
Non-Contiguous Linear Placement for Reconfigurable Fabrics

Cristinel Ababei Kia Bazargan

Electrical and Computer Engineering Department

University of Minnesota, Minneapolis, MN 55455

{ababei, kia}@ece.umn.edu

Abstract

We present efficient solutions for the non-contiguous

linear placement of data paths for reconfigurable fabrics. A

strip-based architecture is assumed for the reconfigurable

fabric. A pre-order tree-expression or a general graph is

placed in a strip, which can have active and/or inactive pre-

placed cores representing blockages and/or cores available

for reuse. Two very efficient algorithms are proposed to

solve the simpler problem of non-contiguous placement with

blockages but without core reuse for tree graphs. The linear

ordering obtained with any of the above algorithms is used

as input for a third efficient algorithm to solve the problem

of non-contiguous placement with both active and inactive

cores. A fourth algorithm is proposed to solve the problem of

non-contiguous placement with both core and connectivity

reuse. Simulations results are reported.

1. Introduction

The manufacturability costs of classic ASICs continue to

increase due to the shrinking of transistor size and the

increase of circuit complexity. Therefore, the importance of

reconfigurable fabrics (e.g., including an FPGA block within

an ASIC design) has increased considerably in recent years.

A recent example is the hybrid ASIC/FPGA chip by IBM and

Xilinx [20]. This solution offers a combination of the

performance achievable with ASICs and the flexibility of

reconfigurability.

One of the reasons for increased interest in reconfigurable

fabrics is the higher flexibility offered by reconfigurability,

which allows the implementation of different applications on

the same reconfigurable fabric and the upgrade of currently

deployed application specific reconfigurable circuits, and

significantly decreases the time to market. Another reason

for increased attention to reconfigurable fabrics is the

continuous increase of the size and performance of

reconfigurable fabric, which allows the implementation of

more complex and faster applications.

Reconfigurable computing (RC) is used as an alternative

to the software implementation of digital media,

cryptographic, and compute-intensive algorithms or parts of

these (hardware software co-design) due to the superior

speed of hardware vs. software. The greater speed comes

from the high parallelism and custom datapath widths,

which are realizable with RC. An example of an RC

platform is the Xilinx Virtex II Pro reconfigurable fabric,

which has immersed up to four PowerPC processors [21].

Reconfigurable computing systems (RCS) offer efficient

solutions to a variety of problems. For example, they

facilitate the implementation as well as the upgrade

(possibly via Internet) on the same platform of different

features (DSP, cryptography, etc.) for audio and video data

streaming portable devices such as cell phones [26], [27],

[28]. Embedded systems for automotive applications (e.g.,

in-car navigating and collision detection systems) is yet

another example for use of RCS [29]. Ambient intelligence

[22] (a developing metaphor, which describes electronic

environments that are sensitive and responsive to the

presence of people) is a recent topic supported (especially

during development and prototyping [23], [24], [25]) by

upgradeable RCS and distributed computing.

A typical RCS architecture may look as that shown in

Fig. 1.a. It is similar to the architecture discussed in [1], [2].

Such an RCS has to be supported by physical design CAD

tools that shall guarantee fast run-times. Such tools are

indispensable for the generation of (partial) reconfiguration

bits in very short times. To achieve short run-times one has

to innovate at both architectural and algorithmic levels. At

the architectural level, we propose that the reconfigurable

processor unit (RPU) be divided into physical strips. A

physical strip represents a horizontal strip of the FPGA

chip. Each strip could be paired at both endings with I/O

memories, which serve as FIFO buffers for data to be

processed or for results. The height of a strip (and therefore

the total number of strips on the chip; see Fig. 1.b) can vary

depending on the data width to be processed. The

motivation behind such RPU architecture is that it

simplifies the physical design. The placement of cores
1
 (i.e.,

“hardware cores” stored in libraries, such as multipliers and

adders) is now linear as opposed to typical 2D approaches

[4], [2]. This simplification
2
 facilitates faster placement and

1 Also referred to as reconfigurable functional unit operations

(RFUOPs) in frameworks like those in [4], [2].

2 It is worth mentioning that such architecture would not impair the

achievable performance but would only possibly require larger areas,

as experiments reported in [10] showed.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

routing engines and easier integration of techniques like the

virtual sockets described in [5] (physical design becomes

more platform-based) or the core communication interface in

[13].

