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What is a Server?

oA computer specialized for business users
° File server, data server, application server
° Database, file and printer sharing, email server
°Web server, DNS server, firewall server, ftp server

° Business applications: payroll, enterprise resource planning,
customer relationship management _edededed

° Small business Y

° Big enterprise




Example: AMD Open 3.0 Server Hardware

2 AMD Opteron™ 6300 Series Processors

6 SATA Ports

X8 10GbE
Mini-Mezz Siot

24 DIMM Slots

Dual BCM 5720 GbE x16 PCle

BCM 5725 00B 2 x8 PCle
Management Flexible manageability options (Open Machine Management)

AMD Open 3.0 motherboard

Example: ASRock 1U12LW-C2750 Server




Desktop vs. Server
T

1-2 Desktop CPUs

192GB memory max

7 PCI/PClIe slots

Fast high-res video

Typically SATA disks

Single user applications

Sound and multi-media

Monitor, keyboard, mouse

Designed for 9x5 operations

Little to no high-availability features

Little to no manageability features

Up to 64 server CPUs

2 TB memory max

Up to 192 PCle slots

Basic video

SAS, SATA, SSD, SCSI disks
Multi-user applications

No sound systems
Shared/remote KVM
Designed for 24x7 operations
High availability and redundancy
Support for manageability

°
r
|
|
|
|

Key Server Requirements
Metrics tied to business value

EEN IS IS S S S S S S S S S B S S B S S S -y,

° Reliability — error-free operation as per-specifications
° Availability — uptime of system including fault-tolerant

operation

: RAS

°SerV|ceab|I|ty maintain server (install, upgrade, debug);

To Scalablllty “handlei increasing amounts of workload
°Security — avoid vulnerabilities; protect data

° Performance
° Costs




Server Components

e CPU — for processing
° Intel Xeon, Itanium, AMD Opteron, IBM POwer7
© 1-64 CPUs in multiple sockets

eMemory and storage — of data/0S, etc.
° DDR, DDR2, DDRS3, ...
© Serial ATA (SATA), SCSI, Serial Attached SCSI (SAS), Fibre Channel
° Direct Attached Storage (DAS), Network Attached Storage (NAS), Storage
Area Network (SAN)
¢|/0O Bus and network interface — for communication
° Ethernet, PCIExpress, ...

e Operating Systems

° Windows server, Unix, Linux, Solaris, ...

2-socket Server Basic Architecture

e1-2 multicore chips
¢8-16 DIMMS

e1-2 Ethernet ports

e2-6 internal SATA/SAS disks
eExternal storage expansion s

eConfiguration/size vary
° Depends on tier role ,
°1U-2U (1U = 1.75 inches) = (R3]

DIMMs DIMMs

PCle slots

RIS |
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Example: Sun Fire x4150 1U Server

DIMMs

Dual FSB
to MCH

&

XEON"

FsB
1333 MT/s

Intel Xeon
5100/5300

4 cores
each

ageg

16 x 4GB =
64GB DRAM

10.5 GB/s

Channel C

Channel A

ESI(FCIE)

PCLE x16-1

caovo

1x Internal
vsB 20

== | 2x Rear

PCI 32-bit 33 MHz

®
c
G
@

== USB2.0

2x Front
usB 2.0

[—]
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CPU

Memory

Disk

Example Configurations

High
2 x E5-2670

Low
16GB

Low
250GB

Web, Chat

Med
2 x E5-2660

High
144GB

High 10PS
3.2 TB Flash

Database

Med
2 x X5650

Medium
48GB

High
12 x 3TB SATA

Hadoop

Low
1x L5630

Low
18GB

High
12 x 3TB SATA

Photos, Video

e Facebook server configurations for different services

High
2 X £5-2660

High
144GB

Medium
2TB SATA

Multifeed,
Search, Ads
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Server Form Factors

e Tower chassis servers
° Upright free-standing units + full systems
° Affordable, entry-level server for small/remote offices

e Rackmount servers

° Complete server optimized for ultra-compact vertical arrangement within a standard 19-
inch mounting rack/cabinet

° Flexible, located in computer rooms or datacenters

e Blade servers

° Small form-factor servers housed in blade enclosures designed for modularity and high-
density footprints

° Very efficient use of space, amortized sharing of power supplies, fans, networking. Used
in datacenters. Growing segment.

