COEN-4730/EECE-5730 Computer Architecture

Lecture 11 Servers, Reliability, and Power (Ch.6)

Cris Ababei

Dept. of Electrical and Computer Engineering

BE THE DIFFERENCE.

Credits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier

1

Outline

- Servers
- Availability, Reliability
- Power

What is a Server?

A computer specialized for business users

- ° File server, data server, application server
- ° Database, file and printer sharing, email server
- ° Web server, DNS server, firewall server, ftp server
- ° Business applications: payroll, enterprise resource planning, customer relationship management
- ° Small business
- ° Big enterprise

Servers

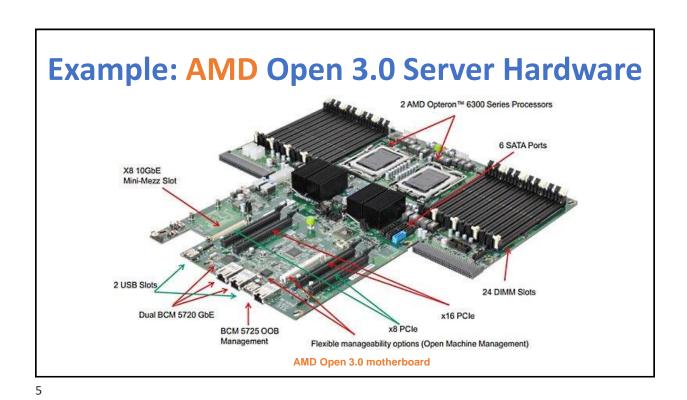
CPUs

DRAM

Disks

Clusters

Packs


+ 40-80 servers

3

Example: FB Datacenter Racks

Example: ASRock 1U12LW-C2750 Server

Desktop vs. Server

Desktop	Server
1-2 Desktop CPUs	Up to 64 server CPUs
192GB memory max	2 TB memory max
7 PCI/PCIe slots	Up to 192 PCIe slots
Fast high-res video	Basic video
Typically SATA disks	SAS, SATA, SSD, SCSI disks
Single user applications	Multi-user applications
Sound and multi-media	No sound systems
Monitor, keyboard, mouse	Shared/remote KVM
Designed for 9x5 operations	Designed for 24x7 operations
Little to no high-availability features	High availability and redundancy
Little to no manageability features	Support for manageability

7

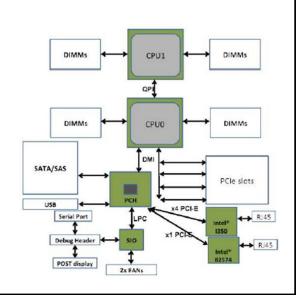
Key Server Requirements

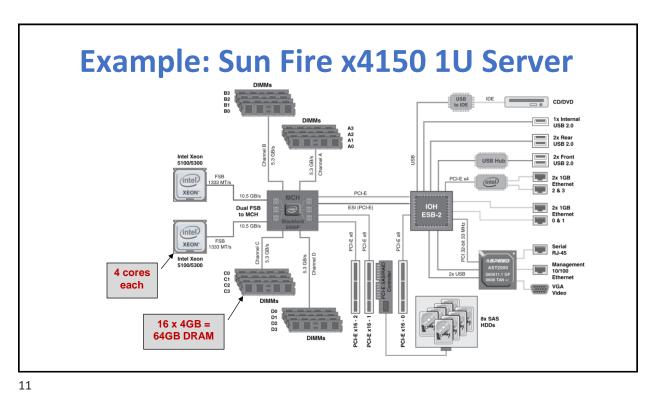
- Metrics tied to business value
 - ° Reliability error-free operation as per-specifications
 - Availability uptime of system including fault-tolerant operation

IRAS

- ° Serviceability maintain server (install, upgrade, debug)
- ° Scalability handle increasing amounts of workload
 - ° Security avoid vulnerabilities; protect data
 - ° Performance
 - ° Costs

Server Components


- CPU for processing
 - ° Intel Xeon, Itanium, AMD Opteron, IBM POwer7
 - ° 1-64 CPUs in multiple sockets
- Memory and storage of data/OS, etc.
 - ° DDR, DDR2, DDR3, ...
 - ° Serial ATA (SATA), SCSI, Serial Attached SCSI (SAS), Fibre Channel
 - ° Direct Attached Storage (DAS), Network Attached Storage (NAS), Storage Area Network (SAN)
- •I/O Bus and network interface for communication
 - ° Ethernet, PCIExpress, ...
- Operating Systems
 - ° Windows server, Unix, Linux, Solaris, ...