RPU

Strip 1
I/O

M

Strip 2

Strip 3

Strip 4

I/O

M

I/O

M

I/O

M

I/O

M

I/O

M

I/O

M

I/O

M

a) b)

CPU

PDM

RPU

On chip
SRAM
Caches

Fig. 1 a) The RCS architecture b) The RPU divided into
four strips

1.1 Previous Work and Current Challenges

In partial dynamic reconfiguration only the area required

by the new configuration is reconfigured based on events
3
.

The rest of the RPU remains intact. In this way

reconfiguration bitstreams are smaller and hence the

reconfiguration time is smaller. Static and full dynamic

configuration modes are supported by mature CAD tools,

which cover all steps in the design cycle (from high-level

design specifications down to placement and routing and

then static configuration of a single or multiple contexts).

However, the partial run-time reconfigurable model lacks the

design tools for partial reconfiguration, which makes

practical implementations a challenging task, even though

the partially reconfigurable devices (e.g., Xilinx Virtex [18])

are already available. We note the practical lack of a

coherent design flow and an RCS platform that shall provide

real-time reconfiguration bits generation and partial dynamic

reconfigurability. However, many RCS architectures have

been proposed with notable performance limited to specific

applications [8] [9].

1.2 Our Work

We focus on the physical design CAD tools aspect. In

particular, we concentrate on two of the three placement

problems, which we envision to appear in a partial

dynamically reconfigurable computing system such as that

shown in Fig. 1. The first placement problem in such a

framework is when a new expression is implemented into an

empty strip. In this case the placement is static linear

placement (because the placement can be done during

compilation) similar to [10]. When a new expression is to be

implemented into a strip, which already hosts a previous

expression or the latter needs to be augmented with

additional functionality the placement problem becomes a

3 One can also talk about static configuration - the whole RPU area has

to be reconfigured during each reconfiguration or full dynamic

reconfiguration - more configurations are stored in the FPGA or in a

cache on-chip memory and they are switched during execution as

response to requests [6]. In this work our focus is however on partial

dynamic reconfiguration only.

non-contiguous linear placement. In this case only certain

areas within the strip are available for the placement of new

cores and therefore the classical linear placement has now

additional constraints under the form of blockages (i.e.,

obstructions). The third kind of placement represents the

case when previously placed cores (possibly

interconnected) are still spread into a strip and decisions

have to be made about which ones to be used for the

expression to be placed (therefore to reduce reconfiguration

time), which ones to be kept for future expressions, or

which ones to be erased or relocated inside the same strip.

We call this dynamic (or real-time) linear placement

because decisions, which directly impact the placement

performance, have to be made in some cases at run-time.

We propose solutions for the second and third kinds of

placement. Our algorithms are intended for fast and close to

optimum implementation of relatively simple kernels
4

(which can be the result of a dynamic hardware/software

partitioning encountered in HW/SW co-design [3]). In a

typical RCS, the application is partitioned into loops (a loop

has more kernels) implemented into hardware and software.

When a kernel is implemented in hardware, its actual

implementation (placement, core shapes, etc.) is done such

that the execution time for the whole application is

minimized. Our algorithms can be used either for fast

solution-space search during compile-time (to achieve best

configurations/contexts to be swapped during execution) or

for real-time placement in cases when the hardware-

software partitioning is done in real-time during execution

(in this case our algorithms would be behind the physical

design manager – PDM – which can be another dedicated

processor, in Fig. 1.a). We exploit re-usability in a partially

reconfigurable framework, which is a characteristic of the

emerging platform-based design methodologies. This is in

contrast to, for example, [10] where the focus is on rather

operation-merging-based regular data-path synthesis and

optimization, which is suitable for customized

implementation of data-paths in a static framework.

1.3 Problem Formulation

We now state the assumptions that we make and present

the formulation of the non-contiguous placement problem.

The framework diagram of the non-contiguous placement is

presented in Fig. 2.

In order to simplify the problem we make the following

assumptions:

The RPU is an island-like FPGA chip containing

64x64 CLBs excluding the I/O memories on the left and

right sides of the chip (see Fig. 1.b). Strips are horizontally

considered and the height of each strip is determined by the

data width to be processed. The height should

accommodate the tallest core available in the library. The

4 In this work, a kernel is a pre-order binary expression (i.e., a tree

graph) or a general directed graph.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

“Library” box in Fig. 2 represents the list of cores and their

characterization obtained with JBits [7].

Wire delays are estimated considering that every

connection was routed considering best possible

combination of wire segments. A look-up table is created,

which has delay entries for every possible distance. Note,

that in this way the delay estimation is optimistic. The

“Delay Architecture” box in Fig. 2 represents the delay look-

up table.