e Micro-slice servers
° Multiple small server boards share an enclosure
° Amortize cost of enclosure, disks, switch, power supply,...
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Rack-mounted Servers

eTypically, 19 or 23 inches wide
eTypically, 42 U

° Uis arackunit, 1.75 inches

eSlots:

4
half-rack

vuz

=
;: 1
=
| —
—
—

14



Rack-mounted Servers: Sun

Sun Fire x4150 1U server

2 Redundant
power Supplies

3 PCI Express Slots

Management NIC 2USB Ports

System Status LEDs Management 4 Gigabit NICs Video
Serial

Standard 19” rack with 42 1U server

15

Blade Servers: HP C7000

e 10U enclosure for standard racks

o 16 half-height blades or 8 full-height blades

e Hot-pluggable; small form-factor SAS/SATA drives
e Power supplies

°  6x 2250 power supplies, or 2400 W power supplies
° 12V DC supply, no-redundancy, N+N redundancy, N+1 redundancy

° AC power = 3-phase or single phase 48V DC

e 10 ActiveCool fans
¢ Side ducts for interconnect modules
Separate fans for power supplies

Blade pluy

o 8 Interconnect bays - single-wide or double-wide
° VCEth, VCFC, Eth, IB, storage switches
°  Gig Eth, 10Gig Eth, 4GB/8Gb FC, SAS, 4x DDR (20GB)

o Passive shared power backplane and active signal midplane
° 5Th/s aggregate BW

.\\Qgtt‘\m‘

e Two bays for on-board administrator module

°  “Dynamic power saver”, for subset of power supplies, dynamic power capping, fan management, enclosur:
troubleshooting, iLO access, DVD media sharing, ...

¢ Sensors, thermal conditions, power conditions, system configuration, management network
°  Systeme status display, HP insight manage 10

16



Enclosure-level Density Optimization

eObjective functions

° Minimum costs — min blade costs (max blades per enclosure to amortize
costs) and min switch costs (number of internal and external ports in switches)

° Constrained by volume space within enclosure, minimum space required for
server-class components, max power budget for server blade

° Maximum flexibility — maximize switches for various network protocols,
maximize performance of blades (highest power budget and volume) and
switches (highest network speed protocols and highest external network
connectors)

e Multi-objective optimization across power envelope, per
server volume space, switch bandwidth oversubscription
ratio, network protocols, ...
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Platform (HW) Management

eManagement tasks

°Turn on/off, recovery from failure (reboot after system crash),
system events and alerts log, console (keyboard, video, and
mouse (KVM)), monitoring (health), power management,
installation (boot OS image)

ePlatform management system

° Automates all these operations

° Qut-of-Band (OOB), secure (privileged access point to the
system), low-power (always on), flexible and low-cost

18




Management Processors

e An embedded computer on each server
° Custom processors: e.g., HP iLO (Integrated Lights-Out)

° SmaIII proc)essor core, memory controller, dedicated NIC, specialized devices (Digital Video Redirection, USB
emulation

° E.g., IBM remote supervisor adapter (RSA), Dell remote assistant card (DRAC)
e Some iLO functions
° Video redirection (textual console, graphic console)

° Power management (monitoring, regulator, capping)
° Security (authentication, authorization, directory services, data encryption, ...)

e Standards: Intelligent Platform Management Interface (IPMI)
° Baseboard management controller (simpler interfaces/functionality)

Outline
eServers
eAvailability, Reliability
ePower

10



Why is Availability Important?

e Mission-critical (100% uptime), business-critical (minimal interruptions)

e Average cost per hour of server downtime worldwide, by vertical industry (in
million U.S. dollars):

Food/hotel/hospitality
Transportation
Healthcare

Utilities

Average hourly downtime cost in million U.s. dellars

Source: https.//www.statista.com/statistics/780699/worldwide-server-hourly-downtime-cost-vertical-industry/

21

Availability Classifications
eAvailability quoted in “9s”

° E.g., Telephone system has five 9s availability
©99.999% availability of 5 minutes downtime per year

Uptime __| Downtime in one year ___

99% (two 9's) 87.6 hours
99.9% (three 9's) 8.76 hours
99.99% (four 9's) 53 min
99.999% (five 9's) 5 min
99.9999% (six9’s) 32 sec
99.99999% (seven 9’s) 3 sec

22
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Datacenter Availability

eMostly system-level, SW-based techniques

° Using clusters for high availability
* Active/standby; active/active
* Shared-nothing/shared-disk/shared-everything

eReasons

° High cost of server-level techniques
* Cost of failures vs. cost of more reliable servers

° Cannot rely on all servers working reliably anyway

* Example: with 10K servers rated at 30 years of MTBF, you should expect to have 1
failure/day

eBut, components must be reliable enough...
° ECC based memory used — detection is important!

