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Abstract 

In this paper we present statistical timing driven hMetis-
based partitioning. We approach timing driven 
partitioning from a different perspective: we use the 
statistical timing criticality concept to change the 
partitioning process itself. We exploit the hyperedge 
coarsening scheme of the hMetis partitioner for our 
timing minimization purpose. This allows us to perform 
partitioning such that the most critical nets in the circuit 
are not cut and therefore timing minimization can be 
achieved. The use of the hMetis partitioning algorithm 
makes our partitioning methodology fast. Simulations 
results show that 22% average delay improvement can be 
obtained. Furthermore, as a result of using the statistical 
timing model, the partitioning results can tolerate 
changes in temperature and process variation, hence 
causing less delay change compared to partitioning using 
static timing models.  
 

1. Introduction 
 
The increase of circuit complexity and the high demand 
for short time-to-market products force designers to reuse 
old designs (IP) while the increased chip densities allow 
them to put more and more functionality on the same chip 
(SoC). Therefore, it is envisioned that platform-based 
design will be the optimal design approach [17]. Within 
this new framework, where Field Programmable Logic 
Arrays (FPGAs) and embedded systems define the 
hierarchical design philosophy, we can no longer rely on 
flat design methodologies. Such methods are too time-
consuming for today’s large designs. Hierarchical design, 
where systems are built from pre-characterized library 
blocks/functions (such as multipliers, filters, or even 
processors) appears to be the proper approach. That is 
why our proposed solution in this paper targets circuits of 
moderate- and large-sized circuits, basic components of 
libraries that we mentioned above. For these circuits we 
have to perform gate-level physical design. Therefore, 
partitioning, as an early step during physical design, 
remains very important. 

On the other hand, since interconnections/wiring 
contribute more than 70% to the circuit/block delay, 
partitioning has a great impact on the interconnect 
distribution and thus on the circuit performance. 
Therefore, it is imperative to account for timing as early 

as possible during the design process, particularly during 
partitioning, leading to an early wire planning. 

In this paper we present statistical timing driven 
hMetis-based partitioning. For our timing minimization 
purpose, we exploit the hyperedge coarsening scheme of 
hMetis [12] partitioner. This allows us to perform 
partitioning such that the most critical nets in the circuit 
are not cut and therefore timing minimization can be 
achieved. Our approach is a different way for doing 
timing-driven optimization: we drive the partitioning as 
for the best timing to be obtained without performing any 
netlist alteration (e.g., buffer insertion and gate 
duplication), though our method can be easily modified to 
incorporate these techniques as well. The main 
contribution of our work is the use of a better timing 
criticality and of a new delay model within a net-based 
partitioning approach (using a fast partitioner), which 
proves to provide circuits that are more tolerant to delay 
variations. By improving on timing by minimizing critical 
wire delays at partitioning level, we provide a way of 
doing wire planning very early in the physical design 
process. 

The remainder of the paper is organized as follows. 
Section 2 presents previous work on timing driven 
partitioning. Section 3 presents the criticality concept that 
we use as edge weight for the hMetis partitioner. In 
Section 4 we describe our proposed statistical timing 
driven partitioning methodology. The delay model that we 
use is presented in Section 5. Simulation results are 
presented in Section 6. We demonstrate the robustness of 
our partitioning algorithm in Section 7. We conclude, 
suggesting further research directions, in Section 8. 
 

2. Previous Work 
 
Timing driven partitioning approaches can be classified 
into two categories: (1) top-down partitioning approaches 
and (2) bottom-up clustering-based approaches. 
Approaches in the first category are usually based on the 
Fiduccia-Mattheyses (FM) [7] recursive min-cut 
partitioning method or on quadratic programming 
formulations [16], [20]. Timing optimization is obtained 
by minimizing the delay of the most critical path. The 
second category includes bottom-up clustering-based 
approaches. They are used mostly as a pre-processing step 
for min-cut algorithms [6], [14]. All previous approaches 
achieve delay minimization by netlist alteration such as 
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logic replication, retiming, and buffer insertion in order to 
meet delay constraints while the cutsize is minimized. 
The focus is on delay improvement, and the cutsize is 
ignored. Gate replication in these methods can be 
massive.  
We can identify a few problems for all previous timing 

driven partitioning approaches: (1) Unrealistic delay 

models are used. It is common to use the general-delay 
model, which considers delay 1 for all gates, delay 0 for 

interconnects inside a partition, and a constant delay for 

interconnects between partitions [6], [14], [16]. (2) 