Placement Engine

Blockages

I/O

M
I/O

M

Non-contiguous

f ree space

Library
Delay

Architecture
Graph

ADD 3, 0 10

MUL 10, 0 30

REG 1, 0 10

...

Fig. 2 Non-contiguous linear placement diagram

Coordinates of pre-placed cores are given. Active pre-

placed cores are considered as blockage areas/intervals.

Inactive pre-placed cores are available for reuse. The

“Graph” box in Fig. 2 represents the pre-order binary tree or

general graph, which has to be placed together with the

information about active (i.e., blockages) and inactive cores.

Primary inputs (PIs) and primary outputs (POs) are

placed at both sides (left and right) of the strip for congestion

minimization.

The formulation of the non-contiguous placement with

blockages problem is as follows:

GIVEN: The delay look-up table (architecture), the library

of cores together with their characterization, the tree or

general graph (as data flow graph - DFG), and the location

of pre-placed cores inside the strip.

OBJECTIVE: Overlap-free linear placement (x

coordinates) of all cores of the DFG such that the Wire-

Length (WL), the delay at the outputs, and the max-cut at

any column (congestion) are minimized.

2 Non-contiguous Linear Placement for

Tree Graphs

We present three different algorithms for solving the non-

contiguous linear placement for tree graphs.

2.1 Algorithm H1

The first proposed placement algorithm is based on the

idea of a heuristic partitioning algorithm presented in [11].

We adopted and applied it to our linear non-contiguous

placement problem because it fits well the purposes of max-

cut and WL minimization. In what follows we describe how

our algorithm works. The pseudo-code of the first algorithm

is shown in Fig. 3.

First, we build the EV-matrix, which is an m×n matrix

where m – the number of rows – is the number of edges in

the directed tree-graph and n – the number of columns – is

the number of nodes. An element a(i, j)=1 in the matrix is

non-zero if the j-th node is a terminal of the i-th net. If a

node is not a terminal for a net, the corresponding EV-

matrix element is zero. For example, Fig. 4 shows the

binary tree
5
 for the expression Tg01.exp and the EV-matrix

built based on the counting of all nodes and nets.

Input:
 G(V,E)
 Library of cores and delay info
Step:
1. Build EV-matrix
2. Transform EV-matrix into band-matrix
3. Greedy overlap-free placement

Fig. 3 Algorithm H1

Then, the EV-matrix is transformed into an as-close-as-

possible band-form matrix using a procedure similar to the

one in [11]. We denote this as B(EV)-min problem (i.e.,

minimization of the bandwidth of the EV-matrix problem).

The procedure uses row and column flips only and is based

on a sorting algorithm. The goal of getting the matrix to a

band-form (which translates into an optimal linear ordering)

serves two objectives:

1. Cutsize minimization – by having all 1’s in the

matrix clustered along the diagonal shown with dashed-line

in Fig. 4.b, the cutsize (the number of nets cut by a vertical

cut applied between any two consecutive nodes in the linear

arrangement) is minimized everywhere in the linear

arrangement.

2. WL minimization – by minimizing the bandwidth

(maximum x distance spanned by any of the nets) of the

EV-matrix, the total wire-length of all nets is minimized.

Binary expression: + * a b + * c d e

a) b)

a b * e

c d

+*

+

PO PO-PAD for root

Root

0 1

7

9

2

3 4

5 6

8

0 1

3 4

5 6

2 7

8
 1 0 0 0 0 1 0 0 0 0
 0 1 0 0 0 1 0 0 0 0
 0 0 1 0 0 0 1 0 0 0
 0 0 0 1 0 0 1 0 0 0
 0 0 0 0 1 0 0 1 0 0
 0 0 0 0 0 1 0 0 1 0
 0 0 0 0 0 0 1 1 0 0
 0 0 0 0 0 0 0 1 1 0
 0 0 0 0 0 0 0 0 1 1

0 1 3 4 6 2 5 7 8 9
V

E

EV-matrix

0

1

3

4

6

2

5

7

8

Fig. 4 a) Binary expression tree b) The EV-matrix with
nodes placed on columns such that the 1’s for PI

5 Note that an extra node - PO pad - was inserted. This is done for

every tree with the purpose of connects the root to the I/O memories

and for wirelength computations.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

nodes are in the top-left corner and the 1 for PO-pad
node is in the right-bottom corner

We would like to note that our EV-matrix is different from

the VV-matrix, which is commonly used to represent the

incidence-matrix of a graph, and for which the

BANDWIDTH problem is known to be NP-complete in

general as well as for trees with maximum degree of three or

more [12].

