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Abstract - In this paper we present an effective technique for 
compacting a large sequence of input vectors into a much shorter 
one so as to reduce the circuit-level simulation time by orders of 
magnitude and maintain the accuracy of the power estimates. In 
particular, we model the effects of complex spatiotemporal 
correlations and riseJal1 time slopes on total power dissipation. As 
the results demonstrate, large compaction ratios of orders of 
magnitude can be obtained without significant loss (about 5%. on 
average) in the accuracy of power estimates. 
Keywords: simulation efficiency, power estimation, input 
dependencies, riseJall time, vector compaction, Markov models. 

I. INTRODUCTION 
Power dissipation has become an important design constraint for 
nowadays digital systems. Due to this trend, a significant amount of 
work has been devoted to accurate power estimation in CMOS 
circuits. To date, both dynamic and static approaches have been 
considered, each one having its own advantages and limitations 181. 
More precisely, the general simulation techniques provide sufficient 
accuracy, but are very costly. On the other hand, nonsimulative 
approaches are much faster, but less accurate than those based on 
simulation. The reason for inaccuracy is the set of simplifying 
assumptions (zero riseifall times, zero-delay) used in calculations. 

Another important issue is the level of abstraction where the 
power estimation techniques are applied. Generally speaking, the 
logic-level power estimation is far less accurate compared to the 
circuit-level estimation. The circuit-level simulation can improve 
the accuracy of power estimates but, as a side effect, significantly 
increase the computational cost of the estimation process. 

As a conclusion, a number of issues appear to be important for 
accurate power estimation. The input statistics (spatiotemporal 
correlations, rise/fall time slopes, etc.) which must be properly 
captured and the length of the input sequences which must be 
applied are two such issues. Generating a minimal-length sequence 
of input vectors that satisfies these statistics is not trivial. The 
reason is the elaborate set of input statistics that must be preservedl 
reproduced during sequence generation for power simulators. 

The present paper addresses the problem of circuit-level power 
estimation and improves the-state-of the art by providing an original 
solution under the paradigm of vector compaction. Having an initial 
sequence (representative for a target circuit), we target lossy 
compression [2], i.e. the process of transforming an input sequence 
into a shorter one, such that the new body of data represents a good 
approximation as far as total power consumption is concemed. 

The foundation of our approach is probabilistic in nature; it 
relies on adaptive (dynamic) modeling of Piecewise Linear (PWL) 
input sequences as second-order Markov sources of information. 
The adaptive modeling technique itself (a.k.a. Dynamic Markov 
Chain or DMC modeling [4]) was introduced recently in the 
literature on data compression and extended in [9] to handle gate- 
level spatiotemporal correlations. In this paper, we change the focus 
from gate-level to circuit-level power estimation and give a new 
formulation to the vector compaction problem. Using this new 
formalism, we are able to handle multiple symbols that are used to 
represent the PWL waveforms that arise in real Spice simulations. 

By moving the vector compaction problem from logic domain to 
circuit-level, we significantly improve on the accuracy of power 
estimates and then completely eliminate the limitations in accuracy 
of power estimates that are typical for logic-level approaches. 

As demonstrated by practical evidence, this new framework is 
extremely effective in power estimation. The basic idea is illustrated 
in Fig.la. To evaluate the total power consumption for a PWL input 
sequence (of length LO), we first derive the Markov model of the 
input sequence and then, having this compact representation, we 
generate a much shorter sequence (of length L << Lo), equivalent with 
the initial one, which can be used with any available circuit-level 
simulator to derive accurate power estimates (Fig. lb). 

Fig. 1: Data compaction for power estimation 
We note that, as opposed to current circuit-level techniques that try 
to improve on the circuit model used for simulation, our technique 
is focusing only on modeling the PWL sequences that are fed to the 
target circuit (simulator). This is a fundamental change which 
makes our technique appealing in practice: by targeting only the 
input sequence and not the circuit itself, the approach becomes 
independent from the circuit modeling part. We also point out that 
our technique does not compete with other circuit-level techniques 
based on macromodeling 181; we simply provide a tool for those 
approaches not only to speedup the characterization process but also 
to improve on their accuracy by capturing actual spatiotemporal 
correlations and tiselfall time slopes. 