23

Types of Faults

ePermanent
° Defects, bugs, out-of-range parameters, wear out, ...

eTransient (temporary)
° Radiation issues, power supply noise, EMI, ...

eIntermittent (temporary)

° Oscillate between faulty and non-faulty operations
° Operation margin, weak ports, ...

24
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Real-world Service Disruptions

e Large number of techniques on hardware fault-tolerance

e Software, operator, maintenance-induced faults
° Affect multiple systems at once

20% Eevironmental
Factors, Hardware,
Operating Systom,
Power, Discsters

25
2
3;‘20
=15
+F
10 o o
40% 40%
5 . - Oparator Errors Application Failure
0

Corfyy Software Human Network Hardware Oehar

35

Disruption event = service degradation that triggered operations team scrutiny

Source of “disruptions events” at Google Source of enterprise “disruption events”
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Improving MTTF & MTTR

eTwo issues
° Error detection
° Error correction

eObservations
° Both are useful (e.g., fail-stop operation after detection)
° Both add to cost; so, use carefully
° Can be done at multiple levels (HW/SW)

* General, chip, disks, memories, networks, system, DC

eSome terminology
° Fail-fast — either function correctly or stop when error detected
° Fail-silent — system crashes on failure
° Fail-stop — system stops on failure
° Fail-safe — automatically counteracting a failure

26
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General: “Infant Mortality”

e Many failures happen in early stages of use
° Marginal components, design/SW bugs, etc.

e Use “burn-in” testing to screen such issues
° E.g., Stress test HW and SW before deployment

Decreasing Constant Increasing
A o . o
Failure Failure Failure
Rate Rate Rate

Observed Failure
Rate

. Early

%"Infant

'-.llorml.ity"
*, Failure

Failure Rate

Failures

RS

1
. 1
s f Constant (Random)
.
T
1
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Extensive Validation

¢ High-level steps
© Units built in a way that simulates factory methods

° All components evaluated: electrical, mechanical, software bundles, firmware, system
interoperability

° Failure diagnostics and interaction with design team
° Potential beta customer testing

e Extensive testing

° Accelerated thermal lifetime testing (-60C to 90C)
Accelerated vibration testing
Manufacturing verification
Reliability of user interface and full rack configuration
Static discharge, repetitive mechanical joints, etc.
Dust chamber: simulate dust buildup
Environmental testing: model shipping stresses
Acoustic emissions and EMI standards
FCC approval (US), CE approval (EU)
Power fluctuations and noise: semi-anechoic chamber
On-site datacenter testing: TPC benchmarking

0 o o o o o o o o o

28
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RAID: Dealing with Faults in Storage Systems

eRedundant Arrays of Inexpensive Disks (RAID)

° A collection of disks that behaves like a single disk with: High capacity, high
bandwidth, high reliability

° Key idea in RAID: error correcting information across disks

° Many organizations; two distinguishing features:

* Granularity of the interleaving (bit, byte, block)
* Amount and distribution of redundant information

° Patterson’s classification — RAID levels 0 to 6:

Lol [Description ]

RAIDO Block-level striping without parity mirroring
RAID 1 Mirroring without parity striping
RAID 2 Bit-level striping with dedicated parity
RAID 3 Byte-level striping with dedicated parity
RAID 4 Block-level striping with dedicated parity
RAID 5 Block-level striping with distributed parity
RAID 6 Block-level striping with double-distributed parity
RAID 1+0 Disk mirroring and data striping without parity
29
Dealing with Faults in Memories
ePermanent faults (Stuck at 0/1 bits)
°Address with redundant rows/columns; i.e., spares
°Built-in-Self-Testing (BIST) and fuses to program
decoders
eTransient faults
°Bits flip 0->1 or 1->0
°Parity
« Add a 9t bit
* E.g., Even parity: make 9 bit 1 if number of ones in byte is odd
30