The congestion is indirectly minimized by minimization of

the cutsize as well as the assignment of the PI/PO pads

evenly to the left and right ends of the strip.

After bandwidth minimization, we greedily place the cores

from right-to-left in the strip, based on the final ordering of

nodes in the EV-matrix, such that no overlaps exist and

blockages are skipped. That is performed under the

assumption that the PO-pad is assigned to the right end of

the strip; otherwise the placement is performed from left-to-

right. The run-time complexity of algorithm H1 is O(a lg a),

a=max(m,n) and it is dominated by the quicksort algorithm

behind the procedure in Step 2.

2.2 Algorithm H2

The idea of the second heuristic is also based on the

minimization of the bandwidth of the EV-matrix. However,

this time we do not need to actually build the EV-matrix but

we rather work directly on the binary-tree graph in a top-

down approach. The main steps of our algorithm are shown

in Fig. 5.

Input:
 G(V,E)
 Library of cores and delay info
Step:
1. Post-order traversal to compute quantities of interest
2. Rank assignment to nodes by linear ordering
3. Greedy overlap-free placement

Fig. 5 Algorithm H2

First, a post-order walk is performed in order to compute the

following interval variables for every node:

1. Latest arrival time, d (delay), up to the current node

starting at any of the leaf nodes in the corresponding sub-

tree. Initially, all delays are computed considering zero-delay

for all wires. The delay d will be actually an interval (dmin,

dmax) because every core in the library can have multiple

shapes (widths and heights) with different delays.

2. Longest (maximum) path-width, pw, up to the

current node starting at any of the leaf nodes in the

corresponding sub-tree. A path-width is the sum of all widths

of all cores along a path from a leaf-node up to the root-node

of a sub-tree. The maximum path-width will also be

computed as an interval (pwmin, pwmax) because the width of

every core is at its turn an interval of discrete values. This

variable is useful because stores the total width of the path, if

all modules along the path are placed contiguously.

3. Volume-width of a sub-tree, v, represents the sum

of all widths of all cores in sub-tree. The volume will also

be computed as an interval (vmin, vmax). Volume-width gives

the total width of the sub-tree, if all modules in the sub-tree

are placed contiguously.

For example, Fig. 6 illustrates a generic node of a tree

with the critical path having the latest delay d, the

maximum path-width pw, and the volume-width v shown

for the right sub-tree.

critical

path (d)

a b c d

*

+

+

+

path-width (pw)

volume (v)

+ + * +

a

c
d

b

Fig. 6 Illustration of path delay, path-width, and
volume

Then a linear ordering (i.e., numbering, counting) of all

nodes is performed by assignment of ranks starting with the

root node (and its associated PO-pad) and recursively

continuing to the left (decreasing of the rank) with the left

sub-tree and to the right (increasing of the rank) with the

right sub-tree. This step is illustrated on a very simple

example in Fig. 7 (corresponding to the example in Fig. 4,

with the assumption that all cores in the library have unique

shapes).

The rank of the root is equal to the number of nodes in

the left sub-tree of the root. The rank of the PO-pad is the

rank of the root plus one (i.e., PO-pad is next to the right of

the root). Ranking of nodes in either of the left or right sub-

trees is done in a “smaller-volume first” order of their own

sub-trees. For example, in Fig. 7, node 6 is ranked such that

it is to the left of node 5. That is because the sub-tree {6}

undergoes first the process of ranking because this sub-tree

has a smaller volume than the sub-tree containing node 5,

which is {5,3,4}. If both sub-trees of the generic node have

the same volume, the ranking is decided based on max path-

width or delay. At the end of this step we have obtained a

linear numbering of nodes as that shown in the shaded area

in Fig. 7. As pointed out in the previous section, this linear

ordering is very important because it is a direct measure of

the quality of the final placement in terms of total wire-

length and maximum cutsize.

8 PO210 3 4567

3 4210 8 9765

Start
Increasing rank Decreasing rank

Rank:

Ordering

Fig. 7 Illustration of rank assignment in order to obtain
the linear numbering for the example in Fig. 4

Finally, a post processing is performed in order to assign

x coordinates to all cores from right-to-left such that there

are no overlaps and all blockages are skipped. During this

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

step PIs (i.e., leaf nodes) and the PO-pad will be assigned to

the left or right of the strip depending on which one is closer,

in order to minimize the wire-length. When cores have

multiple shapes, then decision about which shape for a given

core to be used has to be made. The shape assignment is

done dynamically such that the delay of the most critical path

is minimized while the total area of the cores off critical path

is minimized. The run-time of the algorithm H2 is O(n).

