
1

1

Cris Ababei

Dept. of Electrical and Computer Engineering

Marquette University

COEN-4730 Computer Architecture
 Lecture 13

Testing and Design for Testability
(focus: Processors)

2

Outline

• Testing

• Design for Testability (DFT)

• Microprocessors

1

2

2

3

Quality of VLSI Circuits

Unclustered defects

Wafer yield = 12/22 = 0.55

Clustered defects (VLSI)

Wafer yield = 17/22 = 0.77

Wafer

Defects

Faulty chips

Good chips

4

• Testing
– Experiment to detect if the operation of the fabricated physical

circuit is affected by manufacturing defects

• Vs. Verification
– Predictive analysis to ensure correctness of the synthesized

circuit; when manufactured, the circuit will perform the given I/O
function

What is Testing?

3

4

3

5

Why do we do Testing? – Roles of Testing

• Detection: Determination whether or not the
device under test (DUT) has some fault.

• Diagnosis: Identification of a specific fault that is
present on DUT.

• Device characterization: Determination and
correction of errors in design and/or test
procedure.

• Failure Mode Analysis (FMA): Determination of
manufacturing process errors that may have
caused defects on the DUT.

6

Write specifications

VHDL, Verilog

Synthesis,

Verification

Place and Route

Manufacturing

Good chips to customer

Customer

Failure

Mode

Analysis

Netlist

Layout

Test development

(test vectors generation)

Manufacturing testing

Typical Design Flow of VLSI Circuits

Faulty

chips

process(CLK, RST)

 if (RST = ‘1’)

 Q <= ‘0’;

 else if rising_edge(CLK) then

 Q <= A and B and c nand D;

5

6

4

7

…0 0 0

…0 0 1

…1 0 1

Test vectors

(input patterns)

Design Under

Test (DUT)
…0 0 0

…1 0 1

Comparator

Output

responses

Stored

correct

responses

Test result:

PASS / FAIL

m n

nn

How do we do Testing? – Principle of Testing

Time …, 3, 2, 1

1st test vector

…0 1 0

…1 0 1

8

Defect, Fault, Error

• Defect: in an electronic system, is the
unintended difference between the implemented
hardware and its intended design

• Fault: a representation of a defect at the
abstracted functional level

• Error: a wrong output signal produced by a
defective system; is an effect whose cause is
some defect

7

8

5

9

Single Stuck-at Fault Model

• Three properties define a single stuck-at fault
» Only one line is faulty

» The faulty line is permanently set to 0 or 1

» The fault can be at an input or output of a gate

• Example: XOR circuit has 12 fault sites () and 24 single
stuck-at faults

a

b

c

d

e

f

1

0

g h

i
1

s-a-0
j

k

z

0/1

1/0

1

Test vector for h s-a-0 fault

Good circuit value

Faulty circuit value

10

Single Stuck-at Fault Model

• How effective is this model?

– Empirical evidence supports the use of this
model (justified by the frequent testing
strategy)

– Has been found to be effective to detect
other types of faults

– Easy to use

9

10

6

11

Levels of Testing

• Rule of 10x: It costs 10 times more to test a device as we
move to higher levels

12

Automatic Test Equipment (ATE)

Prober

ATE

Probe card

Cantilever Needle Card Vertical card for area arrays

(3500 needles)

Production IC Probe floor

ATE

11

12

7

13

Memories

• Semiconductor memories are more than 35% of the
entire semiconductor market

• Memories are the most numerous IPs used in SoC
designs

• Number of bits per chip continues to increase
exponentially and fault sensitivity increases; faults
become more complex

• Less charge stored per memory cell, cells are smaller
and closer → cell coupling faults

• Traditional tests require long test-times, which increases
a lot with the increase of the memory size

• Test cost per memory chip must not increase
significantly

14

Memory Testing

• Levels:
• Chip, Array, Board

• March tests:
• Family of tests

called “marches”

• Neighborhood

tests

13

14

8

15

Outline

• Testing

• Design for Testability (DFT)

• Microprocessors

16

• Design techniques to add testability features to a
design

– Testing activities moved to on-chip and on-board!