To conclude, both static and dynamic techniques for power 
estimation may benefit from this research. The issues brought into 
attention in this paper are new and represent an important step 
toward reducing the gap between the static and dynamic techniques 
commonly used in circuit-level power estimation. 

The paper is organized as follows: Section I1 reviews the basic 
concepts of Markov modeling technique. Section 111 formalizes, at 
circuit level, the power-oriented vector compaction problem. In 
sections IV, we give some experimental results. Finally, we 
conclude by summarizing our main contribution. 

11. BACKGROUND ON DYNAMIC MARKOV MODELS 
The foundation of our approach relies on the adaptive (dynamic) 
modeling of binary input streams as Markov sources of information. 
The Markov modeling technique [4] was recently extended to 
capture not only correlations among adjacent bits, but also 
correlations between successive input pattems [9]. Indeed, for 
power estimation purposes, this is an essential feature because the 
power consumption is very much dependent on the statistical 
properties of the input pattems. In the remaining part of this section, 
we briefly review the main issues in Markov modeling. For an in- 
depth presentation the reader is referred to [9]. 
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Without loss of generality, we restrict our attention to finite 
binary strings; that is, finite sequences on b bits consisting only of 
0's and 1's. A particular sequence SI consists of vectors VI ,  v2. ..., v, 
(distinct or not), each having a non-zero occurrence probability. 
Indices 1, 2,,,., n represent the discrete time steps when a particular 
vector is applied to a target circuit. Imposing a total ordering among 
bits, such a sequence may be conveniently viewed as a binary tree 
(called DMTo from Dynamic Markov Tree of order zero) where 
nodes at level j correspond to bit j (1 I j I b)  in the original 
sequence; each edge that emerges from a node is labelled with a 
positive count (and then a positive probability) that indicates how 
many times the substring from the root to that particular node, 
occurred in the original sequence. The DMTo alone cannot capture 
temporal correlations because the relative order of vectors in the 
initial sequence is irrelevant for its construction. For power 
estimation this is a fundamental limitation so we consider a more 
refined structure by incorporating jrsr-order temporal effects 
(called DMTl from Dynamic Markov Tree of order 1) [9]. 
Example 1: For the following 4-bit sequence consisting of 8 non- 
distinct vectors (vl, v2, "3, v4, v5, v,5, v7, vg)  = (0000, 0001, 1001, 
1100, 1001, 1100, 1001, 1 loo), the tree DMTl is given in Fig.2. 

ripper srrbtree 

lower subtree 

Fig.2: Structure of DMT, 
The upper subtree (levels 1 to 4) represents DMTo while the lower 
subtrees (levels 5 to 8), give the actual sequencing between any two 
successive vectors. We note that any, binary sequence can be 
modeled as a first-order Markov source using DMTl. The simple 
structure of DMT', can be further extended to capture temporal 
dependencies of higher orders. For instance, if we define recursively 
DMT.2, we can capture second-order temporal correlations. For any 
sequence where vi, v j  v, are 3 consecutive vectors (vi 4 vj + v,), the 
tree DMT2 looks like in Fig.3. 

P ( V l l V i )  p(vi)$A$uMT] UMT2 

P W V i V j $  b, 

Fig.3: A second-order Markov tree 
More generally, a structure DMTp can be constructed; DMTp 

completely captures spatial and temporal correlations of orderp [9]. 

III. POWER-ORIENTED DATA COMPACTION 
A. Problem Formulation 
Input pattern dependencies (i.e. spatial and temporal correlations) 
have a dramatic impact on power dissipation estimates [lo]. More 
than this, it was shown that the real rise/fall time slopes in signal 
propagation can have a significant effect on total power dissipation 

[3][5][7]. More precisely, different rise/fall time slopes in signal 
propagation can generate glitches within the circuit and these 
glitches determine extra-power consumption. In addition, as the 
signal rise and fall times increase, the contribution of short-circuit 
power consumption can also significantly increase [ 1][3]. To 
illustrate this issue, we simulate the benchmark C17, with Spice at a 
clock frequency of IOMHz. The circuit is fed with a 5-bit counted 
sequence whose signals have, in a first scenario, equal rise and fall 
times of Ins. In a second experiment, we change the rise ancl fall 
times to 5ns. The total power consumption we obtain is 13.05 pW in 
the first case and 18.12 pW for the latter, which shows a relative 
difference of 40%. 