9

9

2-socket Server Basic Architecture

- •1-2 multicore chips
- •8-16 DIMMS
- •1-2 Ethernet ports
- •2-6 internal SATA/SAS disks
- External storage expansion
- Configuration/size vary
 - $^{\circ}$ Depends on tier role
 - ° 1U-2U (1U = 1.75 inches)

Example Configurations

• Facebook server configurations for different services

Standard	l	III	IV	V	VI
Systems	Web	Database	Hadoop	Haystack	Feed
CPU	High	Med	Med	Low	High
	2 x E5-2670	2 x E5-2660	2 x X5650	1 x L5630	2 x E5-2660
Memory	Low	High	Medium	Low	High
	16GB	144GB	48GB	18GB	144GB
Disk	Low	High IOPS	High	High	Medium
	250GB	3.2 TB Flash	12 x 3TB SATA	12 x 3TB SATA	2TB SATA
Services	Web, Chat	Database	Hadoop	Photos, Video	Multifeed, Search, Ads

Server Form Factors

Tower chassis servers

- ° Upright free-standing units + full systems
- ° Affordable, entry-level server for small/remote offices

Rackmount servers

- Complete server optimized for ultra-compact vertical arrangement within a standard 19inch mounting rack/cabinet
- ° Flexible, located in computer rooms or datacenters

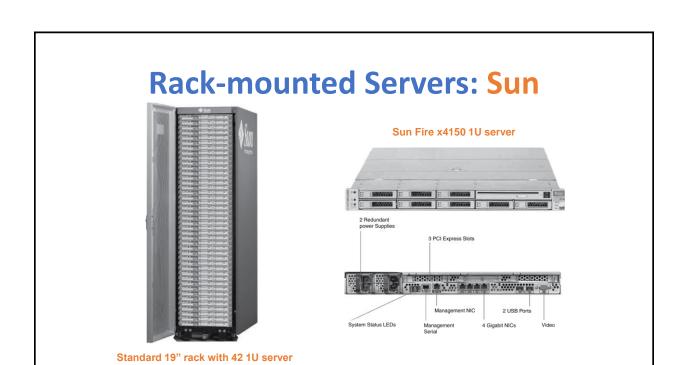
Blade servers

- Small form-factor servers housed in blade enclosures designed for modularity and highdensity footprints
- Very efficient use of space, amortized sharing of power supplies, fans, networking. Used in datacenters. Growing segment.

Micro-slice servers

- ° Multiple small server boards share an enclosure
- ° Amortize cost of enclosure, disks, switch, power supply....

13


Rack-mounted Servers

- •Typically, 19 or 23 inches wide
- •Typically, 42 U
 - ° U is a rack unit, 1.75 inches

•Slots:

15

Blade Servers: HP C7000

- 10U enclosure for standard racks
- 16 half-height blades or 8 full-height blades
- Hot-pluggable; small form-factor SAS/SATA drives
- Power supplies
 - ° 6x 2250 power supplies, or 2400 W power supplies
 - ° 12V DC supply, no-redundancy, N+N redundancy, N+1 redundancy
 - ° AC power = 3-phase or single phase 48V DC
- 10 ActiveCool fans
 - ° Side ducts for interconnect modules
 - ° Separate fans for power supplies
- 8 Interconnect bays single-wide or double-wide
 - ° VC Eth, VC FC, Eth, IB, storage switches
 - ° Gig Eth, 10Gig Eth, 4GB/8Gb FC, SAS, 4x DDR (20GB)
- Passive shared power backplane and active signal midplane
 - ° 5Tb/s aggregate BW
- Two bays for on-board administrator module
 - "Dynamic power saver", for subset of power supplies, dynamic power capping, fan management, enclosur troubleshooting, iLO access, DVD media sharing, ...
 - $^{\circ}$ Sensors, thermal conditions, power conditions, system configuration, management network
 - ° Systeme status display, HP insight manage

