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Outline

• Testing

• Design for Testability (DFT)

• Microprocessors
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Quality of VLSI Circuits

Unclustered defects

Wafer  yield = 12/22 = 0.55

Clustered defects (VLSI)

Wafer  yield = 17/22 = 0.77

Wafer

Defects

Faulty chips

Good chips
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• Testing
– Experiment to detect if the operation of the fabricated physical 

circuit is affected by manufacturing defects

• Vs. Verification
– Predictive analysis to ensure correctness of the synthesized 

circuit; when manufactured, the circuit will perform the given I/O 
function

What is Testing?
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Why do we do Testing? – Roles of Testing

• Detection: Determination whether or not the 
device under test (DUT) has some fault.

• Diagnosis: Identification of a specific fault that is 
present on DUT.

• Device characterization: Determination and 
correction of errors in design and/or test 
procedure.

• Failure Mode Analysis (FMA): Determination of 
manufacturing process errors that may have 
caused defects on the DUT.
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Write specifications

VHDL, Verilog

Synthesis,

Verification

Place and Route

Manufacturing

Good chips to customer

Customer

Failure

Mode

Analysis

Netlist

Layout

Test development

(test vectors generation)

Manufacturing testing

Typical Design Flow of VLSI Circuits 

Faulty 

chips

process(CLK, RST)

    if (RST = ‘1’)

        Q <= ‘0’;

    else if rising_edge(CLK) then

        Q <= A and B and c nand D;
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…0 0 0

…0 0 1

…1 0 1

Test vectors

(input patterns)

Design Under 

Test (DUT)
…0 0 0

…1 0 1

Comparator

Output 

responses

Stored

correct 

responses

Test result:

PASS / FAIL

m n

nn

How do we do Testing? – Principle of Testing

Time          …, 3, 2, 1

1st test vector

…0 1 0

…1 0 1
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Defect, Fault, Error

• Defect: in an electronic system, is the 
unintended difference between the implemented 
hardware and its intended design

• Fault: a representation of a defect at the 
abstracted functional level

• Error: a wrong output signal produced by a 
defective system; is an effect whose cause is 
some defect
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Single Stuck-at Fault Model

• Three properties define a single stuck-at fault
» Only one line is faulty

» The faulty line is permanently set to 0 or 1

» The fault can be at an input or output of a gate

• Example: XOR circuit has 12 fault sites (  ) and 24 single 
stuck-at faults

a 

b 

c

d 

e 

f 

1

0

g h 

i 
1

s-a-0
j 

k 

z 

0/1

1/0

1

Test vector for h  s-a-0 fault

Good circuit value

Faulty circuit value
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Single Stuck-at Fault Model

• How effective is this model?

– Empirical evidence supports the use of this 
model (justified by the frequent testing 
strategy)

– Has been found to be effective to detect 
other types of faults

– Easy to use
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Levels of Testing

• Rule of 10x: It costs 10 times more to test a device as we 
move to higher levels
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Automatic Test Equipment (ATE)

Prober

ATE

Probe card

Cantilever Needle Card Vertical card for area arrays 

(3500 needles)

Production IC Probe floor

ATE
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Memories

• Semiconductor memories are more than 35% of the 
entire semiconductor market

• Memories are the most numerous IPs used in SoC 
designs

• Number of bits per chip continues to increase 
exponentially and fault sensitivity increases; faults 
become more complex

• Less charge stored per memory cell, cells are smaller 
and closer → cell coupling faults

• Traditional tests require long test-times, which increases 
a lot with the increase of the memory size

• Test cost per memory chip must not increase 
significantly
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Memory Testing

• Levels: 
• Chip,  Array, Board

• March tests:
• Family of tests 

called “marches”

• Neighborhood 

tests
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Outline

• Testing

• Design for Testability (DFT)

• Microprocessors
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• Design techniques to add testability features to a 
design

– Testing activities moved to on-chip and on-board!