Unrealistic simplifications are made. For instance, circuits 

are mapped to two-input gates only [6]. (3) Static timing 
analysis is used as a framework for timing analysis. 
However, it is known that there are uncertainties in both 
gate and wire delays, such as fabrication variations, 
changes in supply voltage and temperature, that are not 
captured by the delay modeling within the framework of 
the classical static timing analysis. (4) The run time for 
moderate-sized circuits is too long and makes these 
approaches impracticable for large-sized circuits. One 
reason for that may be that previous approaches usually 
separates the timing-driven partitioning into two steps: (i) 
clustering or partitioning and (ii) timing refinement based 
on netlist alteration [6], [16]. 

In this paper, we try to eliminate the above deficiencies. 
We approach timing driven partitioning from a different 
perspective: we use the statistical timing criticality 
concept to change the partitioning process itself such that 
delay minimization is achieved while delay uncertainties 
are captured. We use a more realistic delay model, which 
incorporates a statistical net-length estimation and we use 
the hMetis partitioning algorithm which is very fast. 
 

3. Statistical Timing Analysis 
 
In this section we present the concept of criticality within 
the framework of statistical timing analysis versus static 
timing analysis. The idea of static timing analysis is to 
compute the slack for every gate based on the latest 
arrival time and the required arrival time values. Each 
gate has a constant delay value. However, in reality there 
are several uncertainties in both gate and wire delays, 
such as fabrication variations, changes in supply voltage 
and temperature [8], [15], [19]. These uncertainties are 
modeled in statistical timing analysis by considering gate 
and wire delays as stochastic variables (i.e. as probability 
distribution functions). That means that the delay 
variation is captured by the standard deviation. Even 
though different methods of statistical timing analysis 
have been proposed [11], [13], we adopt the approach 
proposed by Berkelaar [3] and later improved by 
Hashimoto and Onodera [8] who introduced the concept 
of criticality which fits well into the partitioning 
framework. 

Generally, for an n-input gate (see Fig.1.a), under the 
assumption of stochastic independence of the inputs, the 
maximum latest arrival time at all inputs can be modeled 

with a normal distribution whose probability density 
function is [8]: 
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where fi and Fj are the probability density function (pdf) 
and the cumulative density function (cdf) of input i 
respectively.  
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Fig.1 a) Example of general gate b) Influence and criticality 
computation 

Since the internal gate delay1 is also considered 
normally distributed, the gate output delay is calculated as 
the sum of two normal distributions: the maximum of all 
inputs and the internal gate delay. Wire delays are also 
considered stochastic variables. Hence, we can compute 
the probability density function of the overall circuit delay 
by computing the pdf of each primary output (PO). The 
equivalent of slack in static timing analysis are the 
notions of influence and criticality [8]. These notions 
address the problem of characterizing parts of the circuit 
from the point of view of timing similarly to the critical 
path concept. In what follows we briefly present the 
concepts of influence and criticality. The term between 
brackets in equation (1) represents the following 
probability: 
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The probability P(Ti+ti=x) expresses the magnitude of the 
influence that the i-th input gives to fmaxPIs at x. The 
influence infli is defined as the influence proportion of the 
i-th input in the range x>x1 as follows: 
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where C1 is a normalization coefficient to 

satisfy 1=
i

iinfl and C2 is a constant to emphasize the 

region of large arrival time. Criticality is meant to 
represent the timing criticality at each gate, i.e. the 
contribution to the circuit delay of all the paths that pass 
through that gate. It is computed using the following 
relation (see Fig.1.b): 

                                                 
1 For the sake of simplicity we consider the internal delay from 

each input to output to be the same for a given gate. However, 

the gate delay is different for different gates. 
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Equation (4) defines influence infli(G)(Gj) as how much the 
i(G)-th input affects the timing at gate Gj for x≥x1. In other 
words, infli(G)(Gj) represents how easily the timing 
criticality back-propagates from gate Gj to gate G. All 
influences are computed by propagation from primary 
inputs (PI’s) towards PO’s. Criticalities are computed by 
back-propagation from PO’s towards PI’s. The gate with 
the largest criticality in a circuit is the most critical in 
terms of timing since its contribution to the circuit output 
delays is the most significant among all gates in the 
circuit. Details can be found in [3], [8]. 