2.3 Algorithm H3

In this section we address the third kind of non-contiguous

placement. In this case, pre-placed cores may be inactive and

available to be used as resources for the expression to be

placed. The goal here is to re-use as many inactive cores as

possible, hence to reduce the reconfiguration time, while

minimizing the same objective functions: wire-length, the

delay at the output of the expression tree, and the max-cut at

any x. In this case the problem is more difficult because the

way the inactive cores are placed on the strip can lead to

increase in wire-length and delay as well as of max-cut. The

number of inactive cores usually is not equal to the number

of cores of the expression to be placed. Therefore, we have

to decide on which inactive cores to re-use and which cores

to be placed to match with. Other important factors are the

“distribution” of inactive cores on the strip and their type

(e.g., multipliers, adders, etc.). If all inactive cores are

“flushed” to an end of the strip, then their re-use is likely to

be more difficult compared to the case when they are

uniformly distributed on the strip between blockages. If, for

instance, all inactive cores are of one type (e.g., multipliers)

and all cores to be placed are of another type (e.g., adders),

then all inactive cores have to be treated as blockages or to

be “overwritten”.

The main steps of algorithm H3 are shown in Fig. 8. First,

a linear ordering is found for the expression to be placed

using one of the algorithms presented in previous two

sections. Because the linear ordering directly affects wire-

length and maximum cutsize, we would first like to find a

very good linear ordering irrespective of the type and

distribution of the inactive cores
6
.

Then, perform a maximum matching between the inactive

cores and the cores to be placed. Maximum means that we

look for re-using as many inactive cores as possible in a

manner which will also lead to a minimum perturbation of

the linear ordering obtained during Step 1, hence a minimum

deterioration of the wire-length, delay, and max-cut. This

step is implemented as follows. We model the inactive cores

and the empty intervals between them as nodes of a linear

6 Delay is also affected by the linear ordering. The linear ordering has to

ensure a “straight” (from left to right or right to left) rather than a “back-

and-forth” critical path in order to achieve delay minimization. This is

true irrespective of the fixed locations of the PIs and POs. However,

blockages can have a certain impact (depending on the delay-distance

relationship – captured in the look-up table in our case) on the overall

delay as well when the final placement will be obtained by flushing all

cells to the right or to the left.

graph denoted strip_g. The cores to be placed in the linear

ordering obtained during the first step represent a second

linear graph denoted linord_g. We then perform a linear

mapping between the two graphs.

Input:
 G(V,E)
 Library of cores and delay info
 Locations and types of pre-placed cores
Step:
1. Use algorithm H1/2 to f ind linear ordering
2. Max-matching between pre-placed and to be placed
 cores
3. Greedy placement of left-over cores

Fig. 8 Algorithm H3

The mapping is performed by first partitioning (i.e.,

dividing) the larger graph into a set of blocks equal to the

number of nodes in the smaller graph. Then we match every

node in the smaller graph with its corresponding block in

the larger graph. For example, Fig. 9 shows the example

from Fig. 7 to illustrate how the linear mapping is

performed. For example, the node 8 in linord_g, which is

an adder is mapped to the nodes 3 and 4 in strip_g, which

are an inactive adder core placed at x=17 and an empty

interval [19,20]. This means that the adder 8 from linord_g

will be most likely matched either with the inactive adder 3

or with the empty interval 4 in strip_g. A core to be placed,

as a node in linord_g, can also be matched with nodes,

which are first order
7
 (or higher, depending by how much

the linear ordering is allowed to change) neighbors of the

nodes to which the core is mapped by the linear mapping.

For example, the multiplier 5 of linord_g can be matched

with the inactive core 6 of strip_g (see Fig. 9).

linord_g

strip_g

linear

mapping 82 57

* * + +

0..2 8..12 19..20 28..36 45..64 12..17

+* * + +

38..43 17..18 43..44 44..45

0 1 4 5 9 2 6 3 7 8

* *+ + +

blockages inactive cores free interval Strip

Fig. 9 Illustration of the linear mapping between the
two linear graphs for the example in Fig. 4

After mapping and matching, some of the cores of the

currently placed expression (nodes of linord_g) may not be

matched. Therefore, as a last step we greedily match those

cores to empty intervals as close as possible to those, which

are already matched, in a manner that preserves the initial

linear ordering.

Note that our method is a constructive rather than an

iterative one. Hence, short run-times are facilitated. The

7 This is a control parameter that allows the user to tune the algorithm.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

run-time complexity of algorithm H3 depends on which

algorithm is used in Step 1.