• These added features make it easier to develop 
and apply manufacturing tests

• Goal: improve controllability and/or observability 
of internal nodes of a chip or PCB

• Benefits: 
– Reduced ATE cost due to self-test, decreased test times, 

inexpensive alternatives to burn-in test, reduced field repair cost, 
high quality of products delivered to customer

• Costs: 
– Reduced yield due to area overhead, increased power 

dissipation

Motivation for Design For Testability (DFT)

15
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Benefit/Cost of DFT

LEGEND:      +    Cost increase

                       -    Cost saving (i.e., reduction)

                     +/-   Cost increase may balance cost reduction

Level Design 

and Test

Fabrication Manuf. 

test

Diagnosis 

and repair

Maintenance 

test

Service 

interrupti

on

Chip +/- + -

Board +/- + - -

System 

(rack)
+/- + - - - -

FieldDesign & manuf.

• If we consider life-cycle cost → DFT on chip lowers the 
costs at board and system levels!
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• Scan design
– Replace all selected storage 

elements with scan cells

– Connect scan cells into scan 
chains (shift register)

– Scan mode facilitates

» Shifting in test vectors

» Shifting out responses

• Good CAD tool support
– Transforming flip-flops to shift 

register

– ATPG

DFT #1 - Scan Path Design

FFs

Combinational

Logic

Primary

Inputs

Primary

Outputs

FF
Di

Clk

Qi

SFFs

Combinational

Logic

Primary

Inputs

Primary

Outputs

Scan Data In

Scan 

Data Out

FF

Clk

Qi

Di

Qi-1

Scan

Mode

0

1

3

1

2

Scan Flip-Flop (SFF)
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SFF

SFF

SFF

Combinational

Logic

PI PO

SCAN OUT

SCAN IN

Scan Mode 
Not shown: CLK 

signal feeds all 

SFFs

Scan Path Design
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DFT #2 - Built-In Self-Test (BIST)

Cores have to be tested on chip

Source: Elcoteq
Source: Intel
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• Motivation for BIST:
– Need for a cost-efficient testing (general motivation)

– Increasing difficulties with TPG (Test Pattern Generation)

– Growing volume of test pattern data

– Cost of ATE (Automatic Test Equipment)

– Test application time

– Gap between tester and DUT (Design Under Test) speeds

• Drawbacks of BIST:
– Additional pins and silicon area needed

– Decreased reliability due to increased silicon area

– Performance impact due to additional circuitry

– Additional design time and cost

Built-In Self-Test (BIST)
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Built-In Self-Test (BIST)

• Incorporates test pattern generator (TPG) and output response 
analyzer (ORA) internal to design

– Chip can test itself!

• Can be used at all levels of testing

– Device → PCB → system → field operation

Circuit

Under

Test

Primary Inputs Primary Outputs

TPG

Circuit

Under

Test

Primary Inputs

Primary Outputs

BIST Mode

Pass/Fail

0

1

ORA

Modified circuit with BIST support

BIST Controller
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System-on-Chip (SoC) BIST

System on Chip

Core 2       

Core 3 Core 4 Core 5   

Embedded Tester
Core 1     

Test access
mechanismBIST BIST

BISTBISTBIST

Test 
Controller

Tester
Memory

• testing time 

• memory cost 

• power consumption 

• hardware cost 

• test quality 
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Outline

• Testing

• Design for Testability (DFT)

• Microprocessors
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Challenges in Microprocessor Testing

• Today’s microprocessors consist of billions of 
transistors operating at extraordinarily high speeds

• Large number of registers

• Large number of small buffers or queues

• Different sizes of memories

• Complex random logic (control path & datapath)

• Board level testing

• Test integration & scheduling

• CAD tool support
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Part1: Systems with Microprocessors

• A system is an organization of 
components (hardware/software parts 
and subsystems) with capability to 
perform useful functions

• Systems with a microprocessor can use it 
to implement testing strategies for the 
whole system. The uP can self-test itself 
too
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Part2: Microprocessors Testing

• Structural testing

– Faults defined in conjunction with a structural model: structural fault 

models. Main types of structural faults are shorts and opens and 

they are mapped into stuck-at and bridging faults

– Test generation methods are based on the structural model of a 

system under test: produce tests for structural faults. Examples: 

PODEM, CONTEST, etc. 

– Test generation difficulty increases with the increase of processor 

complexity. Addressed partially by DFT techniques.