For example, the hypergraph shown in Fig.2.a as a 
Directed Acyclic Graph (DAG) depicts criticality values 
for all hyperedges. The corresponding circuit netlist is 
shown in Fig.2.b.  
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Fig.2 Illustration of the meaning of criticality: a) DAG with 
shown criticalities; hyperedge {8,9,10} is the most critical 
one because its associated criticality is the largest b) 
corresponding gate schematic 

Gate G2 in the circuit schematic (i.e. vertex 8 in the 
corresponding DAG) and its fanout net (i.e. hyperedge 
{8,9,10} in DAG) is the most critical one because its 
criticality, which equals 2, is the largest. In our 
partitioning methodology we want this hyperedge not to 
be cut because otherwise the circuit delay will increase. 

In our partitioning methodology we use the criticality 
values as hyperedge weights. Thus, the hyperedge 
coarsening scheme of the hMetis partitioning algorithm 
clusters the most critical hyperedges early, which means 
that they would not be cut by the partitioning process. 
This has a great impact on the circuit timing, because the 
most critical nets in the circuit will not be cut during 
partitioning and subsequently, these critical nets will not 
become long/global interconnects. 

The complexity of this statistical timing analysis and 
the calculation of all criticalities are linear with respect to 
the circuit size. [8] 

One can argue that the slack for each node is also an 
indication of the gate criticality and thus the static timing 
analysis can be used in the same way. However, from our 
experiments that included both static and statistical 
timing analyses we found no one-to-one mapping 
between the gate criticality found by the static timing 
analysis and the gate criticality found by the statistical 
timing analysis. That means that a gate that is declared the 
most critical by the statistical timing analysis is not 
necessarily declared the most critical gate by the static 

timing analysis. We will show in Section 7 that the 
statistical timing based partitioning is more robust than 
the static slack-based partitioning. 
 

4. Statistical Timing Driven Partitioning 
 
In this section we present our statistical timing driven 
partitioning methodology. The partitioning is done by 
recursive bipartitioning. At each level we associate timing 
criticality as weight to all corresponding hyperedges in 
the hypergraph. Then, the hMetis partitioning algorithm is 
run using the hyperedge coarsening scheme. This scheme 
gives preference, during hypergraph coarsening, to the 
hyperdges that have large weights. By using timing 
criticality as hyperedge weight we practically discourage 
the partitioning algorithm from cutting edges with high 
delay criticalities.  

Criticalities (i.e. hyperedge weights) are updated at 
each partitioning level. Initially we compute all 
criticalities in the circuit assuming zero delay for all 
wires. These criticalities are then used as weights 
associated to hyperedges. We call this process forward 
annotation of criticalities. After the first bipartitioning, 
we know which nets are cut and thus we are able to 
compute the delay for these wires by using the Elmore 
delay model. The wire delay calculation uses a statistical 
model for wire length proposed in [22]. These wire delays 
are then used to re-compute all criticalities in the circuit. 
We call this process back annotation of the wire delays. 
During the recursive bipartitioning we back annotate 
more and more wire delays. Hence, criticalities will 
reflect better the timing criticalities all over the circuit. 
The recursive bipartitioning process stops when each 
block contains a number of vertices smaller than a 
threshold specified by the user. 

The pseudo-code of our statistical timing driven 
hMetis-based partitioning algorithm is as follows:  
 
StatisticalTimingDrivenPartitioning( ) { 
1.   Compute initial criticalities; assign them as hyperedge 
weights 
2.   Queue = G(V,E)   // queue initialized with initial 
graph 
3.   while ( Queue not empty ) { 

4. pop graph g from Queue 
5. partition g into gA and gB using hMetis 
6. push gA and/or gB in Queue if cardinality of 

their vertex set greater than T   // T = max # of 
gates allowed in each partition 

