
Timing Minimization by Statistical Timing hMetis-based Partitioning

Cristinel Ababei Kia Bazargan

Department of Electrical and Computer Engineering
University of Minnesota, 200 Union St. SE

Minneapolis, MN 55455
{ababei,kia}@ece.umn.edu

Abstract

In this paper we present statistical timing driven hMetis-
based partitioning. We approach timing driven
partitioning from a different perspective: we use the
statistical timing criticality concept to change the
partitioning process itself. We exploit the hyperedge
coarsening scheme of the hMetis partitioner for our
timing minimization purpose. This allows us to perform
partitioning such that the most critical nets in the circuit
are not cut and therefore timing minimization can be
achieved. The use of the hMetis partitioning algorithm
makes our partitioning methodology fast. Simulations
results show that 22% average delay improvement can be
obtained. Furthermore, as a result of using the statistical
timing model, the partitioning results can tolerate
changes in temperature and process variation, hence
causing less delay change compared to partitioning using
static timing models.

1. Introduction

The increase of circuit complexity and the high demand
for short time-to-market products force designers to reuse
old designs (IP) while the increased chip densities allow
them to put more and more functionality on the same chip
(SoC). Therefore, it is envisioned that platform-based
design will be the optimal design approach [17]. Within
this new framework, where Field Programmable Logic
Arrays (FPGAs) and embedded systems define the
hierarchical design philosophy, we can no longer rely on
flat design methodologies. Such methods are too time-
consuming for today’s large designs. Hierarchical design,
where systems are built from pre-characterized library
blocks/functions (such as multipliers, filters, or even
processors) appears to be the proper approach. That is
why our proposed solution in this paper targets circuits of
moderate- and large-sized circuits, basic components of
libraries that we mentioned above. For these circuits we
have to perform gate-level physical design. Therefore,
partitioning, as an early step during physical design,
remains very important.

On the other hand, since interconnections/wiring
contribute more than 70% to the circuit/block delay,
partitioning has a great impact on the interconnect
distribution and thus on the circuit performance.
Therefore, it is imperative to account for timing as early

as possible during the design process, particularly during
partitioning, leading to an early wire planning.

In this paper we present statistical timing driven
hMetis-based partitioning. For our timing minimization
purpose, we exploit the hyperedge coarsening scheme of
hMetis [12] partitioner. This allows us to perform
partitioning such that the most critical nets in the circuit
are not cut and therefore timing minimization can be
achieved. Our approach is a different way for doing
timing-driven optimization: we drive the partitioning as
for the best timing to be obtained without performing any
netlist alteration (e.g., buffer insertion and gate
duplication), though our method can be easily modified to
incorporate these techniques as well. The main
contribution of our work is the use of a better timing
criticality and of a new delay model within a net-based
partitioning approach (using a fast partitioner), which
proves to provide circuits that are more tolerant to delay
variations. By improving on timing by minimizing critical
wire delays at partitioning level, we provide a way of
doing wire planning very early in the physical design
process.

The remainder of the paper is organized as follows.
Section 2 presents previous work on timing driven
partitioning. Section 3 presents the criticality concept that
we use as edge weight for the hMetis partitioner. In
Section 4 we describe our proposed statistical timing
driven partitioning methodology. The delay model that we
use is presented in Section 5. Simulation results are
presented in Section 6. We demonstrate the robustness of
our partitioning algorithm in Section 7. We conclude,
suggesting further research directions, in Section 8.

2. Previous Work

Timing driven partitioning approaches can be classified
into two categories: (1) top-down partitioning approaches
and (2) bottom-up clustering-based approaches.
Approaches in the first category are usually based on the
Fiduccia-Mattheyses (FM) [7] recursive min-cut
partitioning method or on quadratic programming
formulations [16], [20]. Timing optimization is obtained
by minimizing the delay of the most critical path. The
second category includes bottom-up clustering-based
approaches. They are used mostly as a pre-processing step
for min-cut algorithms [6], [14]. All previous approaches
achieve delay minimization by netlist alteration such as

