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Abstract  

We present efficient solutions for the non-contiguous 

linear placement of data paths for reconfigurable fabrics. A 

strip-based architecture is assumed for the reconfigurable 

fabric. A pre-order tree-expression or a general graph is 

placed in a strip, which can have active and/or inactive pre-

placed cores representing blockages and/or cores available 

for reuse. Two very efficient algorithms are proposed to 

solve the simpler problem of non-contiguous placement with 

blockages but without core reuse for tree graphs. The linear 

ordering obtained with any of the above algorithms is used 

as input for a third efficient algorithm to solve the problem 

of non-contiguous placement with both active and inactive 

cores. A fourth algorithm is proposed to solve the problem of 

non-contiguous placement with both core and connectivity 

reuse. Simulations results are reported.  

1. Introduction

The manufacturability costs of classic ASICs continue to 

increase due to the shrinking of transistor size and the 

increase of circuit complexity. Therefore, the importance of 

reconfigurable fabrics (e.g., including an FPGA block within 

an ASIC design) has increased considerably in recent years. 

A recent example is the hybrid ASIC/FPGA chip by IBM and 

Xilinx [20]. This solution offers a combination of the 

performance achievable with ASICs and the flexibility of 

reconfigurability.  

One of the reasons for increased interest in reconfigurable 

fabrics is the higher flexibility offered by reconfigurability, 

which allows the implementation of different applications on 

the same reconfigurable fabric and the upgrade of currently 

deployed application specific reconfigurable circuits, and 

significantly decreases the time to market. Another reason 

for increased attention to reconfigurable fabrics is the 

continuous increase of the size and performance of 

reconfigurable fabric, which allows the implementation of 

more complex and faster applications.  

Reconfigurable computing (RC) is used as an alternative 

to the software implementation of digital media, 

cryptographic, and compute-intensive algorithms or parts of 

these (hardware software co-design) due to the superior 

speed of hardware vs. software. The greater speed comes 

from the high parallelism and custom datapath widths, 

which are realizable with RC. An example of an RC 

platform is the Xilinx Virtex II Pro reconfigurable fabric, 

which has immersed up to four PowerPC processors [21]. 

Reconfigurable computing systems (RCS) offer efficient 

solutions to a variety of problems. For example, they 

facilitate the implementation as well as the upgrade 

(possibly via Internet) on the same platform of different 

features (DSP, cryptography, etc.) for audio and video data 

streaming portable devices such as cell phones [26], [27], 

[28]. Embedded systems for automotive applications (e.g., 

in-car navigating and collision detection systems) is yet 

another example for use of RCS [29]. Ambient intelligence 

[22] (a developing metaphor, which describes electronic 

environments that are sensitive and responsive to the 

presence of people) is a recent topic supported (especially 

during development and prototyping [23], [24], [25]) by 

upgradeable RCS and distributed computing.  

A typical RCS architecture may look as that shown in 

Fig. 1.a. It is similar to the architecture discussed in [1], [2]. 

Such an RCS has to be supported by physical design CAD 

tools that shall guarantee fast run-times. Such tools are 

indispensable for the generation of (partial) reconfiguration 

bits in very short times. To achieve short run-times one has 

to innovate at both architectural and algorithmic levels. At 

the architectural level, we propose that the reconfigurable 

processor unit (RPU) be divided into physical strips. A 

physical strip represents a horizontal strip of the FPGA 

chip. Each strip could be paired at both endings with I/O 

memories, which serve as FIFO buffers for data to be 

processed or for results. The height of a strip (and therefore 

the total number of strips on the chip; see Fig. 1.b) can vary 

depending on the data width to be processed. The 

motivation behind such RPU architecture is that it 

simplifies the physical design. The placement of cores
1
 (i.e., 

“hardware cores” stored in libraries, such as multipliers and 

adders) is now linear as opposed to typical 2D approaches 

[4], [2]. This simplification
2
 facilitates faster placement and 

                                                                
1 Also referred to as reconfigurable functional unit operations 

(RFUOPs) in frameworks like those in [4], [2].  

