GPUs)
•Original GPUs were dedicated fixed-function devices for

generating 3D graphics (mid-late 1990s) including high-
performance floating-point units
 Provide workstation-like graphics for PCs
 Programmability was an afterthought

•Over time, more programmability added (2001-2005)
 E.g., New language Cg (“C for graphics” from Nvidia) for writing

small programs run on each vertex or each pixel, also Windows
DirectX variants

Massively parallel (millions of vertices or pixels per frame) but
very constrained programming model

5

6

4

Historical PC vs. Contemporary: Intel, AMD

A Shift in the GPU Landscape
•Some users noticed they could do general-purpose

computation by mapping input and output data to
images, and computation to vertex and pixel shading
computations

•Referred to as general-purpose computing on graphics
processing units (GP-GPU)

•Incredibly difficult programming model – it had to use
graphics pipeline model for general computation
 A programming revolution was needed!

7

8

5

General-Purpose GPUs (GP-GPUs)
• In 2006, Nvidia introduced GeForce 8800 GPU supporting a new programming

language:
 CUDA “Compute Unified Device Architecture”
 Subsequently, broader industry pushing for OpenCL, a vendor-neutral version of same

ideas.

• Idea: Take advantage of GPU computational performance and memory bandwidth
to accelerate some kernels for general-purpose computing

• Attached processor model: host CPU issues data-parallel kernels to GP-GPU for
execution

Basic Unified GPU Architecture

Example GPU with 112 streaming processor (SP) cores organized in 14 streaming multiprocessors (SMs); the cores are highly

multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The processors connect with four 64-bit-wide DRAM

partitions via an interconnection network. Each SM has eight SP cores, two special function units (SFUs), instruction and constant caches,

a multithreaded instruction unit, and a shared memory.

Multithreaded
SIMD processor

9

10

6

CUDA Revolution!
• CUDA Community Showcase

 http://www.nvidia.com/object/gpu-applications.html
 Computational fluid dynamics, EDA, finance, life sciences, signal processing, …
 Speed-up’s of >300x for some applications

• GPU Technology Conference
 http://www.gputechconf.com/page/home.html
 Include archive of previous editions

• Download CUDA
 https://developer.nvidia.com/cuda-downloads
 And start using it!

• NVIDIA YouTube Videos:
 https://www.youtube.com/user/nvidia/videos

• Many universities have already courses dedicated to teaching and using CUDA for
research

CUDA Programming Model
• GPU is viewed as a compute device that:

– Is a coprocessor to the host CPU

– Has its own DRAM (device memory)

– Runs many threads in parallel

» Hardware switching between threads (in 1 cycle) on long-latency memory reference

» Overprovision (1000’s of threads) → hide latencies

• Data-parallel portions of an application are executed on the device as
Kernels which run in parallel on many threads

• Differences between GPU and CPU threads
– GPU threads are extremely lightweight

» Very little creation overhead

– GPU needs 1000’s of threads for full efficiency

» Multi-core CPU needs only a few

11

12

http://www.nvidia.com/object/gpu-applications.html
http://www.gputechconf.com/page/home.html
https://developer.nvidia.com/cuda-downloads
https://www.youtube.com/user/nvidia/videos

7

// Allocate input

 malloc(input, ...);

 cudaMalloc(d_input, ...);

 cudaMemcpy(d_input, input, ..., HostToDevice); // Copy to device memory

 // Allocate output

 malloc(output, ...);

 cudaMalloc(d_output, ...);

 // Launch GPU kernel

 gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);

 // Synchronize

 cudaDeviceSynchronize();

 // Copy output to host memory

 cudaMemcpy(output, d_output, ..., DeviceToHost);

Basic Steps
• Device allocation, CPU-GPU transfer, and GPU-CPU transfer

– cudaMalloc();

– cudaMemcpy();

Example 1: Vector Addition kernel

13

14

8

Example 2: Changing an Array

•The code has been divided into two files:
• simple.c
• simple.cu

• simple.c is ordinary code in C
• It allocates an array of integers, initializes it to values

corresponding to the indices in the array and prints the
array
• It calls a function that modifies the array
•The array is printed again

#include <stdio.h>

#define SIZEOFARRAY 64
extern void fillArray(int *a, int size);

/* The main program */
int main(int argc, char *argv[])
{
 /* Declare the array that will be modified by the GPU */
 int a[SIZEOFARRAY];
 int i;
 /* Initialize the array */
 for(i=0; i < SIZEOFARRAY; i++) {
 a[i]=i;
 }
 /* Print the initial array */
 printf("Initial state of the array:\n");
 for(i = 0; i < SIZEOFARRAY; i++) {
 printf("%d ",a[i]);
 }
 printf("\n");