15



Dealing with Network Faults

eUse error detecting codes and retransmissions

° CRC: cyclic redundancy code

° Receiver detects error and requests retransmission
e Requires buffering at the sender side

° An Ack/Nack protocol is typically used

¢ To indicate when receiver received correct data or not

° Timeouts to deal with situations of lost messages
e Error in control signals or with acknowledgements

ePermanent faults
°Use network with path diversity

31

Dealing with Faults in Logic
e Triple modular redundancy (TMR)

° Three copies of compute unit + majority voter
° Issues: synchronization & common mode errors

e Dual modular redundancy (DMR)
° Two copies of compute unit + comparator
° Can use simpler 2" copy (e.g., parity detector)

e Checkpoint & restore
° Periodic checkpoints of state
° On error detection, rollback & re-execute from checkpoint

° Issues: checkpoint interval, detection speed, number of checkpoints,
recovery time, ...

32
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eAvailability, Reliability
ePower
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Why is Power Important?

Data center power demand U.S. primary energy consumption by energy source, 2021

200TWH total = 97.33 quadillion total = 12.16 quadrillion Btu
British thermal units (Btu)
1 5
000 TWh ) i W— 2% - geothermal
(ex-Al) nuclear 12% - solar
o .
19% - hydroelectric
petroleum
600 TWh 36%
J::;";a:’z'i 27% - wind
400 TWh us Al 4% - biomass waste
USex-Al 19% - biofuels biomass
natural 40%
200 TWh gas
32%
17% - wood
0TWh

2014 2016 2018 2020 2022 2024 2026 2028 2030 Data source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.3 and 10.1,

—~ April 2022, preliminary data

Goldman €12’ Note: Sum of components may not equal 100% because of independent rounding.
Source: Masanet et al. (2020), Cisco, IEA, Goldman Sachs Research SaCIIS

34

34
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Why is Power Important?

eDesire to reduce electricity use
° For mobile devices, impacts battery life

° For tethered devices, impacts electricity costs
* Delivery of power to buildings
* Gets worse with large datacenters (57M for 100 racks)

eEnvironmental friendliness

° Compute equipment energy use has been increasing (e.g., training LLM
such as ChatGPT and others)

° Need to reduce amount of CO2 emissions
ePower delivery, packaging, cooling costs

° At high-end 1W cooling for 1W of power!
eCompaction, density, reliability

° Thermal failures

* 50% server reliability degradation for +10C
* 50% decrease in hard disk lifetime for +15C

35
Power Consumption - Datacenter and Server
Network Ligl];;ﬂing Building switchgear CPU - 32%
equipment \‘- and Protection 5 e
500 1
" , de;f‘:/cnes = Peripheral slots - 20%
Powergo:;iitioning # Condt. Loss - 15%
gD/P- IT equipment
N (CPU, storage Memory - 14%
and others)
45% = Mother board - 10%
Cool;r;gg%loads # Disks - 5%
= Cooling fans 4%
Source: K. M. U. Ahmed, M. H. J. Bollen and M. Alvarez, "A Review of Data Centers Energy Consumption and
Reliability Modeling," in IEEE Access, vol. 9, pp. 152536-152563, 2021, doi: 10.1109/ACCESS.2021.3125092. 36
36
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DDR2- DDR2- CDR3-
533 BET 200 200

DDR3- DDR3-
1087 1333

DDR3-
1600

DDR3-
1856

DDR3-
2133

RDIMM Memory Power Comparison (Source: Intel Platform Memory Operation)
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Power Consumption in ICs

P = C*Vdd#*F,_,, + Tsc*Vdd*Ipeak* F,_,,+ Vdd*lleakage

e Dynamic (active) power consumption
° Charging/discharging capacitors
° Depends on switching activity

eShort circuit currents

° Short circuit path between power rails during switching
° Depends on size of transistors

° Leakage current or static power consumption
° Leaking transistors, diodes
° Gets worse with technology downscaling and lower Vdd
° Gets worse with higher temperatures

38
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Metrics

eEnergy (Joules) = Power (Watts) * Time (sec)
° Power limited by infrastructure (power supply)

ePower density = power/area
°The major metric for system cooling

eCombined metrics
°How to trade off performance for power savings
° Energy-Delay-Product (EDP), ...