2 It is worth mentioning that such architecture would not impair the 

achievable performance but would only possibly require larger areas, 

as experiments reported in [10] showed.
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routing engines and easier integration of techniques like the 

virtual sockets described in [5] (physical design becomes 

more platform-based) or the core communication interface in 

[13].
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Fig. 1 a) The RCS architecture b) The RPU divided into 
four strips  

1.1 Previous Work and Current Challenges  

In partial dynamic reconfiguration only the area required 

by the new configuration is reconfigured based on events
3
.

The rest of the RPU remains intact. In this way 

reconfiguration bitstreams are smaller and hence the 

reconfiguration time is smaller. Static and full dynamic 

configuration modes are supported by mature CAD tools, 

which cover all steps in the design cycle (from high-level 

design specifications down to placement and routing and 

then static configuration of a single or multiple contexts). 

However, the partial run-time reconfigurable model lacks the 

design tools for partial reconfiguration, which makes 

practical implementations a challenging task, even though 

the partially reconfigurable devices (e.g., Xilinx Virtex [18]) 

are already available. We note the practical lack of a 

coherent design flow and an RCS platform that shall provide 

real-time reconfiguration bits generation and partial dynamic 

reconfigurability. However, many RCS architectures have 

been proposed with notable performance limited to specific 

applications [8] [9].  

1.2 Our Work

We focus on the physical design CAD tools aspect. In 

particular, we concentrate on two of the three placement 

problems, which we envision to appear in a partial 

dynamically reconfigurable computing system such as that 

shown in Fig. 1. The first placement problem in such a 

framework is when a new expression is implemented into an 

empty strip. In this case the placement is static linear 

placement (because the placement can be done during 

compilation) similar to [10]. When a new expression is to be 

implemented into a strip, which already hosts a previous 

expression or the latter needs to be augmented with 

additional functionality the placement problem becomes a 

                                                                
3 One can also talk about static configuration - the whole RPU area has 

to be reconfigured during each reconfiguration or full dynamic 

reconfiguration - more configurations are stored in the FPGA or in a 

cache on-chip memory and they are switched during execution as 

response to requests [6]. In this work our focus is however on partial 

dynamic reconfiguration only.  

non-contiguous linear placement. In this case only certain 

areas within the strip are available for the placement of new 

cores and therefore the classical linear placement has now 

additional constraints under the form of blockages (i.e., 

obstructions). The third kind of placement represents the 

case when previously placed cores (possibly 

interconnected) are still spread into a strip and decisions 

have to be made about which ones to be used for the 

expression to be placed (therefore to reduce reconfiguration 

time), which ones to be kept for future expressions, or 

which ones to be erased or relocated inside the same strip. 

We call this dynamic (or real-time) linear placement

because decisions, which directly impact the placement 

performance, have to be made in some cases at run-time.  

We propose solutions for the second and third kinds of 

placement. Our algorithms are intended for fast and close to 

optimum implementation of relatively simple kernels
4

(which can be the result of a dynamic hardware/software 

partitioning encountered in HW/SW co-design [3]). In a 

typical RCS, the application is partitioned into loops (a loop 

has more kernels) implemented into hardware and software. 

When a kernel is implemented in hardware, its actual 

implementation (placement, core shapes, etc.) is done such 

that the execution time for the whole application is 

minimized. Our algorithms can be used either for fast 

solution-space search during compile-time (to achieve best 

configurations/contexts to be swapped during execution) or 

for real-time placement in cases when the hardware-

software partitioning is done in real-time during execution 

(in this case our algorithms would be behind the physical 

design manager – PDM – which can be another dedicated 

processor, in Fig. 1.a). We exploit re-usability in a partially 

reconfigurable framework, which is a characteristic of the 

emerging platform-based design methodologies. This is in 

contrast to, for example, [10] where the focus is on rather 

operation-merging-based regular data-path synthesis and 

optimization, which is suitable for customized 

implementation of data-paths in a static framework.  