• Functional testing

– Functional fault model at Register Transfer Level (RTL): represent 

the effect of physical faults on the operation of a functionally 

modeled system. Example: addressing fault affecting register-

decoding

– Difficult to automate

28

Functional Testing

• Functional testing reduces the complexity of the test 
generation problem by approaching it at higher levels of 
abstraction → higher efficiency in test time

• The process of test generation is difficult to automate. It is 
often a manual process – time consuming, prone to errors

• The applicability of a functional testing method is limited to 
systems described via a particular modeling technique 

• 1. Testing without a fault model
– Quality of the functional tests is unknown

– Typically does not check that unintended operations do not occur 
(e.g., In addition to a correct transfer of data into register R1, the 
presence of a fault may cause the same data to be written into 
register R2)

• 2. Using specific fault models
– We do not know the comprehensiveness of a functional fault 

model → functional fault coverage is not meaningful

27
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1. Without fault models

• Develop test programs that can be executed on the 
processor

• Method:
– Test each instruction

– Test each subunit such as ALU

– Test buses, register file and decoders

– Test sequencing of instructions

• Key idea: Start small – test components and 
instructions that are easy to test and then use the 
tested parts to test other parts

30

2. Using specific fault models

• Graph model for microprocessors: based on architecture and instruction set

• Fault classes:
– Addressing faults affecting the register-decoding function, instruction-decoding, and instruction 

sequencing

– Faults in the data-storage, data-transfer, data-manipulation functions

• Fault model development
– Determine which instructions are “easy” to execute – such as uses fewest resources, fewest 

cycles – easy to control and observe

– Use such instructions to read and write register file to test register file and address decoding logic

– Test buses by moving different types of data on buses

– Test ALU by executing ALU related instructions such as ADD, SUB, …

– Buses: stuck-at and bridging faults

– ALU, register file: stuck-at

– Instruction decoder:

» No instruction is executed

» Different instruction is executed

» An additional instruction is also executed

• Algorithm development
– Develop simple sub-programs for each sub-unit testing

– Put them together

29
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“Snapshot” of Selected 
Microprocessor Testing and DFT Research Papers

• Intel
– D.M. Wu et al., An Optimized DFT and Test Pattern Generation 

Strategy for an Intel High Performance Microprocessor, ITC, 2004.

• AMD
– A. Sehgal et al., Test cost reduction for the AMD Athlon processor 

using test partitioning, ITC, 2007.

• SUN Microsystems
– R. Molyneaux et al., Design for Testability Features of the SUN 

Microsystems Niagara2 CMP-CMT SPARC Chip, ITC, 2007.

• IBM
– R. Franch et al., On-chip Timing Uncertainty Measurements on 

IBM Microprocessors, ITC, 2007.
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1. Intel

• Intel high performance 3GHz uProcessor, multiple clock 
domains, multi-cycle paths, domino logic

• Concerns: silicon area, leakage power, scan performance 
impact

• DFT uses a Hierarchical Scan Architecture (“divide and 
conquer” strategy)

– Design partitioned into clusters (e.g., floating point execution cluster)

– A cluster contains more units

– Each cluster has one cluster test controller (CTC) and at least one unit 
test controller (UTC)

• Each CTC has 36 scan chains that allow testing of 
partitions formed by selected clusters, units or 
combinations

31
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Intel

• Scan chains not in partition under test can be bypassed

• ATPG patterns are generated using the scan-based 
ATPG tools

• Skip scan methodologies
– Skip scan technique or Data Path Interleaved Scan (DI-Scan)

– Follow a set of DI-Scan rules: DI-Scan used only in datapath pipelines, 
control logic is full scan, etc.

• Cache/memory testing
– Programmable built-in self-testing (PBIST)

– Access to all portions of PBIST is available through the JTAG TAP 
controller

– Direct access testing (DAT): 100 times faster production test

– Programmable weak-write test mode (PWWTM): to detect stability types 
of defects in memory cells

34

Intel

• Integrated test controller (ITC) includes the TAP logic
– Complies with JTAG (IEEE 1149.1)

– Provides access to testability and debug features:

» Micro-breakpoints

» Control register bus access

» Scan, Scanout, Signature mode

» Thermal sensor control

» Fuse programming, DAT mode

» Boundary scan register

• Full chip ATPG methodology with a very low scan 
overhead

• On-chip weighted random patterns BIST structure 
including a test compression structure