• These added features make it easier to develop
and apply manufacturing tests

• Goal: improve controllability and/or observability
of internal nodes of a chip or PCB

• Benefits:
– Reduced ATE cost due to self-test, decreased test times,

inexpensive alternatives to burn-in test, reduced field repair cost,
high quality of products delivered to customer

• Costs:
– Reduced yield due to area overhead, increased power

dissipation

Motivation for Design For Testability (DFT)

15

16

9

17

Benefit/Cost of DFT

LEGEND: + Cost increase

 - Cost saving (i.e., reduction)

 +/- Cost increase may balance cost reduction

Level Design

and Test

Fabrication Manuf.

test

Diagnosis

and repair

Maintenance

test

Service

interrupti

on

Chip +/- + -

Board +/- + - -

System

(rack)
+/- + - - - -

FieldDesign & manuf.

• If we consider life-cycle cost → DFT on chip lowers the
costs at board and system levels!

18

• Scan design
– Replace all selected storage

elements with scan cells

– Connect scan cells into scan
chains (shift register)

– Scan mode facilitates

» Shifting in test vectors

» Shifting out responses

• Good CAD tool support
– Transforming flip-flops to shift

register

– ATPG

DFT #1 - Scan Path Design

FFs

Combinational

Logic

Primary

Inputs

Primary

Outputs

FF
Di

Clk

Qi

SFFs

Combinational

Logic

Primary

Inputs

Primary

Outputs

Scan Data In

Scan

Data Out

FF

Clk

Qi

Di

Qi-1

Scan

Mode

0

1

3

1

2

Scan Flip-Flop (SFF)

17

18

10

19

SFF

SFF

SFF

Combinational

Logic

PI PO

SCAN OUT

SCAN IN

Scan Mode
Not shown: CLK

signal feeds all

SFFs

Scan Path Design

20

DFT #2 - Built-In Self-Test (BIST)

Cores have to be tested on chip

Source: Elcoteq
Source: Intel

19

20

11

21

• Motivation for BIST:
– Need for a cost-efficient testing (general motivation)

– Increasing difficulties with TPG (Test Pattern Generation)

– Growing volume of test pattern data

– Cost of ATE (Automatic Test Equipment)

– Test application time

– Gap between tester and DUT (Design Under Test) speeds

• Drawbacks of BIST:
– Additional pins and silicon area needed

– Decreased reliability due to increased silicon area

– Performance impact due to additional circuitry

– Additional design time and cost

Built-In Self-Test (BIST)

22

Built-In Self-Test (BIST)

• Incorporates test pattern generator (TPG) and output response
analyzer (ORA) internal to design

– Chip can test itself!

• Can be used at all levels of testing

– Device → PCB → system → field operation

Circuit

Under

Test

Primary Inputs Primary Outputs

TPG

Circuit

Under

Test

Primary Inputs

Primary Outputs

BIST Mode

Pass/Fail

0

1

ORA

Modified circuit with BIST support

BIST Controller

21

22

12

23

System-on-Chip (SoC) BIST

System on Chip

Core 2

Core 3 Core 4 Core 5

Embedded Tester
Core 1

Test access
mechanismBIST BIST

BISTBISTBIST

Test
Controller

Tester
Memory

• testing time 

• memory cost 

• power consumption 

• hardware cost 

• test quality 

24

Outline

• Testing

• Design for Testability (DFT)

• Microprocessors

23

24

13

25

Challenges in Microprocessor Testing

• Today’s microprocessors consist of billions of
transistors operating at extraordinarily high speeds

• Large number of registers

• Large number of small buffers or queues

• Different sizes of memories

• Complex random logic (control path & datapath)

• Board level testing

• Test integration & scheduling

• CAD tool support

26

Part1: Systems with Microprocessors

• A system is an organization of
components (hardware/software parts
and subsystems) with capability to
perform useful functions

• Systems with a microprocessor can use it
to implement testing strategies for the
whole system. The uP can self-test itself
too

25

26

14

27

Part2: Microprocessors Testing

• Structural testing

– Faults defined in conjunction with a structural model: structural fault

models. Main types of structural faults are shorts and opens and

they are mapped into stuck-at and bridging faults

– Test generation methods are based on the structural model of a

system under test: produce tests for structural faults. Examples:

PODEM, CONTEST, etc.

– Test generation difficulty increases with the increase of processor

complexity. Addressed partially by DFT techniques.