1.3 Problem Formulation  

We now state the assumptions that we make and present 

the formulation of the non-contiguous placement problem. 

The framework diagram of the non-contiguous placement is 

presented in Fig. 2.  

In order to simplify the problem we make the following 

assumptions: 

The RPU is an island-like FPGA chip containing 

64x64 CLBs excluding the I/O memories on the left and 

right sides of the chip (see Fig. 1.b). Strips are horizontally 

considered and the height of each strip is determined by the 

data width to be processed. The height should 

accommodate the tallest core available in the library. The 

                                                                
4 In this work, a kernel is a pre-order binary expression (i.e., a tree 

graph) or a general directed graph.
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“Library” box in Fig. 2 represents the list of cores and their 

characterization obtained with JBits [7].  

Wire delays are estimated considering that every 

connection was routed considering best possible 

combination of wire segments. A look-up table is created, 

which has delay entries for every possible distance. Note, 

that in this way the delay estimation is optimistic. The 

“Delay Architecture” box in Fig. 2 represents the delay look-

up table.  

Placement Engine 

Blockages 

I/O 

M
I/O 

M

Non-contiguous 

f ree space 

Library 
Delay  

Architecture 
Graph 

ADD 3, 0 10 

MUL 10, 0 30 

REG 1, 0 10 

... 

Fig. 2 Non-contiguous linear placement diagram 

Coordinates of pre-placed cores are given. Active pre-

placed cores are considered as blockage areas/intervals. 

Inactive pre-placed cores are available for reuse. The 

“Graph” box in Fig. 2 represents the pre-order binary tree or 

general graph, which has to be placed together with the 

information about active (i.e., blockages) and inactive cores.  

Primary inputs (PIs) and primary outputs (POs) are 

placed at both sides (left and right) of the strip for congestion 

minimization.  

The formulation of the non-contiguous placement with 

blockages problem is as follows:  

GIVEN: The delay look-up table (architecture), the library 

of cores together with their characterization, the tree or 

general graph (as data flow graph - DFG), and the location 

of pre-placed cores inside the strip.  

OBJECTIVE: Overlap-free linear placement (x 

coordinates) of all cores of the DFG such that the Wire-

Length (WL), the delay at the outputs, and the max-cut at 

any column (congestion) are minimized.

2 Non-contiguous Linear Placement for 

Tree Graphs  

We present three different algorithms for solving the non-

contiguous linear placement for tree graphs.  

2.1 Algorithm H1  

The first proposed placement algorithm is based on the 

idea of a heuristic partitioning algorithm presented in [11]. 

We adopted and applied it to our linear non-contiguous 

placement problem because it fits well the purposes of max-

cut and WL minimization. In what follows we describe how 

our algorithm works. The pseudo-code of the first algorithm 

is shown in Fig. 3.  

First, we build the EV-matrix, which is an m×n matrix 

where m – the number of rows – is the number of edges in 

the directed tree-graph and n – the number of columns – is 

the number of nodes. An element a(i, j)=1 in the matrix is 

non-zero if the j-th node is a terminal of the i-th net. If a 

node is not a terminal for a net, the corresponding EV-

matrix element is zero. For example, Fig. 4 shows the 

binary tree
5
 for the expression Tg01.exp and the EV-matrix 

built based on the counting of all nodes and nets.  

Input:        
                G(V,E) 
                Library of cores and delay info 
Step:         
1.             Build EV-matrix 
2.             Transform EV-matrix into band-matrix 
3.             Greedy overlap-free placement 

Fig. 3 Algorithm H1  

Then, the EV-matrix is transformed into an as-close-as-

possible band-form matrix using a procedure similar to the 

one in [11]. We denote this as B(EV)-min problem (i.e., 

minimization of the bandwidth of the EV-matrix problem). 