Enclosure-level Density Optimization

Objective functions

- Minimum costs min blade costs (max blades per enclosure to amortize costs) and min switch costs (number of internal and external ports in switches)
- Constrained by volume space within enclosure, minimum space required for server-class components, max power budget for server blade
- Maximum flexibility maximize switches for various network protocols, maximize performance of blades (highest power budget and volume) and switches (highest network speed protocols and highest external network connectors)
- Multi-objective optimization across power envelope, per server volume space, switch bandwidth oversubscription ratio, network protocols, ...

17

Platform (HW) Management

Management tasks

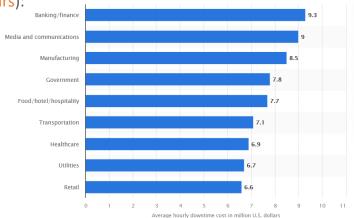
° Turn on/off, recovery from failure (reboot after system crash), system events and alerts log, console (keyboard, video, and mouse (KVM)), monitoring (health), power management, installation (boot OS image)

Platform management system

- ° Automates all these operations
- ° Out-of-Band (OOB), secure (privileged access point to the system), low-power (always on), flexible and low-cost

Management Processors

- An embedded computer on each server
 - ° Custom processors: e.g., HP iLO (Integrated Lights-Out)
 - Small processor core, memory controller, dedicated NIC, specialized devices (Digital Video Redirection, USB emulation)
 - ° E.g., IBM remote supervisor adapter (RSA), Dell remote assistant card (DRAC)
- Some iLO functions
 - ° Video redirection (textual console, graphic console)
 - ° Power management (monitoring, regulator, capping)
 - ° Security (authentication, authorization, directory services, data encryption, ...)
- Standards: Intelligent Platform Management Interface (IPMI)
 - ° Baseboard management controller (simpler interfaces/functionality)


19

Outline

- Servers
- Availability, Reliability
- Power

Why is Availability Important?

- Mission-critical (100% uptime), business-critical (minimal interruptions)
- Average cost per hour of server downtime worldwide, by vertical industry (in million U.S. dollars):

Source: https://www.statista.com/statistics/780699/worldwide-server-hourly-downtime-cost-vertical-industry/

21

Availability Classifications

- Availability quoted in "9s"
 - ° E.g., Telephone system has five 9s availability
 - ° 99.999% availability of 5 minutes downtime per year

Uptime	Downtime in one year
99% (two 9's)	87.6 hours
99.9% (three 9's)	8.76 hours
99.99% (four 9's)	53 min
99.999% (five 9's)	5 min
99.9999% (six9's)	32 sec
99.99999% (seven 9's)	3 sec

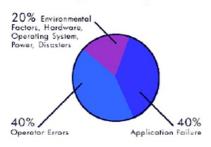
Datacenter Availability

- Mostly system-level, SW-based techniques
 - ° Using clusters for high availability
 - Active/standby; active/active
 - Shared-nothing/shared-disk/shared-everything
- Reasons
 - ° High cost of server-level techniques
 - · Cost of failures vs. cost of more reliable servers
 - ° Cannot rely on all servers working reliably anyway
 - Example: with 10K servers rated at 30 years of MTBF, you should expect to have 1 failure/day
- But, components must be reliable enough...
 - ° ECC based memory used detection is important!

23

Types of Faults

- Permanent
 - ° Defects, bugs, out-of-range parameters, wear out, ...
- Transient (temporary)
 - ° Radiation issues, power supply noise, EMI, ...
- Intermittent (temporary)
 - ° Oscillate between faulty and non-faulty operations
 - ° Operation margin, weak ports, ...