• Functional testing

– Functional fault model at Register Transfer Level (RTL): represent

the effect of physical faults on the operation of a functionally

modeled system. Example: addressing fault affecting register-

decoding

– Difficult to automate

28

Functional Testing

• Functional testing reduces the complexity of the test
generation problem by approaching it at higher levels of
abstraction → higher efficiency in test time

• The process of test generation is difficult to automate. It is
often a manual process – time consuming, prone to errors

• The applicability of a functional testing method is limited to
systems described via a particular modeling technique

• 1. Testing without a fault model
– Quality of the functional tests is unknown

– Typically does not check that unintended operations do not occur
(e.g., In addition to a correct transfer of data into register R1, the
presence of a fault may cause the same data to be written into
register R2)

• 2. Using specific fault models
– We do not know the comprehensiveness of a functional fault

model → functional fault coverage is not meaningful

27

28

15

29

1. Without fault models

• Develop test programs that can be executed on the
processor

• Method:
– Test each instruction

– Test each subunit such as ALU

– Test buses, register file and decoders

– Test sequencing of instructions

• Key idea: Start small – test components and
instructions that are easy to test and then use the
tested parts to test other parts

30

2. Using specific fault models

• Graph model for microprocessors: based on architecture and instruction set

• Fault classes:
– Addressing faults affecting the register-decoding function, instruction-decoding, and instruction

sequencing

– Faults in the data-storage, data-transfer, data-manipulation functions

• Fault model development
– Determine which instructions are “easy” to execute – such as uses fewest resources, fewest

cycles – easy to control and observe

– Use such instructions to read and write register file to test register file and address decoding logic

– Test buses by moving different types of data on buses

– Test ALU by executing ALU related instructions such as ADD, SUB, …

– Buses: stuck-at and bridging faults

– ALU, register file: stuck-at

– Instruction decoder:

» No instruction is executed

» Different instruction is executed

» An additional instruction is also executed

• Algorithm development
– Develop simple sub-programs for each sub-unit testing

– Put them together

29

30

16

31

“Snapshot” of Selected
Microprocessor Testing and DFT Research Papers

• Intel
– D.M. Wu et al., An Optimized DFT and Test Pattern Generation

Strategy for an Intel High Performance Microprocessor, ITC, 2004.

• AMD
– A. Sehgal et al., Test cost reduction for the AMD Athlon processor

using test partitioning, ITC, 2007.

• SUN Microsystems
– R. Molyneaux et al., Design for Testability Features of the SUN

Microsystems Niagara2 CMP-CMT SPARC Chip, ITC, 2007.

• IBM
– R. Franch et al., On-chip Timing Uncertainty Measurements on

IBM Microprocessors, ITC, 2007.

32

1. Intel

• Intel high performance 3GHz uProcessor, multiple clock
domains, multi-cycle paths, domino logic

• Concerns: silicon area, leakage power, scan performance
impact

• DFT uses a Hierarchical Scan Architecture (“divide and
conquer” strategy)

– Design partitioned into clusters (e.g., floating point execution cluster)

– A cluster contains more units

– Each cluster has one cluster test controller (CTC) and at least one unit
test controller (UTC)

• Each CTC has 36 scan chains that allow testing of
partitions formed by selected clusters, units or
combinations

31

32

17

33

Intel

• Scan chains not in partition under test can be bypassed

• ATPG patterns are generated using the scan-based
ATPG tools

• Skip scan methodologies
– Skip scan technique or Data Path Interleaved Scan (DI-Scan)

– Follow a set of DI-Scan rules: DI-Scan used only in datapath pipelines,
control logic is full scan, etc.

• Cache/memory testing
– Programmable built-in self-testing (PBIST)

– Access to all portions of PBIST is available through the JTAG TAP
controller

– Direct access testing (DAT): 100 times faster production test

– Programmable weak-write test mode (PWWTM): to detect stability types
of defects in memory cells

34

Intel

• Integrated test controller (ITC) includes the TAP logic
– Complies with JTAG (IEEE 1149.1)

– Provides access to testability and debug features:

» Micro-breakpoints

» Control register bus access

» Scan, Scanout, Signature mode

» Thermal sensor control

» Fuse programming, DAT mode

» Boundary scan register

• Full chip ATPG methodology with a very low scan
overhead

• On-chip weighted random patterns BIST structure
including a test compression structure

33

34

18

35

2. AMD

• 33-element partitioning → 80% reduction in test time
compared to a flat model

• Advantages of modular test:
– Reduced ATPG run-time

– Greater test reuse

– Simplified verification and scan chain failure debug

– Reduced test time

• Note that this is similar to the Intel approach as divide-
and-conquer

36

AMD

• Partitioning in three major steps:
– Disposition of partition boundaries – done by surrounding each test

module with a core test wrapper

– Connect partition module to the test resources – known as providing a
test access mechanism (TAM). Use 40 scan chains