The procedure uses row and column flips only and is based 

on a sorting algorithm. The goal of getting the matrix to a 

band-form (which translates into an optimal linear ordering) 

serves two objectives:  

1. Cutsize minimization – by having all 1’s in the 

matrix clustered along the diagonal shown with dashed-line 

in Fig. 4.b, the cutsize (the number of nets cut by a vertical 

cut applied between any two consecutive nodes in the linear 

arrangement) is minimized everywhere in the linear 

arrangement.  

2. WL minimization – by minimizing the bandwidth 

(maximum x distance spanned by any of the nets) of the 

EV-matrix, the total wire-length of all nets is minimized.  
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Fig. 4 a) Binary expression tree b) The EV-matrix with 
nodes placed on columns such that the 1’s for PI 

                                                                
5 Note that an extra node - PO pad - was inserted. This is done for 

every tree with the purpose of connects the root to the I/O memories 

and for wirelength computations.  
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nodes are in the top-left corner and the 1 for PO-pad 
node is in the right-bottom corner  

We would like to note that our EV-matrix is different from 

the VV-matrix, which is commonly used to represent the 

incidence-matrix of a graph, and for which the 

BANDWIDTH problem is known to be NP-complete in 

general as well as for trees with maximum degree of three or 

more [12].  

The congestion is indirectly minimized by minimization of 

the cutsize as well as the assignment of the PI/PO pads 

evenly to the left and right ends of the strip.  

After bandwidth minimization, we greedily place the cores 

from right-to-left in the strip, based on the final ordering of 

nodes in the EV-matrix, such that no overlaps exist and 

blockages are skipped. That is performed under the 

assumption that the PO-pad is assigned to the right end of 

the strip; otherwise the placement is performed from left-to-

right. The run-time complexity of algorithm H1 is O(a lg a), 

a=max(m,n) and it is dominated by the quicksort algorithm 

behind the procedure in Step 2.  

2.2 Algorithm H2  

The idea of the second heuristic is also based on the 

minimization of the bandwidth of the EV-matrix. However, 

this time we do not need to actually build the EV-matrix but 

we rather work directly on the binary-tree graph in a top-

down approach. The main steps of our algorithm are shown 

in Fig. 5.  

Input:        
                G(V,E) 
                Library of cores and delay info 
Step:         
1.             Post-order traversal to compute quantities of interest 
2.             Rank assignment to nodes by linear ordering 
3.             Greedy overlap-free placement 

Fig. 5 Algorithm H2 

First, a post-order walk is performed in order to compute the 

following interval variables for every node:  

1. Latest arrival time, d (delay), up to the current node 

starting at any of the leaf nodes in the corresponding sub-

tree. Initially, all delays are computed considering zero-delay 

for all wires. The delay d will be actually an interval (dmin,

dmax) because every core in the library can have multiple 

shapes (widths and heights) with different delays.  

2. Longest (maximum) path-width, pw, up to the 

current node starting at any of the leaf nodes in the 

corresponding sub-tree. A path-width is the sum of all widths 

of all cores along a path from a leaf-node up to the root-node 

of a sub-tree. The maximum path-width will also be 

computed as an interval (pwmin, pwmax) because the width of 

every core is at its turn an interval of discrete values. This 

variable is useful because stores the total width of the path, if 

all modules along the path are placed contiguously.  

3. Volume-width of a sub-tree, v, represents the sum 

of all widths of all cores in sub-tree. The volume will also 

be computed as an interval (vmin, vmax). Volume-width gives 

the total width of the sub-tree, if all modules in the sub-tree 

are placed contiguously.  

For example, Fig. 6 illustrates a generic node of a tree 

with the critical path having the latest delay d, the 

maximum path-width pw, and the volume-width v shown 

for the right sub-tree.  

critical 

path (d) 

a b c d

*

+

+

+

path-width (pw) 

volume (v) 

+ + * +

a

c
d

b

Fig. 6 Illustration of path delay, path-width, and 
volume 

Then a linear ordering (i.e., numbering, counting) of all 

nodes is performed by assignment of ranks starting with the 

root node (and its associated PO-pad) and recursively 

continuing to the left (decreasing of the rank) with the left 

sub-tree and to the right (increasing of the rank) with the 

right sub-tree. This step is illustrated on a very simple 

example in Fig. 7 (corresponding to the example in Fig. 4, 

with the assumption that all cores in the library have unique 

shapes).  