3 Non-contiguous Linear Placement for

General Graphs

We now present a solution for the non-contiguous linear

placement for general graphs, which can have multiple

primary outputs. Our goal in this case is similar to that of the

problem statement in Section 2.3. We would like to reuse as

many inactive cores as possible in order to decrease the

amount of reconfiguration bits and hence the reconfiguration

time. However, we further consider the interconnection reuse

as well. In other words, fully pre-placed general graphs are

considered as inactive in a strip. We would like to reuse

inactive cores together with their connectivity. That would

require less routing effort (and possibly even smaller

amounts of reconfiguration bits) for the new graph to be

placed. Fig. 10 describes what the optimal core and

interconnect reuse is for a very simple example.

a b c

d

*

+ +

+

e
MCS

a b c d

*

+

+

e

*

f

graph to be placed inactive pre-placed

graph - ready for reuse

Fig. 10 Illustration of the maximum common sub-graph
(MCS) match for both core and connectivity reuse

The pseudo-code of our algorithm is shown in Fig. 11.

Input:
 G1(V1,E1), G2(V2,E2)
 Library of cores and delay info
 Locations and types of pre-placed cores
Step:
1. Use algorithm H1 to f ind linear ordering
2. MCS betw een pre-placed and to be placed cores
 with connectivity considered
3. Greedy placement of left-over cores

Fig. 11 Algorithm H4

First, a linear ordering (similarly to the first step of the

algorithm in Section 2.3) of the graph to be placed is found

using the same procedure as the one described in Section 2.1,

which applies for general graphs as well.

Then we find the maximum common sub-graph (MCS)

between the pre-placed inactive graph and the graph to be

placed. For this purpose we employ a specialized algorithm,

developed by Foggia et al as an extension of the algorithm

presented in [14] and available at [19]. In its simpler version

the MSC algorithms finds the maximum connected sub-

graph and in its more complex form (requires longer run-

times) the MSC algorithm finds a maximum disconnected

sub-graph (e.g., a forest of trees) like for instance the

example shown in Fig. 10. The MCS algorithm finds the

maximum number of cores (similarly to [16]), which can be

reused as well as the connectivity between these cores

(similarly to [17]).

In the last step, the left-over cores of the graph to be

placed are greedily placed into empty intervals as close as

possible to cores, which are already placed (coordinates

determined by the MCS), in a manner that preserves the

linear ordering obtained in the first step. The run-time

complexity entirely depends on the MCS algorithm, which

is O(b (n1 + n2)), b=number of branches involving any two

nodes of the two matched graphs.

4 Simulation Experiments

We now report simulation results obtained with our

algorithms. The first three heuristic algorithms (described in

Section 2) are used to test a set of six randomly constructed

binary expressions
8
. The simulations results are shown in

Table 1.

We also implemented a Simulated Annealing (SA)

algorithm for delay minimization
9
. We see that, the timing-

driven Simulated Annealing engine cannot improve on the

delay results obtained with H1 and H2. The reason for that

is that the critical path usually starts at the left and ends at

the right. This makes, in the case of trees, for the ordering

of cores (i.e., their counting) to be more important than the

core coordinates.

Comparing the first two heuristics, it can be seen that the

delay obtained with H2 is similar to the delay obtained with

the H1 but the wire-length is improved. That is because of

the better bandwidth minimization obtained with H2. The

last three columns of Table 1 present the simulation results

obtained with H3. When inactive cores are reused, more

factors come into play and contribute to the tradeoffs

existing between wire-length, delay, and the number of

available inactive cores, which are actually used. We

observed in our experiments a stable tradeoff between how

well the best linear ordering (obtained in the first step of

H3) is preserved and the number of inactive cores, which

are actually reused. The more inactive cores are reused

(which eventually will translate in faster reconfiguration

times) the worse the preservation of the linear ordering is

(which translates in slightly higher delay and wire-length).

Table 2 presents simulation results obtained with the

algorithm presented in Section 3. We tested our algorithm

on a set of selected basic blocks (as data flow graphs) of the

Honeywell and MediaBench benchmarks [15]. For

8 All tree and general graphs together with the C++ implementation of

all algorithms presented in this work are available for download at

[30].

9
 There is no prior work on non-contiguous linear placement to which

we can compare our results. The only work somewhat similar to our

work is [10]. However, the placement algorithm in [10] solves the

problem of static linear placement, which is different from the non-

contiguous linear placement problem tackled in this work.

Additionally, wire-length is not considered in [10].