Real-world Service Disruptions

- Large number of techniques on hardware fault-tolerance
- Software, operator, maintenance-induced faults
 - ° Affect multiple systems at once

Source of "disruptions events" at Google

35 30 25 30 25 315 30 Config Software Human Network Hardware Other

Source of enterprise "disruption events"

Disruption event = service degradation that triggered operations team scrutiny

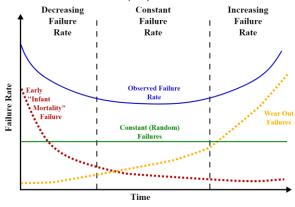
25

Improving MTTF & MTTR

Two issues

- ° Error detection
- ° Error correction

Observations


- ° Both are useful (e.g., fail-stop operation after detection)
- ° Both add to cost; so, use carefully
- ° Can be done at multiple levels (HW/SW)
 - General, chip, disks, memories, networks, system, DC

Some terminology

- ° Fail-fast either function correctly or stop when error detected
- ° Fail-silent system crashes on failure
- ° Fail-stop system stops on failure
- ° Fail-safe automatically counteracting a failure

General: "Infant Mortality"

- Many failures happen in early stages of use
 - ° Marginal components, design/SW bugs, etc.
- Use "burn-in" testing to screen such issues
 - ° E.g., Stress test HW and SW before deployment

27

Extensive Validation

High-level steps

- ° Units built in a way that simulates factory methods
- All components evaluated: electrical, mechanical, software bundles, firmware, system interoperability
- ° Failure diagnostics and interaction with design team
- ° Potential beta customer testing

Extensive testing

- ° Accelerated thermal lifetime testing (-60C to 90C)
- ° Accelerated vibration testing
- ° Manufacturing verification
- ° Reliability of user interface and full rack configuration
- ° Static discharge, repetitive mechanical joints, etc.
- ° Dust chamber: simulate dust buildup
- ° Environmental testing: model shipping stresses
- $^{\circ}\,$ Acoustic emissions and EMI standards
- ° FCC approval (US), CE approval (EU)
- $^{\circ}\,$ Power fluctuations and noise: semi-anechoic chamber
- ° On-site datacenter testing: TPC benchmarking

RAID: Dealing with Faults in Storage Systems

- Redundant Arrays of Inexpensive Disks (RAID)
 - ° A collection of disks that behaves like a single disk with: High capacity, high bandwidth, high reliability
 - ° Key idea in RAID: error correcting information across disks
 - o Many organizations; two distinguishing features:
 - Granularity of the interleaving (bit, byte, block)
 - Amount and distribution of redundant information
 - Patterson's classification RAID levels 0 to 6:

Level	Description
RAID0	Block-level striping without parity mirroring
RAID 1	Mirroring without parity striping
RAID 2	Bit-level striping with dedicated parity
RAID 3	Byte-level striping with dedicated parity
RAID 4	Block-level striping with dedicated parity
RAID 5	Block-level striping with distributed parity
RAID 6	Block-level striping with double-distributed parity
RAID 1+0	Disk mirroring and data striping without parity

20

Dealing with Faults in Memories

- Permanent faults (Stuck at 0/1 bits)
 - °Address with redundant rows/columns; i.e., spares
 - *Built-in-Self-Testing (BIST) and fuses to program decoders
- Transient faults
 - ° Bits flip 0->1 or 1->0
 - ° Parity
 - Add a 9th bit
 - E.g., Even parity: make 9th bit 1 if number of ones in byte is odd

Dealing with Network Faults

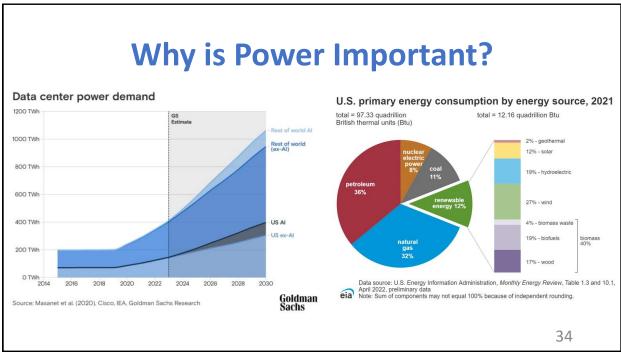
Use error detecting codes and retransmissions

- ° CRC: cyclic redundancy code
- ° Receiver detects error and requests retransmission
 - Requires buffering at the sender side
- ° An Ack/Nack protocol is typically used
 - To indicate when receiver received correct data or not
- ° Timeouts to deal with situations of lost messages
 - Error in control signals or with acknowledgements