 /* Call the function that will in turn call the function in

 the GPU that will fill the array */
 fillArray(a,SIZEOFARRAY);

 /* Now print the array after calling fillArray */
 printf("Final state of the array:\n");
 for(i = 0; i < SIZEOFARRAY; i++) {
 printf("%d ",a[i]);
 }
 printf("\n");
 return 0;
}

simple.c

15

16

9

simple.cu

•simple.cu contains two functions
1. fillArray(): A function that will be executed on the
host and which takes care of:

• Allocating variables in the global GPU memory
• Copying the array from the host to the GPU memory
• Setting the grid and block sizes
• Invoking the kernel that is executed on the GPU
• Copying the values back to the host memory
• Freeing the GPU memory

fillArray
(part 1)

#define BLOCK_SIZE 32

extern "C" void fillArray(int *array, int arraySize)

{

 /* array_d is the GPU counterpart of the array that

 exists on the host memory */

 int *array_d;

 cudaError_t result;

 /* allocate memory on device */

 /* cudaMalloc allocates space in memory of GPU card */

 result = cudaMalloc((void**)&array_d, sizeof(int)*arraySize);

 /* copy array into the variable array_d in the device */

 /* The memory from the host is being copied

 to corresponding variable in the GPU global memory */

 result = cudaMemcpy(array_d,array, sizeof(int)*arraySize,

 cudaMemcpyHostToDevice);

17

18

10

/* execution configuration... */

 /* Indicate the dimension of the block */

 dim3 dimblock(BLOCK_SIZE);

 /* Indicate the dimension of the grid in blocks */

 dim3 dimgrid(arraySize/BLOCK_SIZE);

 /* actual computation: Call the kernel, the

 function that is executed by each and every

 processing element on the GPU card */

 cu_fillArray<<<dimgrid, dimblock>>>(array_d);

 /* read results back: */

 /* Copy results from GPU back to memory on the host */

 result = cudaMemcpy(array, array_d, sizeof(int)*arraySize,

 cudaMemcpyDeviceToHost);

 /* Release the memory on the GPU card */

 cudaFree(array_d);

}

fillArray
(part 2)

simple.cu (cont.)

•The other function in simple.cu is
2. cu_fillArray():

• This is the kernel that will be executed in every Stream
Processor (SP) in the GPU

• It is identified as a kernel by the use of the keyword:
__global__

• This function uses the built-in variables
• blockIdx.x
• threadIdx.x

 to identify a particular position in the array

19

20

11

cu_fillArray
__global__ void cu_fillArray(int *array_d)

{

 int x;

 /* blockIdx.x is a built-in variable in CUDA

 that returns the blockId in the x axis

 of the block that is executing this block of code

 threadIdx.x is another built-in variable in CUDA

 that returns the threadId in the x axis

 of the thread that is being executed by this

 stream processor in this particular block

 */

 x = blockIdx.x*BLOCK_SIZE + threadIdx.x;

 array_d[x] += array_d[x];

}

> nvcc simple.c simple.cu -o simple

• CPU code is compiled by the host C compiler and the GPU code
(kernel) is compiled by the CUDA compiler

• Separate binaries are produced

CUDA Compilation

21

22

12

OpenCL – Open Compute Language
• CUDA alternative

• Developed by Khronos
 Industry Consortium that includes: AMD, ARM, Intel, and NVIDIA

• Designed as an open standard for cross-platform parallel programming

• Allows for more general programming across multiple GPUs/CPUs

• Not as popular as CUDA, at least initially…

Quick Guide
to GPU Terms

A major obstacle to

understanding GPUs

has been the jargon,

with some terms even

having misleading

names. This obstacle

has been surprisingly

difficult to overcome.

23

24

13

Programmer’s View of Execution

Create enough blocks to

cover input vector

(NVIDIA calls this set of

blocks a Grid, can be 2-

dimensional)

Conditional
(i<n) turns off

unused threads

in last Block

blockDim = 512

(programmer

can choose)

Warp

CUDA Thread

Thread Block

Thread Batching: Grids and Blocks
• Kernel executed as a grid of thread blocks

– All threads share data memory space

• Thread Block is a batch of threads, can
cooperate with each other by:

– Synchronizing their execution:
For hazard-free shared memory
accesses

– Efficiently sharing data through a low
latency shared memory

• Two threads from two different blocks
cannot cooperate

– (Unless thru slow global memory)

• Threads and Blocks have IDs

Host

Kern

el 1

Kern

el 2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

25

26

14

Execution Model
Multiple levels of parallelism

• Thread Block
– Max. 1024 threads/block

– Communication through shared memory
(fast)