Considering all these, we focus on the input problem, in  the 
sense that we try to find, fndependenrly of the target circuit, a good 
approximation of the input sequence. For circuit-level power 
estimation purposes, it is critical to distinguish not only between 
input sequences with very different spatial and temporal 
correlations, but also different values for the rise and fall time 
slopes; this is especially true if we are interested in node-by-node 
accurate power estimation using Spice. 

To simplify the vector compaction problem, we restrict to a 
finite set of rise and fall time slopes that may characterize the 0/1 
transitions in real applications. More precisely, we consider the set 
of 2k rise/fall time slopes' {s1.s2.. . . , s zk }  that characterize the set 
of PWL input signals in a Spice simulation. We assume that the 
O+I / l - tO transitions can take place as shown in Fig.4a. (I,,, I,,+', 

r,+, represent three discrete time steps associated to the lag-2 
Markov chain that characterizes the transition process.) 

> 
fa 4l+l bl+2 

(a) (b) 
Fig.4: Transitions O+l I 1-10 with k rise and k fall time slopes 

In this representation, every transition 0+1/1+0 takes place with a 
particular slope s, ( i  = 1.k); moreover, the glitches that have the 
width below a certain threshold are automatically filtered out. We 
note that, this modeling scheme can be easily extended to also 
accommodate O+l/l-tO transitions with infinite slopes, narrow 
glitches, and incomplete transitions (symbols g,, 82, g3, g4 in 
Fig.4b). However, we restrict our subsequent presentation only to 
the case illustrated in Fig.4a. 

The two-step transition process in Fig.4a can be described 
using the (2k+2) by (2k+2) transition matrix in equation (I) .  In this 
representation, a probability "0" denotes an impossible transition 
while an entry "*" represents a valid transition (with the probability 
value within the [0,1] interval). For instance, starting with symbol 
" 0  it's possible either to go to any symbol within the set 
{s,,s2, ..., s k }  or to remain in the same state symbolized by "0". On 
the other hand, for any si ( i  = I.&, the process will move 
deterministically to symbol '1'. We also note that, because Q is a 

' sI. s2 ,..., SI; are rise-time symbols while sk+l .  s1.+2 ,..., sZp are fall- 
time symbols. 
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stochastic matrix, the elements in every row add to 1. 

0 0 ... 0 0 ... 0 0 1 
0 0  ... 0 0  ... 0 0 1 

... 0 0  ... 0 0 0 

... ... ... 
Q =  

... ... ... ... 
' 2 k  0 0 ... 0 0 ... 0 1 0 
0 * * . . . *  0 ... 0 
1 I 0 0 ... 0 * . . . *  J 

Using this compact notation, the vector compaction problem 
can be formulated as follows: for any PWL sequence of length Lo 
(consisting of vectors a,, a2, ..., a,,), find another PWL sequence of 
length L < & (consisting of the subset P I ,  p2, ..., p, of the initial 
sequence), such that the average transition probability on the 
primary inputs of the target circuit is preserved wordwise. 

More formally, for any generic input value i (that is, 0, 1,  or 
any slope s, ,s2.. . . ,sZk ), the following condition should hold: 

(2) IlQtl;Pi- (Q*~/';)'Il = WE) 
where Pi (Pi)' is the (column) state probability vector of the input 

value i, Qlli and (Q?,,)' represent the two-step transition matrices 
that correspond to the original and compacted sequences, 
respectively. @E) (read as 'zero of epsilon') represents any power 

series k ,  E + k2e2 + . . . (convergent for small E). 

We note that the above two-step transition probabilities are 
needed to ensure that we preserve the appropriate (valid), set of 
triplets (that is, O+ sl-t 1 or O-t s2+ 1, etc.) which define the non- 
ideal (valid) 0+1 and l-t 0 transitions. Furthermore, this bit-level 
formulation can be extended to any number of bits. 

