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ABSTRACT
Modern FPGA architectures provide ample routing resources
so that designs can be routed successfully. The routing ar-
chitecture is designed to handle versatile connection configu-
rations. However, providing such great flexibility comes at a
high cost in terms of area, delay and power. We propose a new
FPGA routing architecture1 that utilizes a mixture of hard-
wired and traditional flexible switches. The result is 24% re-
duction in leakage power consumption, 7% smaller area and
24% shorter delays, which translates to 30% increase in clock
frequency. Despite the increase in clock speeds, the overall
power consumption is reduced by 8%.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Style—Gate
arrays; B.7.2 [Integrated Circuits]: Design Aids—Routing

General Terms
Design, Performance, Experimentation

1. INTRODUCTION
Prohibitive ASIC mask costs and stringent time-to-market

windows have made FPGAs an attractive implementation plat-
forms in recent years. However, circuits implemented on FP-
GAs are typically slower, occupy more area, and consume more
power than ASIC circuits [25]. The FPGA routing architecture
is the main culprit in making FPGAs worse than ASIC chips
in area, delay and power; a typical FPGA routing architecture
uses about 70-90% of the total transistors on the die [6].

A significant body of work from the past two decades focused
on switch box design and segmented routing architectures. The
basic idea is to use highly flexible switches where horizontal
and vertical tracks meet, to facilitate all possible connections
between the adjacent tracks. A sketch of the disjoint switch
box is shown in Figure 1.

Assuming all tracks have unit length, the disjoint switch box
(see Figure 1) can route a large subset of possible routing trees
to connect the terminals of a net. As a result, the overall
channel width will not be high. However, flexibility in routing
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Figure 1: SRAM-based Switch Box.

comes with great performance costs. Building a routing tree
from many segments that are connected by switches has the
following disadvantages:

• Circuit Delay: The delay of a net is mainly dependent
on the number of programmable switches in its routing
path [14, 4]. Hence, a large number of programmable
switches contributes greatly to the overall circuit delay.

• Area: By increasing the number of programmable pass
transistors (which correspond to the small circles in the
switch on the right in Figure 1) inside each switch, we
pay an area penalty as each of the programmable pass
transistors requires an SRAM cell for programming it and
possibly buffers to improve signal slew.

• Leakage Power: Leakage power is becoming a major
component of the total power consumption [1] and the
majority of the leakage power consumption in FPGAs
occur in the routing switches [7].

In this work, we extend the idea of eliminating switches
to two dimensions; instead of just hardwiring two horizon-
tal or two vertical segments to form longer wires, e.g. seg-
mented routing architectures such as Xilinx Virtex, we form
hardwired junctions between horizontal and vertical segments
inside switch boxes. These junctions create routing segments in
the shape of T’s, L’s and +’s and their rotated versions. An ex-
ample of such a switch box is shown in Figure 13. As a result
of hardwiring connections, we eliminate some programmable
switches, which decreases the delay, area and power dissipa-
tion.

However, we must be careful that the reduction in programmable
switches does not severely affect the routing flexibility. The dis-
tribution of the hard-wired routing patterns (HARPs) are ob-
tained after a careful analysis of the routing profiles of different
circuits. Our technique maintains the programmability of FP-
GAs, while improving their performance metrics. We place and
route circuits with these patterns embedded in the switch boxes
and report results of area, delay, power and channel width.
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The paper is organized as follows. In Section 2, we describe
the terminology that we use throughout the paper and the over-
all flow of our architectural design. In Section 3, we perform an
empirical analysis on detailed routings to find the most common
routing patterns and their densities. Based on this analysis, we
design the architecture of the switch boxes containing the hard-
wired routing patterns. Details of this step are discussed in Sec-
tion 3.3. Section 4 explains how hard-wired routing patterns
inside the switch boxes are exploited by the router. Experimen-
tal results are presented in Section 5. Section 6 gives details on
related work. We conclude in Section 7, by outlining our main
contribution and discussing future research directions.

2. PRELIMINARIES

2.1 Basic Terminology
The routing of a multi-terminal net is frequently modeled

as a rectilinear Steiner tree (RST). A RST has three types
of joint patterns: L-shape, T-shape, and +-shape. An FPGA
routing architecture with uniform unit-length segmentation has
a switch at each of the joint patterns. Additionally, there are
switches for horizontal (H) and vertical (V) routes that span
more than one channel. Modern FPGA devices use multi-
length segments (−-shape and |-shape) in order to reduce the
number of switches along the horizontal or vertical routes of
the nets. This enhances the delay of the routing; however, it
reduces the flexibility of the architecture.