Permanent faults

° Use network with path diversity

31


Dealing with Faults in Logic

- Triple modular redundancy (TMR)
 - ° Three copies of compute unit + majority voter
 - ° Issues: synchronization & common mode errors
- Dual modular redundancy (DMR)
 - $^{\circ}$ Two copies of compute unit + comparator
 - $^{\circ}$ Can use simpler 2^{nd} copy (e.g., parity detector)
- Checkpoint & restore
 - $^{\circ}$ Periodic checkpoints of state
 - ° On error detection, rollback & re-execute from checkpoint
 - $^{\circ}$ Issues: checkpoint interval, detection speed, number of checkpoints, recovery time, \ldots

Outline

- Servers
- Availability, Reliability
- Power

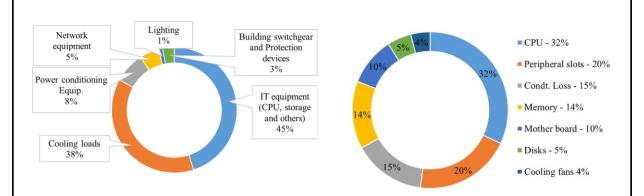
33

Why is Power Important?

Desire to reduce electricity use

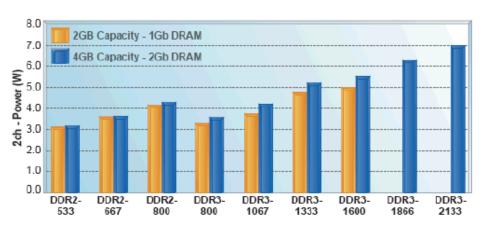
- ° For mobile devices, impacts battery life
- ° For tethered devices, impacts electricity costs
 - · Delivery of power to buildings
 - Gets worse with large datacenters (\$7M for 100 racks)

Environmental friendliness


- ° Compute equipment energy use has been increasing (e.g., training LLM such as ChatGPT and others)
- ° Need to reduce amount of CO2 emissions

Power delivery, packaging, cooling costs

- ° At high-end 1W cooling for 1W of power!
- Compaction, density, reliability
 - ° Thermal failures
 - 50% server reliability degradation for +10C
 - 50% decrease in hard disk lifetime for +15C


35

Power Consumption - Datacenter and Server Levels

Source: K. M. U. Ahmed, M. H. J. Bollen and M. Alvarez, "A Review of Data Centers Energy Consumption and Reliability Modeling," in IEEE Access, vol. 9, pp. 152536-152563, 2021, doi: 10.1109/ACCESS.2021.3125092. 36

RDIMM Memory Power Comparison (Source: Intel Platform Memory Operation)

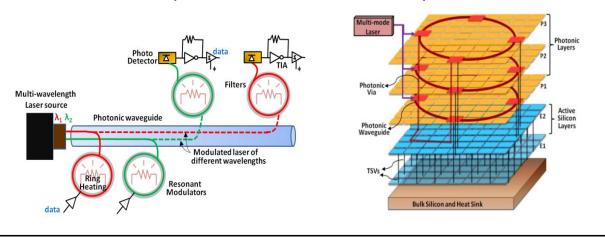
37

Power Consumption in ICs

 $P = C*Vdd^2*F_{0\rightarrow 1} + Tsc*Vdd*Ipeak*F_{0\rightarrow 1} + Vdd*I_{leakage}$

- Dynamic (active) power consumption
 - Charging/discharging capacitors
 - ° Depends on switching activity
- Short circuit currents
 - ° Short circuit path between power rails during switching
 - ° Depends on size of transistors
- Leakage current or static power consumption
 - ° Leaking transistors, diodes
 - ° Gets worse with technology downscaling and lower Vdd
 - ° Gets worse with higher temperatures

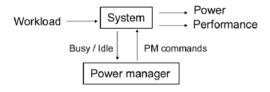
Metrics


- •Energy (Joules) = Power (Watts) * Time (sec)
 - ° Power limited by infrastructure (power supply)
- •Power density = power/area
 - ° The major metric for system cooling
- Combined metrics
 - ° How to trade off performance for power savings
 - ° Energy-Delay-Product (EDP), ...