– Test boundaries are selected considering:

» Maximizing test coverage

» Minimizing pattern count

» Using the shortest possible scan chains

» Minimizing routing overhead

» Re-using existing scan registers at partition boundaries

» Allowing parallel module testing if desired

35

36

19

37

AMD Athlon Chip

• Design partitioned into 10 top-level modules and 33
second-level modules

• Test time is reduced with 38% compared to the non-
modular approach. Attributed to reduction in the scan
chain lengths in each module compared to the length of
4000 in the flat case

• Number of flops increased with 5% (due to wrapper
cells)

• The cumulative pattern count of the modules 370%
higher

38

3. SUN

• Niagara2 SPARC:
– 8 processor cores, 1.4GHz, 4MB on-chip L2 cache, 65nm technology

– 8 clock domains, mixture of full custom, semi-custom, and ASIC
design styles, 300 SRAMs

• Level sensitive scan architecture

• Every SRAM tested with at-speed MBIST

• Scan chains
– More than 1 million flops are organized as 32 scan chains

– 84 JTAG scan chain configurations, 2 manufacturing scan chains

– 35 MBIST chains for rapid programming of MBIST configuration
registers

37

38

20

39

SUN

• Stuck-at test coverage: 98.5%

• Transition test coverage: 82%

• Path delay testing
– 15,000 paths in each core tested at-speed

• SRAM access
– Each SRAM is equipped with scanable input flops

– Micro Test: process used to access the SRAM during debug from the JTAG
port

• Memory BIST: at-speed testing
– 80 MBIST engines

– March C- forms the basis of the test algorithm

– Read after write worst case (RAWWC) test

• FIFO memories (200Kbits): equipped with custom clock MUX

• CAM, Double-pumped memories (network interface unit):
March tests

• Direct Memory Observe test: combination of MBIST with direct
pin access to facilitate embedded SRAM bitmapping

• Support for JTAG 1149.1 boundary scan testing

40

4. IBM

• Timing uncertainty comprised of:
– PLL jitter

– Clock distribution skew

– Across chip variations

– Power supply noise

• On-chip measurement macro called SKITTER (skew +
jitter): measures timing uncertainty from all combined
sources; 5-8ps resolution

• Very sensitive monitor of power supply noise, as
dominant factor of timing uncertainty

39

40

21

41

• SKITTER used in IBM microprocessors: PPC970MP,
XBOX360, CELL broadband engine, POWER6

IBM

42

IBM

• Changing location of the edges in the Skitter sampling
latches is a good indicator of the variations in chip
timing

• The Skitter itself can be self-monitoring and trigger a
readout if an edge is detected in a bin where it is not
expected

• Measurements can be converted from bin counts into
picoseconds

• The shift in an edge bin can be converted into mV of
VDD noise

• Duty cycle measurements useful

• Multiple Skitters on chip: for each core, at different
locations on chip, in the front side bus, etc.

41

42

22

Conferences

• For the latest research on Testing, not only of
processors, check out the latest papers published in the
following conferences and journals:

• IEEE International Test Conference (ITC)
– https://easychair.org/smart-program/ITC2024/index.html

• IEEE International Conference on Design & Test of
Integrated Micro & Nano-Systems (DTS)

– https://ieeexplore.ieee.org/xpl/conhome/1832104/all-proceedings

• IEEE International Automatic Testing Conference,
AUTOTESTCON

– https://ieeexplore.ieee.org/xpl/conhome/1000070/all-proceedings

• IEEE Design & Test Magazine
– https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6221038

43

Conclusions

44

• Design hierarchy & circuit partitioning - Divide-and-
conquer seems to be a successful testing strategy

• (M)BIST for large memories/arrays

• Special BIST for small buffers

• Scan for random logic

• Full chip testing employs multiple scan chains,
MBIST, boundary scan, transition and path delay
tests

• Other design for testability and debug/diagnosis:
Skitter, software-based defect detection and
diagnosis

• Fault tolerance techniques: self repairing
microprocessor arrays

43

44

https://easychair.org/smart-program/ITC2024/index.html
https://ieeexplore.ieee.org/xpl/conhome/1832104/all-proceedings
https://ieeexplore.ieee.org/xpl/conhome/1000070/all-proceedings
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6221038

	Slide 1: COEN-4730 Computer Architecture Lecture 13 Testing and Design for Testability (focus: Processors)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Conferences
	Slide 44: Conclusions