The rank of the root is equal to the number of nodes in 

the left sub-tree of the root. The rank of the PO-pad is the 

rank of the root plus one (i.e., PO-pad is next to the right of 

the root). Ranking of nodes in either of the left or right sub-

trees is done in a “smaller-volume first” order of their own 

sub-trees. For example, in Fig. 7, node 6 is ranked such that 

it is to the left of node 5. That is because the sub-tree {6} 

undergoes first the process of ranking because this sub-tree 

has a smaller volume than the sub-tree containing node 5, 

which is {5,3,4}. If both sub-trees of the generic node have 

the same volume, the ranking is decided based on max path-

width or delay. At the end of this step we have obtained a 

linear numbering of nodes as that shown in the shaded area 

in Fig. 7. As pointed out in the previous section, this linear 

ordering is very important because it is a direct measure of 

the quality of the final placement in terms of total wire-

length and maximum cutsize.  

8 PO210 3 4567

3 4210 8 9765

Start 
Increasing rank Decreasing rank 

Rank: 

Ordering 

Fig. 7 Illustration of rank assignment in order to obtain 
the linear numbering for the example in Fig. 4  

Finally, a post processing is performed in order to assign 

x coordinates to all cores from right-to-left such that there 

are no overlaps and all blockages are skipped. During this 
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step PIs (i.e., leaf nodes) and the PO-pad will be assigned to 

the left or right of the strip depending on which one is closer, 

in order to minimize the wire-length. When cores have 

multiple shapes, then decision about which shape for a given 

core to be used has to be made. The shape assignment is 

done dynamically such that the delay of the most critical path 

is minimized while the total area of the cores off critical path 

is minimized. The run-time of the algorithm H2 is O(n).

2.3 Algorithm H3  

In this section we address the third kind of non-contiguous 

placement. In this case, pre-placed cores may be inactive and 

available to be used as resources for the expression to be 

placed. The goal here is to re-use as many inactive cores as 

possible, hence to reduce the reconfiguration time, while 

minimizing the same objective functions: wire-length, the 

delay at the output of the expression tree, and the max-cut at 

any x. In this case the problem is more difficult because the 

way the inactive cores are placed on the strip can lead to 

increase in wire-length and delay as well as of max-cut. The 

number of inactive cores usually is not equal to the number 

of cores of the expression to be placed. Therefore, we have 

to decide on which inactive cores to re-use and which cores 

to be placed to match with. Other important factors are the 

“distribution” of inactive cores on the strip and their type 

(e.g., multipliers, adders, etc.). If all inactive cores are 

“flushed” to an end of the strip, then their re-use is likely to 

be more difficult compared to the case when they are 

uniformly distributed on the strip between blockages. If, for 

instance, all inactive cores are of one type (e.g., multipliers) 

and all cores to be placed are of another type (e.g., adders), 

then all inactive cores have to be treated as blockages or to 

be “overwritten”.  

The main steps of algorithm H3 are shown in Fig. 8. First, 

a linear ordering is found for the expression to be placed 

using one of the algorithms presented in previous two 

sections. Because the linear ordering directly affects wire-

length and maximum cutsize, we would first like to find a 

very good linear ordering irrespective of the type and 

distribution of the inactive cores
6
.

Then, perform a maximum matching between the inactive 

cores and the cores to be placed. Maximum means that we 

look for re-using as many inactive cores as possible in a 

manner which will also lead to a minimum perturbation of 

the linear ordering obtained during Step 1, hence a minimum 

deterioration of the wire-length, delay, and max-cut. This 

step is implemented as follows. We model the inactive cores 

and the empty intervals between them as nodes of a linear 

                                                                
6 Delay is also affected by the linear ordering. The linear ordering has to 

ensure a “straight” (from left to right or right to left) rather than a “back-

and-forth” critical path in order to achieve delay minimization. This is 

true irrespective of the fixed locations of the PIs and POs. However, 

blockages can have a certain impact (depending on the delay-distance 

relationship – captured in the look-up table in our case) on the overall 

delay as well when the final placement will be obtained by flushing all 

cells to the right or to the left.  

graph denoted strip_g. The cores to be placed in the linear 

ordering obtained during the first step represent a second 

linear graph denoted linord_g. We then perform a linear 

mapping between the two graphs.  