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

logic replication, retiming, and buffer insertion in order to
meet delay constraints while the cutsize is minimized.
The focus is on delay improvement, and the cutsize is
ignored. Gate replication in these methods can be
massive.
We can identify a few problems for all previous timing

driven partitioning approaches: (1) Unrealistic delay

models are used. It is common to use the general-delay
model, which considers delay 1 for all gates, delay 0 for

interconnects inside a partition, and a constant delay for

interconnects between partitions [6], [14], [16]. (2)

Unrealistic simplifications are made. For instance, circuits

are mapped to two-input gates only [6]. (3) Static timing
analysis is used as a framework for timing analysis.
However, it is known that there are uncertainties in both
gate and wire delays, such as fabrication variations,
changes in supply voltage and temperature, that are not
captured by the delay modeling within the framework of
the classical static timing analysis. (4) The run time for
moderate-sized circuits is too long and makes these
approaches impracticable for large-sized circuits. One
reason for that may be that previous approaches usually
separates the timing-driven partitioning into two steps: (i)
clustering or partitioning and (ii) timing refinement based
on netlist alteration [6], [16].

In this paper, we try to eliminate the above deficiencies.
We approach timing driven partitioning from a different
perspective: we use the statistical timing criticality
concept to change the partitioning process itself such that
delay minimization is achieved while delay uncertainties
are captured. We use a more realistic delay model, which
incorporates a statistical net-length estimation and we use
the hMetis partitioning algorithm which is very fast.

3. Statistical Timing Analysis

In this section we present the concept of criticality within
the framework of statistical timing analysis versus static
timing analysis. The idea of static timing analysis is to
compute the slack for every gate based on the latest
arrival time and the required arrival time values. Each
gate has a constant delay value. However, in reality there
are several uncertainties in both gate and wire delays,
such as fabrication variations, changes in supply voltage
and temperature [8], [15], [19]. These uncertainties are
modeled in statistical timing analysis by considering gate
and wire delays as stochastic variables (i.e. as probability
distribution functions). That means that the delay
variation is captured by the standard deviation. Even
though different methods of statistical timing analysis
have been proposed [11], [13], we adopt the approach
proposed by Berkelaar [3] and later improved by
Hashimoto and Onodera [8] who introduced the concept
of criticality which fits well into the partitioning
framework.

Generally, for an n-input gate (see Fig.1.a), under the
assumption of stochastic independence of the inputs, the
maximum latest arrival time at all inputs can be modeled

with a normal distribution whose probability density
function is [8]:

∏⋅=
≠

n

i

n

ij

jimaxPIs xFxfxf)()()((1)

where fi and Fj are the probability density function (pdf)
and the cumulative density function (cdf) of input i
respectively.

a) b)

crit(Gm)influence propagation

G

:

infl1(G)

inflm(G)

G1

Gm

crit(G)

crit(G1)

criticality propagation

tw1

T1

T2

Tn

t1

t2

tn

Tout

twm

:

:

Fig.1 a) Example of general gate b) Influence and criticality
computation

Since the internal gate delay1 is also considered
normally distributed, the gate output delay is calculated as
the sum of two normal distributions: the maximum of all
inputs and the internal gate delay. Wire delays are also
considered stochastic variables. Hence, we can compute
the probability density function of the overall circuit delay
by computing the pdf of each primary output (PO). The
equivalent of slack in static timing analysis are the
notions of influence and criticality [8]. These notions
address the problem of characterizing parts of the circuit
from the point of view of timing similarly to the critical
path concept. In what follows we briefly present the
concepts of influence and criticality. The term between
brackets in equation (1) represents the following
probability:

)()()()(xtTPxtTPxFxf

n

ij

jjii

n

ij

ji ≤+⋅=+=⋅ ∏∏
≠≠

 (2)

The probability P(Ti+ti=x) expresses the magnitude of the
influence that the i-th input gives to fmaxPIs at x. The
influence infli is defined as the influence proportion of the
i-th input in the range x>x1 as follows:

dxxCxFxfCinfl

n

ij

j

x

ii)exp()()(21

1

⋅⋅⋅= ∏
≠

∞

 (3)

where C1 is a normalization coefficient to

satisfy 1=
i

iinfl and C2 is a constant to emphasize the

region of large arrival time. Criticality is meant to
represent the timing criticality at each gate, i.e. the
contribution to the circuit delay of all the paths that pass
through that gate. It is computed using the following
relation (see Fig.1.b):

1 For the sake of simplicity we consider the internal delay from

each input to output to be the same for a given gate. However,

the gate delay is different for different gates.