7. Backannotate estimated Elmore delays to nets 
corresponding to cut hyperedges 

8. Update criticalities and edge weights  
9.   } } 
5. Delay Model 
 
Our delay model has two components. The first 
component is the gate delay. For all gates we consider a 
typical intrinsic delay that is given for a typical input 
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transition and a typical output net capacitance. This delay 
is actually the mean value of the pdf associated with the 
gate delay. For each pdf associated with all gates we 
consider a typical standard deviation of 15% [19]. The 
second component is the wire delay. We use the Elmore 
delay to model the wire delay. The Elmore delay for an 
edge e (an edge corresponds to the wire connecting the 
net source to one of its fanout sinks) is given by: 

)
2

()( t
e

e C
C

ReDelay +=                                                (5) 

where Re is the wire lumped resistance, Ce is the wire 
lumped capacitance, and Ct is the total lumped 
capacitance of the source node of each net. To compute Re 
and Ce we need the length of each edge. For this, we use 
the statistical net-length estimation proposed in [22]. The 
average length of a net, connecting m cells enclosed in a 
rectangular area whose width is a and whose height is b, 
is given by: 

)()( ba
ba

ba
mLav ++

+
⋅−⋅≈ βα γ                                  (6) 

where α, β, and γ are fitting parameters computed in [22] 
as α ≈ 1.1, β ≈ 2.0, and γ  ≈ 0.5. During recursive 
partitioning, when a net is cut, it is assigned a certain wire 
delay that will be used to re-compute all delays on the 
paths that include that net. The earlier a net is cut during 
recursive partitioning, the greater the back-annotated wire 
delay has to be. In our case, any net that is cut during the 
first bipartitioning step (see Fig.3) is assumed to be 
bounded by a rectangular area which is the same as the 
chip area and for simplicity we consider an aspect ratio 
equal to 1. 

Net cut first time 
during 2nd bi-
partitioning => 
assign Elmore 
delay 

b’ 
 

b 
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Net cut first 
time during 1st 
bi-partitioning 
=> assign 
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Same Net cut 
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do NOT assign 
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3 

Fig.3 Illustration of the wire delay assignment to cut nets at 
different bipartitioning levels  
 

At the second partitioning level a and b have different 
values that will ensure a smaller delay than that assigned 
during a previous partitioning level. The delay of each net 
is set only the first time when it is cut. In other words, if a 
net is cut again at a lower partitioning level, it does not 
have its delay increased or re-assigned (based on the net 
length estimation corresponding to the bounding box at 
this partitioning level) because otherwise its delay would 
be over increased. In our experiments we consider a 0.18µ 

copper process technology (unit length resistance r = 
0.115, unit length capacitance c = 0.00015). 
 

6. Simulation Results 
 
In this section, we present simulation results. It is difficult 
for us to make a meaningful comparison of our statistical 
results with previous static timing analysis based works 
(except for the experiments presented in Section 7) 
because: (i) Our approach is based on statistical timing 
analysis, which is different from all previous approaches 
that are based on static timing analysis. Hence, we cannot 
compare statistical delay to static delay. (ii) We do not 
use netlist alteration in order to meet a timing requirement 
but we minimize timing by changing the partitioning 
process itself. Our goal is to show the potential timing 
improvement that can be obtained using our methodology, 
which can be further enhanced by using different netlist 
alteration techniques (iii) We use a different delay model 
vs. all previous approaches that are based either on the 
unit-delay model or on the global delay model. However, 
we compare our method against the case when the 
weights in graphs are constant corresponding to the case 
when simply hMetis would be used for circuit partitioning 
(we call it the pure partitioning method). In this way, we 
show the potential timing improvement that can be 
obtained using our algorithm. The experimental setup is 
shown in Fig.4.  

 

Gate Netlist 

Criticality Computation 

Pure hMetis 
Bipartitioning 

(all edges same eight) Criticality 
Update 

Cutsize & Delay 
Comparison 

 
hMetis Bipartitioning 

(criticality as  
edge weight) 

 
Fig.4 The simulation setup for comparison of our proposed 
partitioning algorithm to pure hMetis algorithm 

 
We report simulation results for a set of circuits from 

the ISCAS89 benchmarks [10] and the largest four ITC99 
benchmarks [9] (last four in Table 1). All circuits were 
first optimized using the script.rugged in SIS [18]. The 
results are presented in Table 1. The second column in 
Table 1 indicates the number of PI’s and PO’s, followed 
by the number of gates in the third column. For each 
circuit, Cutsize represents the number of all edges cut 
after the recursive bipartitioning. The Delay indicates the 
maximum mean delay (using the statistical delay model) 
among all PO’s. The run time is rounded to the closest 
integer and is given in seconds. 