B. A DMC-based Approach 
The compaction process of the PWL sequences can be realized 
using the DMC model in Section 11. To this end, all we need to do is 
to encode the PWL information in binayformat and then apply the 
DMC compaction procedure at bit-level. For example, for a PWL 
sequence that contains symbols from the set {0,1,s,,s2,s3,s4 } (i.e. 
0, 1, two rise, and two fall time slopes), one can use a 3-bit encoding 
to generate the binary sequence. The overall flow is given in FigS. 

Starting with a real Spice sequence, we first linearize it by 
considering the full transitions between 0 and 1 with different rise/ 
fall time slopes. After that, using an encoding scheme with 
Llog(2k + 2)1 bits, we preprocess the PWL sequence (of length 
LO) into a binary one ( S O  in Fig.5) which is taken as input in the 
compaction module. The resulting compacted sequence (i.e. S O  ) is 
decoded and transformed back into a PWL sequence (of length L) 
which is used as stimulus at the primary inputs of the target circuit. 

The compaction process in Fig.5 is based on the second-order 
dynamic Markov tree (DMT2 in Fig.3) which actually implements 
relation (2) at word-level. A practical procedure to construct the 
DMT2 and generate the compacted sequence works as follows: 
during a one-pass traversal of the original sequence (when we 
extract the bit-level statistics of each individual vector vl,vp..,vn and 

2 

2 

also those statistics that correspond to pairs of consecutive vectors 
( v ~ v z ) ,  ( ~ 2 ~ 3 ) .  ..., (vn-2v,,-l 1, (vn.lvn)), we grow simultaneously the 
tree DMT2. We continue to grow DMT2 as long as the number of 
nodes in the Markov model is smaller than a user-specified 
threshold and we didn't reach the end of the sequence. If the 
Markov model becomes too large, we just generate the new 
sequence up to that point and discard (flush) the model. A new 
Markov model is started again and the process is continued up to the 
end of the original sequence. 

+ n h  Initial Spice Sequence 
U 

0 s; 1 h, o s 3 1  s4 0 0  . . .  
Binary Sequence So 

oc 

Compacted Sequence So 
000 01 I 001 ... 

os 1 1 szosj 1540 ... 1s '  (length L )  

/-7 ~ , PWLConstruction 

Fig.5: The flow of the compaction process 
Once the Markov model is built, to generate a new sequence, we 

use a modified version of the dynamic weighted selection algorithm 
[6] .  To ensure a minimal level of error, we implemented an error 
conrrolling mechanism in a greedy fashion. More precisely, at each 
level in the lower Markov tree, to decide whether a zero or one has 
to be generated, we compute the transition probabilities for both 
alternatives and choose the one that minimizes the absolute error 
accumulated up to that point. Simultaneously, the upper tree is 
parsed from the root to the leaves, according to the bits generated in 
the lower subtree. The procedure is then resumed until the needed 
number of vectors is generated. 

This strategy does note introduce 'forbidden' vectors that is, 
those input patterns that did not occur in the original sequence, will 
not appear in the compacted sequence either. This is an essential 
capability to avoid 'hang-up' ('forbidden') states of the circuit 
during simulation process for power estimation. We also note that, 
by construction, it does not introduce forbidden transitions either. 

Final k+ Spice Sequence 

IV. EXPERIMENTAL RESULTS 
The overall strategy is given in Fig.6. In our current implementation, 
the input data is obtained from real Spice simulations by doing 
piecewise linearization and representation of the resulting 
waveforms with six symbols (i.e. 0, 1, and s1,s2,s3,s4 that 
correspond to two different rise and two different fall slopes). Then, 
encoding the PWL of length LO (represented with symbols in ( O , l ,  
sI,s2,s3,s4 )) with 3 bits, we transform the original input stream 
into a binary input sequence which is sent to the compaction 
module. Starting with this binary input sequence, we perform a one- 
pass traversal of the original sequence and simultaneously build the 
basic tree DMT2, 
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Table 1: Power estimates and sia 

mu18 I 32 \ 820 I 1039.70 I 10755.00 1 912.43 I 12.24 
I Avg. values I Diff. = 14.6741 