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

)()()()(j

m

j
jGi GcritGinflGcrit ⋅= (4)

Equation (4) defines influence infli(G)(Gj) as how much the
i(G)-th input affects the timing at gate Gj for x≥x1. In other
words, infli(G)(Gj) represents how easily the timing
criticality back-propagates from gate Gj to gate G. All
influences are computed by propagation from primary
inputs (PI’s) towards PO’s. Criticalities are computed by
back-propagation from PO’s towards PI’s. The gate with
the largest criticality in a circuit is the most critical in
terms of timing since its contribution to the circuit output
delays is the most significant among all gates in the
circuit. Details can be found in [3], [8].

For example, the hypergraph shown in Fig.2.a as a
Directed Acyclic Graph (DAG) depicts criticality values
for all hyperedges. The corresponding circuit netlist is
shown in Fig.2.b.

G1

G2

G3

G4

G5

G6

a) b)

12

0

1

2

3

4

9

10

5

0.25

1.25
0.5

0

1.25

1

1

2

2 1.5

0.5

1

1

7

8

1.5

11 6

Fig.2 Illustration of the meaning of criticality: a) DAG with
shown criticalities; hyperedge {8,9,10} is the most critical
one because its associated criticality is the largest b)
corresponding gate schematic

Gate G2 in the circuit schematic (i.e. vertex 8 in the
corresponding DAG) and its fanout net (i.e. hyperedge
{8,9,10} in DAG) is the most critical one because its
criticality, which equals 2, is the largest. In our
partitioning methodology we want this hyperedge not to
be cut because otherwise the circuit delay will increase.

In our partitioning methodology we use the criticality
values as hyperedge weights. Thus, the hyperedge
coarsening scheme of the hMetis partitioning algorithm
clusters the most critical hyperedges early, which means
that they would not be cut by the partitioning process.
This has a great impact on the circuit timing, because the
most critical nets in the circuit will not be cut during
partitioning and subsequently, these critical nets will not
become long/global interconnects.

The complexity of this statistical timing analysis and
the calculation of all criticalities are linear with respect to
the circuit size. [8]

One can argue that the slack for each node is also an
indication of the gate criticality and thus the static timing
analysis can be used in the same way. However, from our
experiments that included both static and statistical
timing analyses we found no one-to-one mapping
between the gate criticality found by the static timing
analysis and the gate criticality found by the statistical
timing analysis. That means that a gate that is declared the
most critical by the statistical timing analysis is not
necessarily declared the most critical gate by the static

timing analysis. We will show in Section 7 that the
statistical timing based partitioning is more robust than
the static slack-based partitioning.

4. Statistical Timing Driven Partitioning

In this section we present our statistical timing driven
partitioning methodology. The partitioning is done by
recursive bipartitioning. At each level we associate timing
criticality as weight to all corresponding hyperedges in
the hypergraph. Then, the hMetis partitioning algorithm is
run using the hyperedge coarsening scheme. This scheme
gives preference, during hypergraph coarsening, to the
hyperdges that have large weights. By using timing
criticality as hyperedge weight we practically discourage
the partitioning algorithm from cutting edges with high
delay criticalities.

Criticalities (i.e. hyperedge weights) are updated at
each partitioning level. Initially we compute all
criticalities in the circuit assuming zero delay for all
wires. These criticalities are then used as weights
associated to hyperedges. We call this process forward
annotation of criticalities. After the first bipartitioning,
we know which nets are cut and thus we are able to
compute the delay for these wires by using the Elmore
delay model. The wire delay calculation uses a statistical
model for wire length proposed in [22]. These wire delays
are then used to re-compute all criticalities in the circuit.
We call this process back annotation of the wire delays.
During the recursive bipartitioning we back annotate
more and more wire delays. Hence, criticalities will
reflect better the timing criticalities all over the circuit.
The recursive bipartitioning process stops when each
block contains a number of vertices smaller than a
threshold specified by the user.