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

comparison purposes, we first place each graph contiguously

(each graph is placed without reusing any cores). Then, every

graph - starting with the second - is placed considering as

pre-placed reusable graph the previous one. This is

performed with the MCS algorithm set to search for the

maximum common disconnected sub-graph (maximum core

and connectivity reuse but longer run-times) or set to search

for the maximum common connected sub-graph (lower core

and connectivity reuse but much faster). We can see that in

the first setting the percentage of cores and connectivity that

are reused is bigger (up to 74% core and up to 36%

connectivity reuse) than in the second setting, but at the

expense of longer run-times. Bigger core and connectivity

reuse translates into smaller amounts of reconfiguration bits,

hence shorter reconfiguration times. However, the longer

run-times (entirely due to the MCS algorithm) suggest the

use of our algorithm - with the first setting - for optimization

placement at compile time.

5 Conclusion

We presented efficient solutions for the non-contiguous

linear placement problem for reconfigurable computing. Our

placement algorithms are based on a heuristic for B(EV)-min

(minimization of the bandwidth of the EV-matrix of the

expression graph), which translates into direct minimization

of the cutsize (congestion) and wire-length and indirect

minimization of timing. When inactive cores are reused our

algorithms look for finding the maximum matching

between the inactive cores and those, which have to be

placed. Core and connectivity reuse can be as much as 74%

and 36% respectively.

Current and future work focuses on developing a direct

delay minimization integrated into the presented algorithms.

That should be in the form of either net-based (slack) or

path-based (k-most critical paths). A better delay estimation

possibly by means of integrating placement with routing is

one more way of improving on the placement

methodologies for reconfigurable computing.

Acknowledgment

Pasquale Foggia of the Federico II University of Naples,

provided timely clarifications about the MCS algorithm used in

Section 3.

Table 1 Simulation results for tree graphs
SA H1 H2 H3

Circuit Nodes Delay WL
CPU
(s)

Delay WL
CPU
(s)

Delay WL
CPU
(s)

Delay WL
CPU
(s)

Tg01 10 1.16 169 16 1.16 191 0 1.16 187 0 1.21 152 0.015
Tg02 20 1.8 336 60 1.8 328 0.015 1.8 330 0 1.87 350 0.015
Tg03 12 1.58 227 16 1.58 235 0.015 1.58 219 0.015 1.58 224 0.015
Tg04 20 2.6 369 68 2.6 371 0.015 2.6 289 0 2.64 304 0.015
Tg05 20 2.6 302 73 2.6 314 0.015 2.59 293 0.015 2.6 309 0.015
Tg06 28 2.66 371 44 2.66 386 0.015 2.65 367 0 2.66 416 0

Table 2 Simulation results for general graphs

 Contiguous Placement
Non-Contiguous Placement

(disconnected MCS)
Non-Contiguous Placement

(connected MCS)

Circuit
placed (reused)

Nodes
/ Nets

PI /
PO

Delay WL
CPU
(s)

Delay WL
CPU
(s)

Reuse
Core /

Connect
Delay WL

CPU
(s)

Reuse
Core /

Connect

Honeywell-intfc01
(Honeywell-intfc01)

16/13 4/3 1.079 255 0 1.079 255 0
100 /
100

1.079 261 0.016
62.5 /

75
Dft (Honeywell-

intfc01)
19/12 4/7 0.955 386 0 0.979 382 0.094

52.63 /
33.33

0.985 412 0.015
15.79 /
13.33

Honeywell-versatil
(Dft)

27/20 6/7 1.038 430 0.015 1.078 433 0.469
51.81 /

28
1.075 425 0.015

22.22 /
20

Honeywell-intfc02
(Honeywell-versatil)

27/21 6/6 1.467 458 0 1.508 481 18.6
74.07 /

36
1.467 460 0.032

18.51 /
16

Honeywell-fft01
(Honeywell-intfc02)

31/23 8/8 1.411 595 0.015 1.414 564 187.3
51.61 /
24.13

1.411 596 0.016
16.12 /
13.79

Honeywell-fft02
(Honeywell-fft01)

31/24 5/7 1.057 471 0 1.072 471 414.7
45.16 /
23.33

1.057 479 0.032
16.12 /
13.33

MediaBench-jpeg
(Honeywell-fft02)

35/27 9/8 1 650 0 1.031 607 597.2
54.28 /
27.27

1.009 643 0.015
11.42 /

9.09

References [1] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J.

Stockwood, “Hardware-Software Co-Design of Embedded

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Reconfigurable Architectures”, ACM/IEEE Design Automation

Conference (DAC), 2000, pp. 507-512.