We call the switch shown on the right side of Figure 1 a
flexible switch. A multi-length segmented architecture merges
the “W” track and the “E” track to form a longer segment.
This is equivalent to removing the pass transistors (and their
associated SRAM cells and buffers) that connect the “E” or
“W” tracks to other tracks. The result is a hardwired con-
nection between “E” and “W”. The area of this new switch
is smaller, however, it is less flexible than the original flexible
switch. If we allow the horizontal track to also connect to the
vertical track at this junction (e.g., the way hex lines in Xilinx
architectures connect to other segments on the middle point),
then two more switches will be used to provide connectivity be-
tween wire segments “WE” and “N”, and also between “WE”
and “S”. Obviously, the area and delay of this switch increases,
but we gain flexibility.

To the best of our knowledge, no one has extended the idea
of hardwiring pass transistors to junctions that are formed be-
tween horizontal and vertical tracks. In this work, we study
HARP (HArd-wired Routing Pattern) architectures that uti-
lize hardwired “switches” at certain junction patterns. The
three joint patterns (L, T, +, and H/V) and their various ori-
entations result in eleven possible HARPs: >,⊥, a, `, p, q, x,
y, |,− and +.

2.2 HARP-based FPGA Routing Architecture De-
sign Flow

Figure 2 shows our design flow to introduce HARPs into tra-
ditional FPGA routing architectures. First, we place and route
a number of circuits on a traditional FPGA architecture. By
analyzing the routes of the circuits, we extract the frequency
at which different HARP patterns are used in switch boxes.
Next, we use the results of the pattern distribution analysis to
create a new architecture that has a mixture of flexible and
HARP switches. Finally, we place and route designs on the
new HARP architecture and compare the results with the tra-
ditional architectures.
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Figure 2: HARP-based Routing Architecture Design Flow.

3. ROUTING PATTERN ANALYSIS
In this section, we discuss the statistical analysis of routing

pattern frequencies and correlations between circuits, architec-
tures and these patterns.

3.1 Testing Benchmark and Routing Result Gen-
eration

After placing and routing the MCNC benchmark circuits,
we observed how often each of the joint patterns can be found
in a route of each net. Note that the placement and routing
algorithms will affect the frequency of these patterns. We will
discuss this issue in Section 7.

Statistical information can guide us on how often we need to
insert HARP switches inside switch boxes. To find the pattern
frequencies, we routed all the benchmarks on a given tradi-
tional segmented FPGA routing architecture applying the VPR
FPGA place-and-route tool [3]. For a given routing segmenta-
tion, we routed each circuit, detected the patterns in the route
files, and applied statistical analysis on the data.

In our studies, we considered two segmentation architectures:
unit-length segmentation and multi-length segmentation (sim-
ilar to Xilinx’s Virtex family). We used the VPR router in
three different modes: Timing-driven, Routability-driven with-
out bend-cost, and Routability-driven with bend-cost. We ex-
perimented our technique on the MCNC benchmark suite [23].

3.2 Analysis of Routing Patterns

3.2.1 VPR Pattern Finder Tool
In order to analyze the behavior of the routing patterns, we

have implemented VPR Pattern Finder(VPF), a graphic tool
for parsing, visualizing and analyzing the VPR routing results
[19]. VPF takes a VPR routing result file as input and automat-
ically extracts the routing information, identifies the connection
patterns in switch boxes, and in turn generates statistical re-
ports for different patterns.

Based on the underlying FPGA architectures, there are two
types of VPR routing file formats: unit-length or multi-length.
In the unit-length architecture, each routing segment has a
length of one, while in the latter approach, segments span mul-
tiple configurable logical block (CLBs), and are staggered to
provide faster and more direct connectivity. A multi-length
segment is defined by its starting and ending coordinates. In
VPF we provide a uniform model to handle both formats, where
the unit-length results are treated in the same way for multi-
length segments, except the starting coordinates and the ending
coordinates are identical.
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Figure 3: Switch box indexing and pattern labelling in VPF
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and timing-driven; Benchmark D is the timing-driven result using the unit-length architecture)

In our analysis, we focus on the connection patterns of the
switch boxes. For a given FPGA layout, a switch box is indexed
by a tuple (i, j, t) as shown in Figure 3(a), where i and j indicate
the physical location of the switch box and t identifies the track
being used. Based on the structure of the switch box, we have
11 possible connection patterns on a switch box. They are >,
⊥, a, `, p, q, x, y, |, − and +. We encode these patterns
with four binary bits that denote whether the left, right, top
and bottom track associated with the switch box is connected
to the junction. As an example, Figure 3(b) shows a sample
net, which contains only one source and three sinks. Empty
rectangles show ends of the segments that are not connected
to this net. The numbers on the lines denote the length of
the connections (that are possibly formed by connecting two
or more segments). Based on the above discussion, switch box
sbA has pattern >(1101), sbB has pattern `(0111), and sbC is
of pattern y(1010).