Input:        
                G(V,E) 
                Library of cores and delay info 
                Locations and types of pre-placed cores 
Step:         
1.             Use algorithm H1/2 to f ind linear ordering 
2.             Max-matching between pre-placed and to be placed 
                cores  
3.             Greedy placement of left-over cores 

Fig. 8 Algorithm H3  

The mapping is performed by first partitioning (i.e., 

dividing) the larger graph into a set of blocks equal to the 

number of nodes in the smaller graph. Then we match every 

node in the smaller graph with its corresponding block in 

the larger graph. For example, Fig. 9 shows the example 

from Fig. 7 to illustrate how the linear mapping is 

performed. For example, the node 8 in linord_g, which is 

an adder is mapped to the nodes 3 and 4 in strip_g, which 

are an inactive adder core placed at x=17 and an empty 

interval [19,20]. This means that the adder 8 from linord_g

will be most likely matched either with the inactive adder 3 

or with the empty interval 4 in strip_g. A core to be placed, 

as a node in linord_g, can also be matched with nodes, 

which are first order
7
 (or higher, depending by how much 

the linear ordering is allowed to change) neighbors of the 

nodes to which the core is mapped by the linear mapping. 

For example, the multiplier 5 of linord_g can be matched 

with the inactive core 6 of strip_g (see Fig. 9).  

linord_g 

strip_g

linear 

mapping 82 57

* * + +

0..2 8..12 19..20 28..36 45..64 12..17 

+* * + +

38..43 17..18 43..44 44..45 

0 1 4 5 9 2 6 3 7 8 

* *+ + +

blockages inactive cores free interval Strip 

Fig. 9 Illustration of the linear mapping between the 
two linear graphs for the example in Fig. 4  

After mapping and matching, some of the cores of the 

currently placed expression (nodes of linord_g) may not be 

matched. Therefore, as a last step we greedily match those 

cores to empty intervals as close as possible to those, which 

are already matched, in a manner that preserves the initial 

linear ordering.  

Note that our method is a constructive rather than an 

iterative one. Hence, short run-times are facilitated. The 

                                                                
7 This is a control parameter that allows the user to tune the algorithm.  
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run-time complexity of algorithm H3 depends on which 

algorithm is used in Step 1.  

3 Non-contiguous Linear Placement for 

General Graphs  

We now present a solution for the non-contiguous linear 

placement for general graphs, which can have multiple 

primary outputs. Our goal in this case is similar to that of the 

problem statement in Section 2.3. We would like to reuse as 

many inactive cores as possible in order to decrease the 

amount of reconfiguration bits and hence the reconfiguration 

time. However, we further consider the interconnection reuse 

as well. In other words, fully pre-placed general graphs are 

considered as inactive in a strip. We would like to reuse 

inactive cores together with their connectivity. That would 

require less routing effort (and possibly even smaller 

amounts of reconfiguration bits) for the new graph to be 

placed. Fig. 10 describes what the optimal core and 

interconnect reuse is for a very simple example.  

a b c

d

*

+ +

+

e
MCS 

a b c d

*

+

+

e

*

f

graph to be placed inactive pre-placed 

graph - ready for reuse 

Fig. 10 Illustration of the maximum common sub-graph 
(MCS) match for both core and connectivity reuse  

The pseudo-code of our algorithm is shown in Fig. 11.  