– Thread guaranteed to be resident

– threadIdx, blockIdx

• Grid of thread blocks
– F<<<nblocks, nthreads>>>(a, b, c)

GPU

Hardware Execution Model

•GPU is built from multiple parallel Cores
 Each core contains a Multithreaded SIMD Processor with multiple lanes but with

no scalar processor

•CPU sends whole “Grid” (i.e., vectorizable loop) over to GPU,
which distributes thread blocks among cores (each thread block
executes on one Core)
 Programmer unaware of number of cores

Core 0

Lane 0

Lane 1

Lane 15

Core 1

Lane 0

Lane 1

Lane 15

Core 15

Lane 0

Lane 1

Lane 15

GPU Memory

CPU

CPU Memory

Multithreaded
SIMD

Processor

27

28

15

Simplified Diagram of Multithreaded SIMD Processor

CUDA Thread Scheduling

•GPU hardware has two levels of
hardware schedulers:

1) Thread Block Scheduler (top level) that assigns
Thread Blocks to multithreaded SIMD
processors, which ensures that thread blocks are
assigned to the processors whose local
memories have corresponding data

2) SIMD Thread Scheduler (lower level) (warp
scheduler) within a SIMD Processor, which
schedules when threads of SIMD instructions
should run

29

30

16

“Single Instruction Multiple Thread”
•GPUs use a SIMT model, where individual scalar instruction streams

for each CUDA thread are grouped together for SIMD execution on
hardware (NVIDIA groups 32 CUDA threads into a Warp)

µT0 µT1 µT2 µT3 µT4 µT5 … µT31

ld x
mul a
ld y
add
st y

Scalar

instruction

stream

SIMD execution

across Warp

“CUDA Threads”

GPU Memory Hierarchy
• (1)

• (3)

• (4)

• (2)Thread

Per-thread
Local Memory

Block

Per-block
Shared
Memory

Kernel 0

. .

. Per-device
Global

Memory

. . .

Kernel 1

Sequential

Kernels

Device 0
memory

Device 1
memory

Host memory cudaMemcpy()

31

32

17

CUDA Device Memory Space Overview

• Each Thread can:

– R/W per-thread registers

– R/W per-thread local memory

– R/W per-block shared memory

– R/W per-grid global memory

– Read only per-grid constant memory

– Read only per-grid texture memory

• Host can R/W global, constant, and texture
memories

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host

Global, Constant, and Texture Memories (Long
Latency Accesses)

• Global memory
– Main means of communicating

R/W Data between host and device

– Contents visible to all threads

• Texture and Constant
Memories
– Constants initialized by host

– Contents visible to all threads

33

34

18

Example: Tesla Architecture

⚫ Used for Technical and Scientific Computing

⚫ L1/L2 Data Cache

— Allows for caching of global and local data

— Same on-chip memory used for Shared and L1

— Configurable at kernel invocation

Example:
Nvidia Tesla K20

https://www.nvidia.com/content/PDF/kepler/te
sla-k20-active-bd-06499-001-v03.pdf

35

36

19

Evolution of NVIDIA GPUs
Single GPU performance scaling

Source: W. J. Dally, S. W. Keckler and D. B. Kirk, "Evolution of the Graphics Processing
Unit (GPU)," IEEE Micro, vol. 41, no. 6, pp. 42-51, 1 Nov.-Dec. 2021, doi:
10.1109/MM.2021.3113475.

CPU vs. GPU

• GPU
– More transistors devoted to computation, instead of caching or flow control

– Suitable for data-intensive computation

» High arithmetic/memory operation ratio

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

37

38

20

CPU vs. GPU memory hierarchies

Entire system view: CPU + discrete GPU

39

40

21

Unified Memory
• Unified Virtual Address

• Since CUDA 6.0: Unified Memory

• Since CUDA 8.0 + Pascal: GPU page faults

More information:

https://developer.nvidia.com/blog/unified-memory-in-cuda-6/

https://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2019/06/06_Managed_Memory.pdf

// Allocate input

 malloc(input, ...);

 cudaMallocManaged(d_input, ...);

 memcpy(d_input, input, ...); // Copy to managed memory

 // Allocate output

 cudaMallocManaged(d_output, ...);

 // Launch GPU kernel

 gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);

 // Synchronize

 cudaDeviceSynchronize();

Unified Memory
• Simpler Programming and Memory Model

• Performance Through Data Locality
– cudaMallocManaged();

41

42

https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2019/06/06_Managed_Memory.pdf

22

• Case studies using CPU and GPU

• Kernel launches are asynchronous
 CPU can work while waits for GPU to finish

 Traditionally, this is the most efficient way to exploit
heterogeneity

• Fine-grain heterogeneity becomes possible with
Pascal/Volta architecture

• Pascal/Volta Unified Memory
 CPU-GPU memory coherence

 System-wide atomic operations

• Benefits of Collaboration - Example: Bézier Surfaces
 [1] J. Gomez-Luna et. al, Chai: Collaborative Heterogeneous

Applications for Integrated-architectures, ISPASS 2017.