We run the partitioning algorithm 60 times and report 
the average in Table 1. The maximum number of gates 
allowed for each partition was set to 10% of the total 
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number of gates (i.e. we did 10-way partitioning). As it 
can be seen, the proposed partitioning methodology offers 
in average a 22% better delay. However, this is at the 
expense of an increase of 33% in the cutsize. On one 
hand, we obtain a better delay with our partitioning 
algorithm because we use a better statistical timing 
criticality as hyperedge weight. On the other hand, 
compared to the pure hMetis partitioning, the cutsize 
increases because we practically reduce the search space 
for the hMetis partitioner when criticality is used as 
hyperedge weight. The partitioner does not have the same 
freedom in exploring the search space as when all 
hyperedges have the same weight. 

Table 1:Recursive statistical timing hMetis-based partitioning vs. 
hMetis partitioning for moderate-sized circuits (CPU(s) on 

UltraSPARC-II 450MHz, 2GB memory) 

Statistical Timing Driven 
hMetis-based Partitioning 

Pure hMetis Partitioning
Circuit PI/PO 

No. of 
gates 

Cutsize Delay CPU(s) Cutsize Delay CPU(s)

cordic 23/2 856 307 24.8 43 325 29.9 12 

s9234 39/16 1257 220 15.7 32 174 16.38 11 

misex3 14/14 1321 578 62.5 60 496 75.8 16 

s13207 90/56 1570 237 21.2 40 202 27.9 18 

frisc 19/16 3479 1318 99.6 131 797 163.4 39 

too_large 38/3 6920 2656 135.1 297 2392 144.5 71 

s35932 35/32 11304 792 161.1 239 415 249 58 

s38584 115/74 12701 1304 192.7 287 499 279 73 

mult32 64/64 12813 684 9112 238 581 9251 55 

b21s 32/22 14606 0.94 0.26 232 1 1 55 

b22s 32/22 22497 1.08 0.74 177 1 1 38 

b17s 37/30 36547 1.17 0.93 324 1 1 86 

b18s 36/22 101573 1.14 0.92 1080 1 1 292 

Avg. 1.33 0.78 2.74 1 1 1 

We observed that if we stretched the original criticality 
range into a smaller range we could trade delay vs. 
cutsize. In other words, if for example the original 
criticality range is [0,max_old_crit] we can stretch it into 
[1,max_new_crit], with max_new_crit taking values 2, 5, 
10, 50,…, and still obtain delay improvement with 
smaller increase in cutsize. For example, the values for 
delay and cutsize for s38584 are as follows: 
max_new_crit 2 5 10 50 100 200 500 

delay 294.3 292 299 245.4 245.5 245.4 188.6 

cutsize 496 526 507 602 637 572 818 

Similar cutsize/delay tradeoff was observed for all 
circuits. This allows the user to “tune” the partitioning 
method to smoothly tradeoff between cutsize and delay. 

The run time for our methodology is greater due to the 
criticality update operation. The run time for the pure 
hMetis algorithm includes the recording of the cut wires 
at each level of the partitioning as well as the delay 
computation. 
 

7. Validation Scenarios 
 
In this section, we describe two simple scenarios to 
further demonstrate the robustness of the statistical timing 
driven partitioning. It is known that due to the increase in 
chip clock frequency the amount of power consumption 

also increases, resulting in an increase in the chip 
temperature. However, the heat dissipation is usually 
unevenly distributed among the circuit gates, which leads 
to various temperatures across the whole area of the chip 
[21]. On one hand, higher temperatures slow down the 
transistors [5]. On the other hand, the interconnect 
resistance increases linearly with the temperature [1]. 
Thus, the delay of all gates and wires in areas with higher 
temperature will be larger than their estimated values 
during the design process. This motivated us to come up 
with two simple scenarios for testing the robustness of our 
proposed statistical timing driven partitioning. These 
scenarios are depicted in Fig.5. 