Input:        
                G1(V1,E1), G2(V2,E2) 
                Library of cores and delay info 
                Locations and types of pre-placed cores 
Step:         
1.             Use algorithm H1 to f ind linear ordering 
2.             MCS betw een pre-placed and to be placed cores 
                with connectivity considered 
3.             Greedy placement of left-over cores 

Fig. 11 Algorithm H4  

First, a linear ordering (similarly to the first step of the 

algorithm in Section 2.3) of the graph to be placed is found 

using the same procedure as the one described in Section 2.1, 

which applies for general graphs as well.  

Then we find the maximum common sub-graph (MCS) 

between the pre-placed inactive graph and the graph to be 

placed. For this purpose we employ a specialized algorithm, 

developed by Foggia et al as an extension of the algorithm 

presented in [14] and available at [19]. In its simpler version 

the MSC algorithms finds the maximum connected sub-

graph and in its more complex form (requires longer run-

times) the MSC algorithm finds a maximum disconnected 

sub-graph (e.g., a forest of trees) like for instance the 

example shown in Fig. 10. The MCS algorithm finds the 

maximum number of cores (similarly to [16]), which can be 

reused as well as the connectivity between these cores 

(similarly to [17]).  

In the last step, the left-over cores of the graph to be 

placed are greedily placed into empty intervals as close as 

possible to cores, which are already placed (coordinates 

determined by the MCS), in a manner that preserves the 

linear ordering obtained in the first step. The run-time 

complexity entirely depends on the MCS algorithm, which 

is O(b (n1 + n2)), b=number of branches involving any two 

nodes of the two matched graphs.  

4 Simulation Experiments  

We now report simulation results obtained with our 

algorithms. The first three heuristic algorithms (described in 

Section 2) are used to test a set of six randomly constructed 

binary expressions
8
. The simulations results are shown in 

Table 1.  

We also implemented a Simulated Annealing (SA) 

algorithm for delay minimization
9
. We see that, the timing-

driven Simulated Annealing engine cannot improve on the 

delay results obtained with H1 and H2. The reason for that 

is that the critical path usually starts at the left and ends at 

the right. This makes, in the case of trees, for the ordering 

of cores (i.e., their counting) to be more important than the 

core coordinates.  

Comparing the first two heuristics, it can be seen that the 

delay obtained with H2 is similar to the delay obtained with 

the H1 but the wire-length is improved. That is because of 

the better bandwidth minimization obtained with H2. The 

last three columns of Table 1 present the simulation results 

obtained with H3. When inactive cores are reused, more 

factors come into play and contribute to the tradeoffs 

existing between wire-length, delay, and the number of 

available inactive cores, which are actually used. We 

observed in our experiments a stable tradeoff between how 

well the best linear ordering (obtained in the first step of 

H3) is preserved and the number of inactive cores, which 

are actually reused. The more inactive cores are reused 

(which eventually will translate in faster reconfiguration 

times) the worse the preservation of the linear ordering is 

(which translates in slightly higher delay and wire-length).  

Table 2 presents simulation results obtained with the 

algorithm presented in Section 3. We tested our algorithm 

on a set of selected basic blocks (as data flow graphs) of the 

Honeywell and MediaBench benchmarks [15]. For 

                                                                
8 All tree and general graphs together with the C++ implementation of 

all algorithms presented in this work are available for download at 

[30].

9
 There is no prior work on non-contiguous linear placement to which 

we can compare our results. The only work somewhat similar to our 

work is [10]. However, the placement algorithm in [10] solves the 

problem of static linear placement, which is different from the non-

contiguous linear placement problem tackled in this work. 

Additionally, wire-length is not considered in [10].  
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comparison purposes, we first place each graph contiguously 

(each graph is placed without reusing any cores). Then, every 

graph - starting with the second - is placed considering as 

pre-placed reusable graph the previous one. This is 

performed with the MCS algorithm set to search for the 

maximum common disconnected sub-graph (maximum core 

and connectivity reuse but longer run-times) or set to search 

for the maximum common connected sub-graph (lower core 

and connectivity reuse but much faster). We can see that in 

the first setting the percentage of cores and connectivity that 

are reused is bigger (up to 74% core and up to 36% 

connectivity reuse) than in the second setting, but at the 

expense of longer run-times. Bigger core and connectivity 

reuse translates into smaller amounts of reconfiguration bits, 

hence shorter reconfiguration times. However, the longer 

run-times (entirely due to the MCS algorithm) suggest the 

use of our algorithm - with the first setting - for optimization 

placement at compile time.  