33
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2. AMD

• 33-element partitioning → 80% reduction in test time 
compared to a flat model

• Advantages of modular test:
– Reduced ATPG run-time

– Greater test reuse

– Simplified verification and scan chain failure debug

– Reduced test time

• Note that this is similar to the Intel approach as divide-
and-conquer

36

AMD

• Partitioning in three major steps:
– Disposition of partition boundaries – done by surrounding each test 

module with a core test wrapper

– Connect partition module to the test resources – known as providing a 
test access mechanism (TAM). Use 40 scan chains

– Test boundaries are selected considering:

» Maximizing test coverage

» Minimizing pattern count

» Using the shortest possible scan chains

» Minimizing routing overhead

» Re-using existing scan registers at partition boundaries

» Allowing parallel module testing if desired

35
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AMD Athlon Chip

• Design partitioned into 10 top-level modules and 33 
second-level modules

• Test time is reduced with 38% compared to the non-
modular approach. Attributed to reduction in the scan 
chain lengths in each module compared to the length of 
4000 in the flat case

• Number of flops increased with 5% (due to wrapper 
cells)

• The cumulative pattern count of the modules 370% 
higher
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3. SUN

• Niagara2 SPARC: 
– 8 processor cores, 1.4GHz, 4MB on-chip L2 cache, 65nm technology

– 8 clock domains, mixture of full custom, semi-custom, and ASIC 
design styles, 300 SRAMs

• Level sensitive scan architecture

• Every SRAM tested with at-speed MBIST

• Scan chains
– More than 1 million flops are organized as 32 scan chains

– 84 JTAG scan chain configurations, 2 manufacturing scan chains

– 35 MBIST chains for rapid programming of MBIST configuration 
registers

37
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SUN

• Stuck-at test coverage: 98.5%

• Transition test coverage: 82%

• Path delay testing
– 15,000 paths in each core tested at-speed

• SRAM access
– Each SRAM is equipped with scanable input flops

– Micro Test: process used to access the SRAM during debug from the JTAG 
port

• Memory BIST: at-speed testing
– 80 MBIST engines

– March C- forms the basis of the test algorithm

– Read after write worst case (RAWWC) test

• FIFO memories (200Kbits): equipped with custom clock MUX

• CAM, Double-pumped memories (network interface unit): 
March tests

• Direct Memory Observe test: combination of MBIST with direct 
pin access to facilitate embedded SRAM bitmapping

• Support for JTAG 1149.1 boundary scan testing
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4. IBM

• Timing uncertainty comprised of:
– PLL jitter

– Clock distribution skew

– Across chip variations

– Power supply noise

• On-chip measurement macro called SKITTER (skew + 
jitter): measures timing uncertainty from all combined 
sources; 5-8ps resolution

• Very sensitive monitor of power supply noise, as 
dominant factor of timing uncertainty

39
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• SKITTER used in IBM microprocessors: PPC970MP, 
XBOX360, CELL broadband engine, POWER6

IBM

42

IBM

• Changing location of the edges in the Skitter sampling 
latches is a good indicator of the variations in chip 
timing

• The Skitter itself can be self-monitoring and trigger a 
readout if an edge is detected in a bin where it is not 
expected

• Measurements can be converted from bin counts into 
picoseconds

• The shift in an edge bin can be converted into mV of 
VDD noise

• Duty cycle measurements useful

• Multiple Skitters on chip: for each core, at different 
locations on chip, in the front side bus, etc.
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Conferences

• For the latest research on Testing, not only of 
processors, check out the latest papers published in the 
following conferences and journals:

• IEEE International Test Conference (ITC)
– https://easychair.org/smart-program/ITC2024/index.html

• IEEE International Conference on Design & Test of 
Integrated Micro & Nano-Systems (DTS)

– https://ieeexplore.ieee.org/xpl/conhome/1832104/all-proceedings 

• IEEE International Automatic Testing Conference, 
AUTOTESTCON

– https://ieeexplore.ieee.org/xpl/conhome/1000070/all-proceedings 

• IEEE Design & Test Magazine
– https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6221038 
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Conclusions

44

• Design hierarchy & circuit partitioning - Divide-and-
conquer seems to be a successful testing strategy

• (M)BIST for large memories/arrays

• Special BIST for small buffers

• Scan for random logic

• Full chip testing employs multiple scan chains, 
MBIST, boundary scan, transition and path delay 
tests

• Other design for testability and debug/diagnosis: 
Skitter, software-based defect detection and 
diagnosis

• Fault tolerance techniques: self repairing 
microprocessor arrays
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