In both cases we first perform recursive bipartitioning 
using our statistical timing driven partitioning algorithm 
or pure hMetis partitioning algorithm or a slack-based 
partitioning algorithm2. Then, we perform a static timing 
analysis to compute the maximum delay among all the 
PO’s; we denote this delay as delay1. Third, in the first 
scenario (see Fig.5.a), we consider a 15% delay increase 
for all gates and their fanout wires that are placed in one 
of the partitions after the first level of bipartitioning. We 
choose a typical 15% for the delay increase [19] though 
for large temperature variations this increase can be larger 
[1]. In this way we try to mimic the case where half of the 
chip has a higher temperature, which in turn will 
determine a delay increase. Obviously, in reality, the 
temperature pattern will be more complex [4], but we 
restrict ourselves to this simplified version, which is 
similar to the example presented in [21].  

T1 

T2 >T1 

a) b)  
Fig.5 a) Half of the chip hotter b) Random hot spots over the 
whole chip area 
 

In the second scenario (see Fig.5.b) we randomly 
choose 15% delay increase for all gates and their fanout 
wires. This case tries to mimic the situation when we can 
find hot spots everywhere on the chip [5].  

Then, we perform a second static timing analysis to 
compute the maximum delay among all the PO’s of the 
circuit using the new gate and wire delays; we denote this 
delay as delay2. Finally, we compute the overall circuit 
delay perturbation as 100*(delay2-delay1)/delay1. The 
simulation results, presented in Table 2, confirm that by 

                                                 
2
 We developed a slack-based partitioning algorithm similar to the 

proposed one except that instead of statistical criticality we used static 

criticality, which is computed inversely proportional with the slack. The 

smallest slack determines the largest weight associated to the 
corresponding hyperedge, and so on so forth. 
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using our partitioning algorithm the perturbation due to 
temperature variation of the circuit delay is in most of the 
cases smaller when we use our partitioning algorithm 
(17% and 13% in average smaller for the half-hotter 
scenario and for the random-hot-spots scenario compared 
to the pure hMetis; 29% and 8% in average smaller for 
the half-hotter scenario and for the random-hot-spots 
scenario compared to the static slack-based partitioning). 
In this way circuits are more stable under the disturbing 
influence of factors such as temperature, power supply 
fluctuations, and process variations. 

Table 2:Delay change as percentage for the two validation scenarios 

100*(delay2-delay1)/delay1 

Proposed algorithm Pure hMetis Slack-based algorithm Circuit 
“half-
hotter” 

“random-
hot-spots” 

“half-
hotter” 

“random-
hot-spots” 

“half-
hotter” 

“random-
hot-spots”

cordic 11.66 8.46 8.46 8.36 11.9 6.72 

s9234 7.26 8.04 10.44 8.64 9.36 9.63 

misex3 8.45 6.25 10.1 12.31 12.73 12.13 

s13207 7.05 6.3 5.72 4.65 14.3 6.45 

frisc 6.6 5.86 11.51 3.7 7.22 7.9 

too_large 5.56 6.76 5.73 8.56 10.73 8.73 

s35932 8.86 4.04 10.6 8.93 8.4 7.5 

s38584 3.86 13.5 9.46 10 7.5 6.64 

mult32 6.96 6.76 7.53 10.74 12.18 5.98 

Avg. 7.36 7.33 8.83 8.43 10.48 7.96 

 

8. Conclusion 
 
In this paper we propose a timing driven partitioning 
algorithm. Because we change the partitioning process 
itself and we use the hMetis algorithm our algorithm is 
fast, thus applicable to large-sized circuits. Because we 
use a new delay model, which better reflects the timing 
criticality inside circuits, our algorithm is robust and 
circuits are more reliable than the circuits partitioned 
using pure hMetis or the slack-based partitioning 
algorithms. The proposed algorithm does not determine 
area increase because we do not use netlist alteration and 
it offers a smooth cutsize/delay tradeoff. The slight 
cutsize increase is the only disadvantage of our 
partitioning algorithm. We are currently working on 
multi-objective, multi-constraint hMetis-based 
partitioning methodologies. 
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