5 Conclusion

We presented efficient solutions for the non-contiguous 

linear placement problem for reconfigurable computing. Our 

placement algorithms are based on a heuristic for B(EV)-min 

(minimization of the bandwidth of the EV-matrix of the 

expression graph), which translates into direct minimization 

of the cutsize (congestion) and wire-length and indirect 

minimization of timing. When inactive cores are reused our 

algorithms look for finding the maximum matching 

between the inactive cores and those, which have to be 

placed. Core and connectivity reuse can be as much as 74% 

and 36% respectively.  

Current and future work focuses on developing a direct 

delay minimization integrated into the presented algorithms. 

That should be in the form of either net-based (slack) or 

path-based (k-most critical paths). A better delay estimation 

possibly by means of integrating placement with routing is 

one more way of improving on the placement 

methodologies for reconfigurable computing.  
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Table 1 Simulation results for tree graphs  
SA H1 H2 H3 

Circuit Nodes Delay WL 
CPU 
(s)

Delay WL 
CPU 
(s)

Delay WL 
CPU 
(s)

Delay WL 
CPU 
(s)

Tg01 10 1.16 169 16 1.16 191 0 1.16 187 0 1.21 152 0.015 
Tg02 20 1.8 336 60 1.8 328 0.015 1.8 330 0 1.87 350 0.015 
Tg03 12 1.58 227 16 1.58 235 0.015 1.58 219 0.015 1.58 224 0.015 
Tg04 20 2.6 369 68 2.6 371 0.015 2.6 289 0 2.64 304 0.015 
Tg05 20 2.6 302 73 2.6 314 0.015 2.59 293 0.015 2.6 309 0.015 
Tg06 28 2.66 371 44 2.66 386 0.015 2.65 367 0 2.66 416 0 

Table 2 Simulation results for general graphs  

   Contiguous Placement 
Non-Contiguous Placement  

(disconnected MCS) 
Non-Contiguous Placement  

(connected MCS) 

Circuit 
placed (reused) 

Nodes 
/ Nets 

PI / 
PO

Delay WL 
CPU 
(s)

Delay WL 
CPU 
(s)

Reuse 
Core / 

Connect
Delay WL 

CPU 
(s)

Reuse 
Core / 

Connect

Honeywell-intfc01 
(Honeywell-intfc01) 

16/13 4/3 1.079 255 0 1.079 255 0 
100 / 
100

1.079 261 0.016 
62.5 /

75
Dft (Honeywell-

intfc01) 
19/12 4/7 0.955 386 0 0.979 382 0.094 

52.63 / 
33.33

0.985 412 0.015 
15.79 / 
13.33

Honeywell-versatil 
(Dft)

27/20 6/7 1.038 430 0.015 1.078 433 0.469 
51.81 / 

28
1.075 425 0.015 

22.22 / 
20

Honeywell-intfc02 
(Honeywell-versatil) 

27/21 6/6 1.467 458 0 1.508 481 18.6 
74.07 / 

36
1.467 460 0.032 

18.51 / 
16

Honeywell-fft01 
(Honeywell-intfc02) 

31/23 8/8 1.411 595 0.015 1.414 564 187.3 
51.61 / 
24.13

1.411 596 0.016 
16.12 / 
13.79

Honeywell-fft02 
(Honeywell-fft01) 

31/24 5/7 1.057 471 0 1.072 471 414.7 
45.16 / 
23.33

1.057 479 0.032 
16.12 / 
13.33

MediaBench-jpeg 
(Honeywell-fft02) 

35/27 9/8 1 650 0 1.031 607 597.2 
54.28 / 
27.27

1.009 643 0.015 
11.42 / 

9.09
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