The pseudo-code of our statistical timing driven
hMetis-based partitioning algorithm is as follows:

StatisticalTimingDrivenPartitioning() {
1. Compute initial criticalities; assign them as hyperedge
weights
2. Queue = G(V,E) // queue initialized with initial
graph
3. while (Queue not empty) {

4. pop graph g from Queue
5. partition g into gA and gB using hMetis
6. push gA and/or gB in Queue if cardinality of

their vertex set greater than T // T = max # of
gates allowed in each partition

7. Backannotate estimated Elmore delays to nets
corresponding to cut hyperedges

8. Update criticalities and edge weights
9. } }
5. Delay Model

Our delay model has two components. The first
component is the gate delay. For all gates we consider a
typical intrinsic delay that is given for a typical input

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

transition and a typical output net capacitance. This delay
is actually the mean value of the pdf associated with the
gate delay. For each pdf associated with all gates we
consider a typical standard deviation of 15% [19]. The
second component is the wire delay. We use the Elmore
delay to model the wire delay. The Elmore delay for an
edge e (an edge corresponds to the wire connecting the
net source to one of its fanout sinks) is given by:

)
2

()(t
e

e C
C

ReDelay += (5)

where Re is the wire lumped resistance, Ce is the wire
lumped capacitance, and Ct is the total lumped
capacitance of the source node of each net. To compute Re
and Ce we need the length of each edge. For this, we use
the statistical net-length estimation proposed in [22]. The
average length of a net, connecting m cells enclosed in a
rectangular area whose width is a and whose height is b,
is given by:

)()(ba
ba

ba
mLav ++

+
⋅−⋅≈ βα γ (6)

where α, β, and γ are fitting parameters computed in [22]
as α ≈ 1.1, β ≈ 2.0, and γ ≈ 0.5. During recursive
partitioning, when a net is cut, it is assigned a certain wire
delay that will be used to re-compute all delays on the
paths that include that net. The earlier a net is cut during
recursive partitioning, the greater the back-annotated wire
delay has to be. In our case, any net that is cut during the
first bipartitioning step (see Fig.3) is assumed to be
bounded by a rectangular area which is the same as the
chip area and for simplicity we consider an aspect ratio
equal to 1.

Net cut first time
during 2nd bi-
partitioning =>
assign Elmore
delay

b’

b

a
a’

Net cut first
time during 1st
bi-partitioning
=> assign
Elmore delay

Same Net cut
during 2nd bi-
partitioning =>
do NOT assign
Elmore delay

Same Net cut
during 3rd bi-
partitioning =>
do NOT assign
Elmore delay

1
2

2

3

Fig.3 Illustration of the wire delay assignment to cut nets at
different bipartitioning levels

At the second partitioning level a and b have different
values that will ensure a smaller delay than that assigned
during a previous partitioning level. The delay of each net
is set only the first time when it is cut. In other words, if a
net is cut again at a lower partitioning level, it does not
have its delay increased or re-assigned (based on the net
length estimation corresponding to the bounding box at
this partitioning level) because otherwise its delay would
be over increased. In our experiments we consider a 0.18µ

copper process technology (unit length resistance r =
0.115, unit length capacitance c = 0.00015).

6. Simulation Results

In this section, we present simulation results. It is difficult
for us to make a meaningful comparison of our statistical
results with previous static timing analysis based works
(except for the experiments presented in Section 7)
because: (i) Our approach is based on statistical timing
analysis, which is different from all previous approaches
that are based on static timing analysis. Hence, we cannot
compare statistical delay to static delay. (ii) We do not
use netlist alteration in order to meet a timing requirement
but we minimize timing by changing the partitioning
process itself. Our goal is to show the potential timing
improvement that can be obtained using our methodology,
which can be further enhanced by using different netlist
alteration techniques (iii) We use a different delay model
vs. all previous approaches that are based either on the
unit-delay model or on the global delay model. However,
we compare our method against the case when the
weights in graphs are constant corresponding to the case
when simply hMetis would be used for circuit partitioning
(we call it the pure partitioning method). In this way, we
show the potential timing improvement that can be
obtained using our algorithm. The experimental setup is
shown in Fig.4.