39

Landscape of Optimizations – Across Layers $P = C*Vdd^{2*}F_{0\rightarrow 1} + Tsc*Vdd*Ipeak*F_{0\rightarrow 1} + Vdd*I_{leakage}$ Average power, peak power, power density, energy-delay, ... ARCHITECTURE CIRCUITS * COMPILER, OS, APP Switching control Voltage/freq scaling Voltage scaling/islands Gating Clock gating/routing nuction scheduling Pipeline, clock, functional units, Clock-tree distribution, half-swing clocks branch prediction, data path Memory access reduce Redesigned latches/flip-flops Split instruct windows pin-ordering, gate restructuring, topology restructuring, balanced delay paths, optimized bit SMT thread throttling Power-mode-control transactions CPU/resource schedule Redesigned memory cells Bank partitioning · Memory/disk control Low-power SRAM cells, reduced bit-line swing Cache redesign Disk spinning, page allocation, mer mapping, memory bank control multi-Vt, bit line/word line isolation/segmentation Sequential, MRU, hash-rehash, Other optimizations column-associative, filter cache, sub- Networking Transistor resizing, GALS, low-power logic banking, divided word line, block Power-aware routing, proximity-based buffers, multi-divided module, scratch routing, balancing hop count, Low-power states Distributed computing DRAM refresh-control Switching control Gray, bus-invert, address-incre Fidelity control · Code compression · Dynamic data types Data packing/buffering Power API

Replace Copper Wires with Optics


- Networks-on-chip (NoCs) have high latency and power dissipation
- What if we used photonic interconnects on chip?

41

Power Management

- Components with multiple power modes/states
 - ° Active: different levels of performance/power consumption
 - ° Idle: different power consumption/wake-up time
- Select power states to match constraints
 - ° Exploit fluctuations in use
 - ° Done in HW/SW and/or by user
 - ° Tradeoffs: power saving Vs. QoS Vs. speed of resuming

Advanced Configuration and Power Interface (ACPI)

Standard for power management of systems

- ° Describes power stages for system, cores, devices,...
- ° Interface for SW to query and manage power states

Global system states

- °G0: working system in responsive, user application run
- °G1: sleeping appears to be off. Within G1:
 - S1 (caches flushed, CPU halted)
 - S2 (CPU power off)
 - S3 (suspend to RAM)
 - S4 (hibernate to storage)
- °G2: soft off (wakeup on LAN)
- °G3: hard off (mechanical)

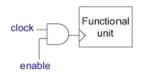
43

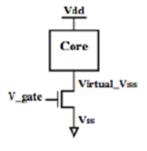
Advanced Configuration and Power Interface (ACPI)

Device states

- ° D0 fully on operating state
- ° D1 and D2 are intermediate states (vary by design)
- ° D3 is powered off state (device unresponsive)

Processor states


- ° CO is fully on
- ° With P states related to DVFS stages
- ° C1 to C3 are idle modes
- ° Clock may be stopped, but, state is maintained
- ° C4 and beyond are various power off state
- ° First the cache, then cores, and finally the whole chip


Power Management in Processors

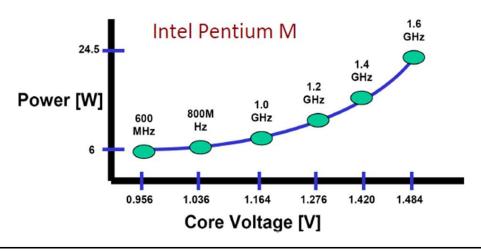
- Clock gating of idle units
 - ° Clock is major power contributor
 - ° Done automatically in most designs
 - ° Near instantaneous on/off behavior

Power gating (C4 and beyond)