Power[pW] 
36.84 

261.89 
227.75 
212.61 
323.83 
326.87 
305.83 
534.03 
359.04 
613.48 
574.39 
688.53 
1039.40 

1 I 

The next step in Fig.6 does the actual generation of the output 
sequence. Once we get the compacted binary sequence, we generate 
a PWL sequence (of length L) within the postprocessing module. 
This sequence is later used for Spice simulations. If the initial PWL 
sequence has the length and the new generated sequence has the 
length L < Lb then a compacrion ratio of r = LdL is achieved. 

Finally, a validation step is included in the strategy; we simulate 
the target circuit with the original Spice sequence and the one 
resulted from the compaction process and then we compare the 
results in terms of average power consumption estimates. 

Fig.6: Expenmental setup 
In Table 1, we provide the results for a set of highly biased input 

sequences (of length 850 vectors) obtained from real applications. 
These sequences are compacted with two different compaction ratios 
(r = 5 and 10). We give in this table the total power dissipation mea- 
sured for the initial (column 4) and compacted sequences (columns 
8, 11). For comparison purposes, we also indicate (columns 6 and 7) 
the power and the corresponding difference we get if we ignore the 
actual rise and fall times of the input signals. In columns 5 ,  10 and 
13, we give the time in seconds (on an Ultra 10 workstation with 128 
Mbytes of memory) necessary to estimate the average power con- 
sumption for the initial and compacted sequences, respectively. 
Since the compaction process with DMC modeling is linear in the 
number of nodes in the structure of the DMT2,  the time needed for 
compaction is less than 3 seconds in all cases. During these experi- 
ments, the number of states allowed in the Markov model was 5,000 
(about 140 Kbytes). 

As we can see, the quality of results is very good even when the 
length of the initial sequence is reduced by one order of magnitude. 
For instance, the Spice simulation of ah2 took 1919.37 sec to 
estimate an exact power value of 319.71 KW, whereas using the 
compacted sequence of only 170 vectors ( r  = S ) ,  Sprce estimated a 
value of 317.64 1 W  in only 397.74 sec. Furthermore, with only 85 
vectors ( r  = lo), Spice estimated a power consumption of 305.83 JLW 
in only 176.81 sec. This reduction in the sequence length has a 

Error [%] time [sec] 

7.21 9.78 
6.70 80.77 
11.68 50.70 
2.97 82.55 
4.11 86.84 
3.19 179.11 
4.34 176.81 
4.15 352.38 
5.71 163.31 
3.63 372.68 
0.49 420.72 
0.23 490.06 
0.00 992.51 

Err.=4.18% Speedup= 11.86 

ation times for the original and compacted s 

Compacted Sequences ( r  = 5 )  
(non-zero rise/fall times) 

power MWl Error [Ye] time [sec] 

37.12 8.03 20.29 
277.30 1.23 179.42 
241.06 6.52 116.32 
230.17 5.03 192.16 
318.97 2.55 185.98 
341.66 1.18 381.36 
317.64 0.64 397.74 
568.38 2.01 789.36 
362.56 4.79 355.75 
645.03 1.32 879.76 
598.16 3.68 816.54 

1085.58 
1106.40 2373.08 

I I -I 

significant impact on speeding-up the simulative approaches where 
the run time is proportional to the length of the sequence which must 
be simulated. As it can be seen in Table 1, for r = 10, the average 
relative error is less than 5%. while the speed-up in power estimation 
is more than one order of magnitude, on average. 

V. CONCLUSION 
In this paper, we addressed the circuit-level power estimation under 
the paradigm of vector compaction. Based on dynamic Markov 
modeling, we proposed a new approach to compact an initial PWL 
sequence into a much shorter equivalent one, which can be used 
with any available simulator to obtain accurate power estimates. 

The results obtained on common benchmarks show that large 
compaction ratios can be obtained without much loss in the 
accuracy of power estimates. We are currently extending our 
approach to the more general case described in Section 111. 
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