 Data partitioning improves performance

• AMD Kaveri (4 CPU cores + 8 GPU CUs)

Collaborative Computing Algorithms

GPUs for Mobile Clients and Servers
Goal is for the graphics quality of a movie such as Avatar to be achieved in
real time on a server GPU in 2015 and on your mobile GPU in 2020

43

44

23

Comparison of a GPU and a MIMD with Multimedia SIMD
Purpose is not to determine how much faster one product is than another, but to
try to understand the relative value of features of these two contrasting
architecture styles

Relative Performance

45

46

24

Reasons for Differences from Intel
•GPU has 4.4× the memory bandwidth

 Explains why LBM and SAXPY run 5.0 and 5.3× faster; their working sets are hundreds of
megabytes and hence don’t fit into the Core i7 cache

•Five of the remaining Kernels are compute-bound:
 SGEMM, Conv, FFT, MC, and Bilat
 GTX 280 single precision is 3 to 6× faster; DP performance is only 1.5× faster; has direct support

for transcendental functions lacking in i7

•Cache blocking optimizations benefit i7
 Convert RC, Search, Sort, SGEMM, FFT, and SpMV from memory-bound to compute-bound

•Multimedia SIMD extensions are of little help if the data are
scattered throughout main memory
 Reinforces the importance of gather-scatter to vector and GPU architectures that is missing

from SIMD extensions

Conclusion
•GPU: A type of Vector Processor originally optimized for graphics

processing
 Has become general purpose (hence GPGPU) with introduction of CUDA
 “CUDA Threads” grouped into “Warps” automatically (32 threads)
 “Thread Blocks” (with up to 512 CUDA Threads) dynamically assigned to processors

(since number of processors/system varies)

•High-end desktops have separate GPU chip, but trend towards
integrating GPU on same die as CPU
 Advantage is shared memory with CPU, no need to transfer data
 Disadvantage is reduced memory bandwidth compared to dedicated smaller-capacity

specialized memory system
• Graphics DRAM (GDDR) versus regular DRAM (DDR3)

•Unified Memory
 Collaborative computing

47

48

	Slide 1: Lecture 9 Introduction to Graphics Processing Units (GPUs) (Ch.4)
	Slide 2: Flynn’s Classification (1966)
	Slide 3: Types of Parallelism
	Slide 4: Resurgence of DLP
	Slide 5: SIMD
	Slide 6: Graphics Processing Units (GPUs)
	Slide 7: Historical PC vs. Contemporary: Intel, AMD
	Slide 8: A Shift in the GPU Landscape
	Slide 9: General-Purpose GPUs (GP-GPUs)
	Slide 10
	Slide 11: CUDA Revolution!
	Slide 12: CUDA Programming Model
	Slide 13
	Slide 14: Example 1: Vector Addition kernel
	Slide 15: Example 2: Changing an Array
	Slide 16: simple.c
	Slide 17: simple.cu
	Slide 18: fillArray (part 1)
	Slide 19
	Slide 20: simple.cu (cont.)
	Slide 21: cu_fillArray
	Slide 22
	Slide 23: OpenCL – Open Compute Language
	Slide 24
	Slide 25: Programmer’s View of Execution
	Slide 26: Thread Batching: Grids and Blocks
	Slide 27: Execution Model
	Slide 28: Hardware Execution Model
	Slide 29
	Slide 30: CUDA Thread Scheduling
	Slide 31: “Single Instruction Multiple Thread”
	Slide 32: GPU Memory Hierarchy
	Slide 33: CUDA Device Memory Space Overview
	Slide 34
	Slide 35: Example: Tesla Architecture
	Slide 36: Example: Nvidia Tesla K20
	Slide 37: Evolution of NVIDIA GPUs
	Slide 38: CPU vs. GPU
	Slide 39: CPU vs. GPU memory hierarchies
	Slide 40: Entire system view: CPU + discrete GPU
	Slide 41
	Slide 42
	Slide 43: Collaborative Computing Algorithms
	Slide 44: GPUs for Mobile Clients and Servers
	Slide 45: Comparison of a GPU and a MIMD with Multimedia SIMD
	Slide 46: Relative Performance
	Slide 47: Reasons for Differences from Intel
	Slide 48: Conclusion