Gate Netlist

Criticality Computation

Pure hMetis
Bipartitioning

(all edges same eight) Criticality
Update

Cutsize & Delay
Comparison

hMetis Bipartitioning

(criticality as
edge weight)

Fig.4 The simulation setup for comparison of our proposed
partitioning algorithm to pure hMetis algorithm

We report simulation results for a set of circuits from

the ISCAS89 benchmarks [10] and the largest four ITC99
benchmarks [9] (last four in Table 1). All circuits were
first optimized using the script.rugged in SIS [18]. The
results are presented in Table 1. The second column in
Table 1 indicates the number of PI’s and PO’s, followed
by the number of gates in the third column. For each
circuit, Cutsize represents the number of all edges cut
after the recursive bipartitioning. The Delay indicates the
maximum mean delay (using the statistical delay model)
among all PO’s. The run time is rounded to the closest
integer and is given in seconds.

We run the partitioning algorithm 60 times and report
the average in Table 1. The maximum number of gates
allowed for each partition was set to 10% of the total

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

number of gates (i.e. we did 10-way partitioning). As it
can be seen, the proposed partitioning methodology offers
in average a 22% better delay. However, this is at the
expense of an increase of 33% in the cutsize. On one
hand, we obtain a better delay with our partitioning
algorithm because we use a better statistical timing
criticality as hyperedge weight. On the other hand,
compared to the pure hMetis partitioning, the cutsize
increases because we practically reduce the search space
for the hMetis partitioner when criticality is used as
hyperedge weight. The partitioner does not have the same
freedom in exploring the search space as when all
hyperedges have the same weight.

Table 1:Recursive statistical timing hMetis-based partitioning vs.
hMetis partitioning for moderate-sized circuits (CPU(s) on

UltraSPARC-II 450MHz, 2GB memory)

Statistical Timing Driven
hMetis-based Partitioning

Pure hMetis Partitioning
Circuit PI/PO

No. of
gates

Cutsize Delay CPU(s) Cutsize Delay CPU(s)

cordic 23/2 856 307 24.8 43 325 29.9 12

s9234 39/16 1257 220 15.7 32 174 16.38 11

misex3 14/14 1321 578 62.5 60 496 75.8 16

s13207 90/56 1570 237 21.2 40 202 27.9 18

frisc 19/16 3479 1318 99.6 131 797 163.4 39

too_large 38/3 6920 2656 135.1 297 2392 144.5 71

s35932 35/32 11304 792 161.1 239 415 249 58

s38584 115/74 12701 1304 192.7 287 499 279 73

mult32 64/64 12813 684 9112 238 581 9251 55

b21s 32/22 14606 0.94 0.26 232 1 1 55

b22s 32/22 22497 1.08 0.74 177 1 1 38

b17s 37/30 36547 1.17 0.93 324 1 1 86

b18s 36/22 101573 1.14 0.92 1080 1 1 292

Avg. 1.33 0.78 2.74 1 1 1

We observed that if we stretched the original criticality
range into a smaller range we could trade delay vs.
cutsize. In other words, if for example the original
criticality range is [0,max_old_crit] we can stretch it into
[1,max_new_crit], with max_new_crit taking values 2, 5,
10, 50,…, and still obtain delay improvement with
smaller increase in cutsize. For example, the values for
delay and cutsize for s38584 are as follows:
max_new_crit 2 5 10 50 100 200 500

delay 294.3 292 299 245.4 245.5 245.4 188.6

cutsize 496 526 507 602 637 572 818

Similar cutsize/delay tradeoff was observed for all
circuits. This allows the user to “tune” the partitioning
method to smoothly tradeoff between cutsize and delay.

The run time for our methodology is greater due to the
criticality update operation. The run time for the pure
hMetis algorithm includes the recording of the cut wires
at each level of the partitioning as well as the delay
computation.