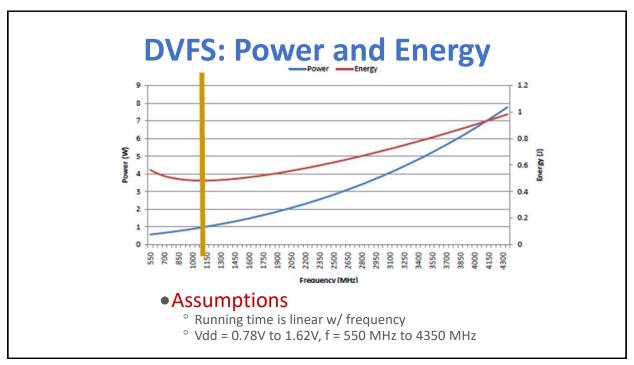
- ° Turn off power to unused cores/caches
- ° Large delay for on/off
 - Saving SW state, flushing dirty cache lines, turn off clock tree
 - Carefully done to avoid voltage spikes or memory bottlenecks
- ° Area & power consumption of gate
- ° Opportunity: use thermal headroom for other cores

45

Dynamic Voltage and Frequency Scaling (DVFS)


- Set frequency to lowest needed
- Scale back Vdd to lowest required by that frequency
 - ° Lower voltage => slower transistors
 - ° Power = CL * Vdd² * f

Provides P states for power management


- ° Heavy load: frequency, voltage, power high
- ° Light load: frequency, voltage, power low
- ° Tradeoff: power savings Vs. overhead of scaling
- ° Effectiveness limited by voltage range

Example DVFS Implementation

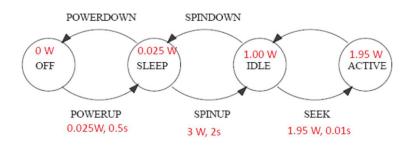
• Transitions between VF pair typically take a few microseconds

47

DRAM Power States

Power State	Operating Mode	Resync -time	% Active power
Active	All modules ready	0 cycles	100%
Standby	Column multiplexers disabled	2 cycles	60%
Napping	Row decoders turned off	30 cycles	10%
Power Down	Clock sync to Controller interface turned off	9000 cycles	1%
Disabled	No refresh; data lost	Reboot	0%

•Example: 5 states in DR-DRAM


Tradeoff: power savings Vs. resync penalty

49

Disk Drive Power Modes

Common optimization

- ° Stop spinning disk when it is unused for a certain period of time
- ° Example: Toshiba notebook drive

Display Power Management

- Turn-off displays, use smaller displays
- Energy-aware user-interface
 - Spatial focus on informational content
 - ° Temporal focus on content of interest at given time
 - ° Reduced energy (2-10X) and better ease-of-use
- Leverage usability-friendly energy-reducers
 - ° E.g., Contrast, personalization, visibility of surrounding text

Global savings of 8.3 Megawatt-hours per day if Google switched to black background!

51

Per-server Power Management: e.g., HP Power Regulator

- Monitor & manage individual and groups of servers by physical or logical location (power domain)
- Monitor vital power information
 - Power consumption in Watts
 - ° BTU/hr output
 - British Thermal Unit (BTU) per Hour: is a measurement of heat energy.
 - One BTU is amount of heat required to raise one pound of water by one degree Fahrenheit.
 - ° Ambient air temperature

Policy based power management

- Power cap policy: Set maximum BTUs/hr or Wattage threshold (capped on a server by server basis)
- ° Temporary conservation policy: Set time of day to drop to lower selected priority servers into lower power state
- Severe facility issue: Drop lower priority servers into lower power state when sever facility issues occur
- ° Energy efficiency policy: Set all servers in power domain to dynamic power regulating

Cluster-level Power Management

- Power-aware load distribution to a server cluster
 - ° Try to create idle resources to send to low-power/off states
 - ° Sophisticated policies (predictions, economy-based, batching)
 - ° Interactions between intra-server DVS and inter-server load balancing
 - ° Impact of heterogeneity
 - Interactions with performance and more broadly service-level agreements (SLAs)

53

Readings

- Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle, The Datacenter as a Computer, An Introduction to the Design of Warehouse-Scale Machines, Second Edition, 2013 (Ch.3-6):
 - https://link.springer.com/book/10.1007/978-3-031-01761-2
- Hot Chips: A Symposium on High Performance Chips
 - https://www.hotchips.org/archives/
- Open Compute: <u>www.opencompute.org</u>
- Google: https://www.google.com/about/datacenters/
- Top 500: https://www.top500.org/lists/top500/

Assignment

- Search online about how AI is used & impacting design and management of servers and datacenters/WSCs
- Write report to summarize your findings
- Upload report to D2L

55