[2] K. Bazargan, S. Ogrenci, and M. Sarrafzadeh, ”Integrating

Scheduling and Physical Design into Coherent Compilation Cycle

for Reconfigurable Computing Architectures”, ACM/IEEE Design

Automation Conference (DAC), 2001, pp. 635-640.

[3] K. B. Chehida and M. Auguin, “HW/SW Partitioning

Approach for Reconfigurable Systems Design”, International

Conference on Compilers, Architectures, and Synthesis for

Embedded Systems (CASES), 2002, pp. 247-251.

[4] G. Brebner, "The Swappable Logic Unit: A Paradigm for

Virtual Hardware", International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 1997, pp.

72-81.

[5] M. Dyer, C. Plessl, and M. Platzner, “Partially Reconfigurable

Cores for Xilinx Virtex”, International Conference on Field-

Programmable Logic and Applications (FPL), 2002, pp. 292-301.

[6] Z. Li, K. Compton, and S. Hauck, “Configuration Caching

Techniques for FPGA”, IEEE International Symposium on Field-

Programmable Gate Arrays (FPGA), 2000, pp. 22-36.

[7] S. Guccione, D. Levi, and P. Sundararajan, “JBits: Java based

interface for reconfigurable computing”, Military and Aerospace

Programmable Logic Devices International Conference (MAPLD),

2002.

[8] A. DeHon and J. Wawrzynek, “Embedded Tutorial:

Reconfigurable Computing: What, Why, and Implications for

Design Automation”, ACM/IEEE Design Automation Conference

(DAC), 1999, pp. 610-615.

[9] S. Hauck, “The Roles of FPGAs in Reprogrammable Systems”,

Proceedings of the IEEE, 1998, 86(4): 615-638.

[10] T. J. Callahan, P. Chong, A. DeHon, and J. Wawrzynek, “Fast

Module Mapping and Placement for Datapaths in FPGAs”,

International Symposium on Field-Programmable Gate Arrays

(FPGA), 1998., pp. 123-132.

[11] S. -W. Cheng and K. -H. Cheng, “ENISLE: an intuitive

heuristic nearly optimal solution for mincut and ratio mincut

partitioning”, International Symposium on Circuits and Systems

(ISCAS), 2001, pp. 167-170.

[12] J. Diaz, J. Petit, and M. Serna, “A Survey of Layout Problems”,

ACM Computing Surveys, Sept. 2002, pp. 313-356.

[13] D. Mesquita, F. Moraes, J. Palma, L. Moller, and N. Calazans,

“Remote and Partial Reconfiguration of FPGAs: Tools and Trends”,

Reconfigurable Architectures Workshop (RAW), 2003.

[14] P. Foggia, C. Sansone, and M. Vento, “An Improved Algorithm

for Matching Large Graphs”, The 3rd IAPR-TC15 Workshop on

Graph-based Representations, Ischia, 2001.

[15] C. Lee, M. Potkonjak, and W. H. Mangione-Smith,

“MediaBench: A Tool for Evaluating and Synthesizing Multimedia

and Communications Systems”, ACM/IEEE International

Symposium on Microarchitecture, 1997.

[16] S. O. Memik, G. Memik, R. Jafari, and E. Kursun, “Global

Resource Sharing for Synthesis of Control Data Flow Graphs on

FPGAs”, ACM/IEEE Design Automation Conference (DAC), 2003,

pp. 604-609.

[17] N. Moreano, G. Araujo, Z. Huang, and S. Malik, “Datapath

Merging and Interconnection Sharing for Reconfigurable

Architectures”, International Symposium on System Synthesis (ISSS),

2002, pp. 38-43.

[18] Xilinx Inc., Virtex II FPGA Advance Product Specification,

2001, Available at: www.xilinx.com.

[19] http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html

[20] www-3.ibm.com/chips/products/asics/products/cores/efpga.html

[21] http://www.xilinx.com/products/tables/fpga.htm#v2p

[22] http://www.research.philips.com/InformationCenter/Global/FArt

icleSummary.asp?lNodeId=931#ambintel

[23] http://research.microsoft.com/easyliving/

[24] http://architecture.mit.edu/house_n/

[25] http://www.awarehome.gatech.edu/

[26] http://www.qstech.com/tech_products.htm

[27] http://www.picochip.com/

[28] http://www.xilinx.com/apps/epld.htm#CoolRunner

[29] http://www.xilinx.com/publications/products/sp2e/wp_pdf/wp15

3.pdf

[30] http://www.ece.umn.edu/users/ababei

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