39
[ ] Ll [ ]
Landscape of Optimizations — Across Layers
P = C*WVdd**F,_, + Tsc*Vdd Ipeak” Fy_,+ Vdd*l mge
Average power, peak power, power density, energy-delay, ...
/ v
CIRCUITS ARCHITECTURE COMPILER, OS, APP
- e o
,-/Voltage scaling/islands \ '/'V[’“_age"f"eq scaling + Switching control )
. . « Gating Register relabeiing, operand swapping,
+ Clock gating/routing Pipeline, slock, functional urits, instruction scheduing
Clock-tre distribution, half-swing clocks branch prediction. data path + Memory access reduce
2 Redfemgned Iatqhesfﬁlp—ﬂops - Split instrucn windows Locality optimizations, register allocation
mﬁmw eai| |7 SMT thread throttiing ‘s Power-mode-control ./
“’F';"’“’"". Ve —— /+ CPU/resource schedule®
+ Redesigned memory cells » Bank partitioning 3
Low-power SRAM cells, reduced bit-ine swing, « Cache redesign * Memory/disk control
multi-Vt, bit linefword line isclation/segmentation Sequential, MRU haﬂ\_?ehash Disk spinning. page allocation, memory
» Other optimizations column-associative, filter cache, sub- napping, memory bank control
Transistor resizing, GALS, low-power logic banking, divided word line, block * Networking
buffers, multi-divided module, scratch Fower-aware mﬂr;wbmed
» Low-power states _“‘D‘i‘"sm"‘_""“'“ B
‘s DRAM refresh-control e o : .
computation
(e Switching control \- /‘
Gray, bus-invert, address-increment ‘ « Fidelity control )
* Code compression « Dynamic data types
\» Data packing/buffering . IE’)yuwer API )
40
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Replace Copper Wires with Optics

e Networks-on-chip (NoCs) have high latency and power dissipation
e What if we used photonic interconnects on chip?

Layers
Photo e v
DetectorL2_|

Multi-wavelength
Laser source

MDA, Photonic waveguide 1
o
{ | =N AL
Modulated laser of
0 different wavelengths
Resonant
Modulators

41

Power Management

eComponents with multiple power modes/states
° Active: different levels of performance/power consumption
° Idle: different power consumption/wake-up time

eSelect power states to match constraints
° Exploit fluctuations in use
° Done in HW/SW and/or by user
° Tradeoffs: power saving Vs. QoS Vs. speed of resuming

— Power
Workload —’ —— Performance

Busy / |dlel PM commands

| Power manager |

42



Advanced Configuration and Power Interface (ACPI)

eStandard for power management of systems
°Describes power stages for system, cores, devices,...
°Interface for SW to query and manage power states

eGlobal system states
°GO0: working — system in responsive, user application run
°G1: sleeping — appears to be off. Within G1:

* S1 (caches flushed, CPU halted)
* S2 (CPU power off)

* S3 (suspend to RAM)

* S4 (hibernate to storage)

°G2: soft off (wakeup on LAN)
°G3: hard off (mechanical)

43

Advanced Configuration and Power Interface (ACPI)

eDevice states
° DO fully on operating state
°D1 and D2 are intermediate states (vary by design)
°D3is powered off state (device unresponsive)

eProcessor states
°COis fully on
°With P states related to DVFS stages
°C1 to C3 are idle modes
° Clock may be stopped, but, state is maintained
°C4 and beyond are various power off state
° First the cache, then cores, and finally the whole chip

44
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Power Management in Processors
eClock gating of idle units

° Clock is major power contributor clock —{ Fu"f:f"a'
° Done automatically in most designs F
° Near instantaneous on/off behavior enavle
ePower gating (C4 and beyond) via
° Turn off power to unused cores/caches 1
° Large delay for on/off Core
* Saving SW state, flushing dirty cache lines, turn off clock tree
) * Carefully done to avoid volta.ge spikes or memory bottlenecks ¥ min _l Virtual_Vss
Area & power consumption of gate .