7. Validation Scenarios

In this section, we describe two simple scenarios to
further demonstrate the robustness of the statistical timing
driven partitioning. It is known that due to the increase in
chip clock frequency the amount of power consumption

also increases, resulting in an increase in the chip
temperature. However, the heat dissipation is usually
unevenly distributed among the circuit gates, which leads
to various temperatures across the whole area of the chip
[21]. On one hand, higher temperatures slow down the
transistors [5]. On the other hand, the interconnect
resistance increases linearly with the temperature [1].
Thus, the delay of all gates and wires in areas with higher
temperature will be larger than their estimated values
during the design process. This motivated us to come up
with two simple scenarios for testing the robustness of our
proposed statistical timing driven partitioning. These
scenarios are depicted in Fig.5.

In both cases we first perform recursive bipartitioning
using our statistical timing driven partitioning algorithm
or pure hMetis partitioning algorithm or a slack-based
partitioning algorithm2. Then, we perform a static timing
analysis to compute the maximum delay among all the
PO’s; we denote this delay as delay1. Third, in the first
scenario (see Fig.5.a), we consider a 15% delay increase
for all gates and their fanout wires that are placed in one
of the partitions after the first level of bipartitioning. We
choose a typical 15% for the delay increase [19] though
for large temperature variations this increase can be larger
[1]. In this way we try to mimic the case where half of the
chip has a higher temperature, which in turn will
determine a delay increase. Obviously, in reality, the
temperature pattern will be more complex [4], but we
restrict ourselves to this simplified version, which is
similar to the example presented in [21].

T1

T2 >T1

a) b)
Fig.5 a) Half of the chip hotter b) Random hot spots over the
whole chip area

In the second scenario (see Fig.5.b) we randomly
choose 15% delay increase for all gates and their fanout
wires. This case tries to mimic the situation when we can
find hot spots everywhere on the chip [5].

Then, we perform a second static timing analysis to
compute the maximum delay among all the PO’s of the
circuit using the new gate and wire delays; we denote this
delay as delay2. Finally, we compute the overall circuit
delay perturbation as 100*(delay2-delay1)/delay1. The
simulation results, presented in Table 2, confirm that by

2
 We developed a slack-based partitioning algorithm similar to the

proposed one except that instead of statistical criticality we used static

criticality, which is computed inversely proportional with the slack. The

smallest slack determines the largest weight associated to the
corresponding hyperedge, and so on so forth.

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

using our partitioning algorithm the perturbation due to
temperature variation of the circuit delay is in most of the
cases smaller when we use our partitioning algorithm
(17% and 13% in average smaller for the half-hotter
scenario and for the random-hot-spots scenario compared
to the pure hMetis; 29% and 8% in average smaller for
the half-hotter scenario and for the random-hot-spots
scenario compared to the static slack-based partitioning).
In this way circuits are more stable under the disturbing
influence of factors such as temperature, power supply
fluctuations, and process variations.

Table 2:Delay change as percentage for the two validation scenarios

100*(delay2-delay1)/delay1

Proposed algorithm Pure hMetis Slack-based algorithm Circuit
“half-
hotter”

“random-
hot-spots”

“half-
hotter”

“random-
hot-spots”

“half-
hotter”

“random-
hot-spots”

cordic 11.66 8.46 8.46 8.36 11.9 6.72

s9234 7.26 8.04 10.44 8.64 9.36 9.63

misex3 8.45 6.25 10.1 12.31 12.73 12.13

s13207 7.05 6.3 5.72 4.65 14.3 6.45

frisc 6.6 5.86 11.51 3.7 7.22 7.9

too_large 5.56 6.76 5.73 8.56 10.73 8.73

s35932 8.86 4.04 10.6 8.93 8.4 7.5

s38584 3.86 13.5 9.46 10 7.5 6.64

mult32 6.96 6.76 7.53 10.74 12.18 5.98

Avg. 7.36 7.33 8.83 8.43 10.48 7.96

8. Conclusion

In this paper we propose a timing driven partitioning
algorithm. Because we change the partitioning process
itself and we use the hMetis algorithm our algorithm is
fast, thus applicable to large-sized circuits. Because we
use a new delay model, which better reflects the timing
criticality inside circuits, our algorithm is robust and
circuits are more reliable than the circuits partitioned
using pure hMetis or the slack-based partitioning
algorithms. The proposed algorithm does not determine
area increase because we do not use netlist alteration and
it offers a smooth cutsize/delay tradeoff. The slight
cutsize increase is the only disadvantage of our
partitioning algorithm. We are currently working on
multi-objective, multi-constraint hMetis-based
partitioning methodologies.

References
[1] A.H. Ajami, K. Banerjee, M. Pedram, L. van Ginneken, ‘Analysis of

Non-Uniform Temperature-Dependent Interconnect Performance in
High Performance ICs’, Proc. ACM/IEEE ASPDAC, 2001.

[2] C.J. Alpert, ‘The ISPD98 Circuit Benchmark Suite’, Proc. ISPD,
1998.

[3] M. Berkelaar, ‘Statistical Delay Calculation, a Linear Time Method’,
Proc. TAU, 1997.

[4] Y.K. Cheng, S.M. Kang, ‘A Temperature-Aware Simulation
Environment for Reliable ULSI Chip Design’, IEEE Trans. CAD,
Oct. 2000.

[5] C.C.N. Chu, D.F. Wong, ‘A Matrix Approach to Thermal
Placement’, IEEE Trans. CAD, Nov. 1998.

[6] J. Cong, C. Wu, ‘Global Clustering-Based Performance-Driven
Circuit Partitioning’, Proc. ISPD, 2002.

[7] C.M. Fiduccia, R.M. Mattheyses, ‘A Linear-Time Heuristic for
Improving Network Partitions’, Proc. ACM/IEEE DAC, 1982.

[8] M. Hashimoto, H. Onodera, ‘A Performance Optimization Method
by Gate Resizing Based on Statistical Static Timing Analysis’, IEICE
Trans. Fundamentals, Dec. 2000.

[9] http://www.cad.polito.it/tools/9.html
[10] http://www.cbl.ncsu.edu
[11] H.-F. Jyu, S. Malik, ‘Statistical Delay Modeling in Logic Design

and Synthesis’, Proc. ACM/IEEE DAC, 1994.
[12] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, ‘Multilevel

Hypergraph Partitioning: Application in VLSI domain’, Proc.
ACM/IEEE DAC, June 1997.

[13] J.-J Liou, K.-T Cheng, S. Kundu, A. Krstic, ‘Fast Statistical Timing
Analysis By Probabilistic Event Propagation’, Proc. ACM/IEEE
DAC, 2001.

[14] J. Minami, T. Koide, S. Wakabayashi, ‘An Iterative Improvement
Circuit Partitioning Algorithm under Path Delay Constraints’, IEICE
Trans. Fundamentals, Dec. 2000.

[15] S.R. Nassif, ‘Modeling and Forecasting of Manufacturing
Variations’, Proc. ACM/IEEE ASPDAC, 2001.

[16] S.-L Ou, M. Pedram, ‘Timing-driven Partitioning Using Iterative
Quadratic Programming’, at http://atrak.usc.edu/~massoud/, see
“Coming Attractions!”, 2001.

[17] Alberto Sangiovanni-Vincentelli, ‘Defining platform-based design’,
http://www.eedesign.com/features/exclusive/OEG20020204S0062,
2002.

[18] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P.R. Stephan, R.K. Brayton, A. Sangiovanni-
Vincentelli, ‘SIS: A System for Sequential Circuit Synthesis’,
Technical Report UCB/ERL M92/41, University of California,
Berkeley, May 1992.

[19] D. Sylvester, ‘Measurement Techniques and Interconnect
Estimation’, SLIP00, 2000.

[20] M. Shih, E.S. Kuh, ‘Quadratic Boolean Programming for
Performance-driven System Partitioning’, Proc. ACM/IEEE DAC,
1993.

[21] C-H.Tsai, S.M. Kang, ‘Cell-Level Placement for Improving
Substrate Thermal Distribution’, IEEE Trans. CAD, Feb. 2000.

[22] P. Zarkesh-Ha, J.A. Davis, J.D. Meindl, ‘Prediction of Net-Length
Distribution for Global Interconnects in a Heterogeneous System-on-
a-Chip’, IEEE Trans. VLSI Systems, Dec. 2000.

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