° Opportunity: use thermal headroom for other cores

45

Dynamic Voltage and Frequency Scaling (DVFS)

eSet frequency to lowest needed
eScale back Vdd to lowest required by that frequency

° Lower voltage => slower transistors
° Power = CL * Vdd? * f

eProvides P states for power management
° Heavy load: frequency, voltage, power high
° Light load: frequency, voltage, power low
° Tradeoff: power savings Vs. overhead of scaling
° Effectiveness limited by voltage range

46
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Example DVFS Implementation

e Transitions between VF pair typically take a few microseconds

Intel Pentium M GHz

24.5

Power [W]

800M
Hz

0.956 1.036 1.164 1.276 1.420 1.484
Core Voltage [V]
47
DVFS: P dE
: Power and Energy
—POWET s ENEIEY

9 12

8

7 L

6 / 0s
2 g ::'
2 4 \\l/'/ / [ ¢ g

3 / 04

2 /

+ 02

-

] T T T o
F233%353233838383¢8383¢838¢3%8
Freauency (MHz)

e Assumptions
° Running time is linear w/ frequency
° Vdd =0.78V to 1.62V, f = 550 MHz to 4350 MHz
48
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DRAM Power States

Power State Operating Mode Resync -time | % Active power
Active All modules ready 0 cycles 100%
Standby Column multiplexers disabled 2 cycles 60%
Napping Row decoders turned off 30 cycles 10%
Power Down | Clock sync to Controller 9000 cycles 1%
interface turned off
Disabled No refresh; data lost Reboot 0%

eExample: 5 states in DR-DRAM
eTradeoff: power savings Vs. resync penalty

49
Disk Drive Power Modes
eCommon optimization
° Stop spinning disk when it is unused for a certain period of time
° Example: Toshiba notebook drive
POWERDOWN SPINDOWN
ow
OFF
PO\\"ER.L'P SPINUP SEE_K
0.025W, 0.5s 3W, 25 1.95 W, 0.01s
50
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Display Power Management

e Turn-off displays, use smaller displays

e Energy-aware user-interface
© Spatial — focus on informational content
© Temporal — focus on content of interest at given time
° Reduced energy (2-10X) and better ease-of-use

e Leverage usability-friendly energy-reducers
° E.g., Contrast, personalization, visibility of surrounding text

esearcs Ceotrs, e

Windows

Media Pleyer

New Toois Services [ .|. %) G

Global savings of 8.3 Megawatt-hours per day if Google switched to black background!

51

Per-server Power Management: e.g., HP Power Regulator

e Monitor & mana%e individual and groups of servers by
physical or logical location (power domain)

e Monitor vital power information
° Power consumption in Watts
° BTU/hr output
 British Thermal Unit (BTU) per Hour: is a measurement of heat energy.
* One BTU is amount of heat required to raise one pound of water by one degree Fahrenheit.
° Ambient air temperature

e Policy based power management

° Power cap policy: Set maximum BTUs/hr or Wattage threshold (capped on a server by
server basis)

° Temporary conservation policy: Set time of day to drop to lower selected priority servers
into lower power state

© Severe facility issue: Drop lower priority servers into lower power state when sever facility
issues occur

° Energy efficiency policy: Set all servers in power domain to dynamic power regulating

52
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Cluster-level Power Management

ePower-aware load distribution to a server

cluster
°Try to create idle resources to send to low-power/off states
°Sophisticated policies (predictions, economy-based, batching)

°Interactions between intra-server DVS and inter-server load
balancing

° Impact of heterogeneity

° Interactions with performance and more broadly service-level
agreements (SLAs)

53

Readings

Luiz André Barroso, Jimmy Clidaras, and Urs Holzle, The
Datacenter as a Computer, An Introduction to the Design of
Warehouse-Scale Machines, Second Edition, 2013 (Ch.3-6):

— https://link.springer.com/book/10.1007/978-3-031-01761-2

Hot Chips: A Symposium on High Performance Chips
— https://www.hotchips.org/archives/

Open Compute: www.opencompute.org

Google: https://www.google.com/about/datacenters/
Top 500: https://www.top500.org/lists/top500/

54
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https://link.springer.com/book/10.1007/978-3-031-01761-2
https://www.hotchips.org/archives/
http://www.opencompute.org/
https://www.google.com/about/datacenters/
https://www.top500.org/lists/top500/

Assignment

eSearch online about how Al is used &
impacting design and management of servers
and datacenters/WSCs

e\Write report to summarize your findings
eUpload report to D2L

55
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