It is important to find out how each HARP extends along
different directions - the pattern length. This information can
provide more insight into the routing behavior and offer useful
guidance for improving routing quality by hard-wiring these
patterns. VPF performs this analysis using the following simple
algorithm: (i) For each marked switch box, identify its pattern.
Based on the pattern information, try to trace along the valid
directions starting from the switch box; (ii) Stop when we meet
a switch box that has a pattern other than | or −, or we reach

the source or a sink; (iii) Report this distance as the result of the
current direction; (iv) Take the minimum among all directions
as the pattern length of the current switch box. Following the
same example shown in Figure 3(b) and assuming the numbers
by the segments indicate the segment lengths, switch boxes sbA,
sbB and sbC have pattern lengths 6, 2 and 5 respectively.

3.2.2 Statistical Results and Analysis
Statistical information about the switch box patterns ob-

tained from VPF provide insight into the behavior of the place-
ment and the routing tools as well as resource demands of the
circuits. Figure 4 shows the normalized pattern distributions
(in percentage of all the switch boxes) for different benchmarks
and segmented architectures. Among them, the unit-length
(D) results are generated on an architecture that only supports
segment of length one, while those of A, B and C are gener-
ated on a Virtex style architecture with multi-length segment
routing architecture. A is generated with the routability-driven
routing without bend cost, B corresponds to routability-driven
with bend cost, and C is generated using the timing-driven
routing mode. Placement for all experiments was done using
the timing-driven mode.

One interesting observation that can be made from Figure 4(a)
is that the multi-length segmented architecture greatly changes
the pattern distribution compared to unit length. The com-
bined frequency of vertical and horizontal patterns drops from
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Figure 5: Distribution statistics on switch box pattern lengths
(Benchmarks A, B, and C are generated using the same multi-length Virtex style architecture

with different routing considerations, i.e. routability-driven without bend-cost, routability-driven with bend-cost,
and timing-driven; Benchmark D is the timing-driven result using the unit-length architecture)

63.3% to 41.2%. On the other hand, this drastic change is not
seen in Figure 4(b) where the results are obtained on the same
Virtex style architecture but with different router settings. In
other words, the architecture seems to have a much bigger im-
pact on the switch box pattern distribution than the routing
algorithm. Figure 4(a) shows there is little change in the per-
centage of the T patterns (pattern 1110, 1011, 0111, and 1101)
or the + pattern (pattern 1111) when we switch from unit-
length to the multi-length segment architecture. On the con-
trary, there is a significant increase for the L patterns (pattern
0101, 1001, 0110 and 1010). The combined frequency of all
the L patterns increases from 27.46% for the unit-length archi-
tecture to 41.62% for the multi-length architecture. In other
words, for the multi-length architecture, the possibility of hav-
ing an L patterned switch box is comparable to (if not more
than) that of a vertical or horizontal pattern. This is a pro-
found difference when compared with the unit-length results, in
which the vertical and horizontal patterns are overwhelmingly
dominating the pattern distribution.

Next, we analyze the length of the patterns using the method
discussed in Section 3.2.1. Figure 5 illustrates the pattern
length distributions for our testing benchmarks. The x-axis
in these graphs is the pattern length, while the y-axis is the
normalized percentage for switch box patterns with the given
length.

We can observe that all these graphs share some common
characteristics. First, for the unit-length architecture, the pat-
tern length distribution drops rapidly and monotonically as the

length increases. The results for the multi-length architecture
are more sophisticated but still follow a similar trend except for
length 6, which shows spikes on all patterns. On all patterns
except +, there is a small spike at length 12 too. Such har-
monic behavior demonstrated by these spikes is no surprising
because in the multi-length architecture, the majority of the
segments are of length 6, where switch connections are allowed
at both the middle point and the ends of the segments.

We also performed further analysis (results not shown in this
paper), focusing on the geometric distribution of different pat-
terns. We observed uniform distribution of all patterns with
the exception of one benchmark2.

3.3 Architecture Design
Architecture design for FPGAs is a complex problem and

much work has been done in this area since FPGAs were first
proposed. There are many architectural factors (such as switch-
block or switch-matrix style, switch-block flexibility Fs, connection-
block flexibility Fc, frequency of switch-blocks along routing
segments, channel segmentation and staggering, clustering of
LUTs in CLBs), which contribute to the quality of the final
FPGA platform. Among these factors, switch-block design is of
paramount importance. Switch box design has been addressed
in previous works.

Previously proposed switch boxes include (see Figure 6.): (i)
The Xilinx XC4000-series [21] (also known as disjoint or sub-

2For circuit “bigkey”, the + patterns were concentrated in the
two horizontal channels at the center of the chip.
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set). It is area-effective but creates disjoint routing domains.
(ii) Anti-symmetric switch box [17] is known for good practi-
cal routability. (iii) Universal switch box [5] can simultaneously
route all two-point connections in the switch-block. (iv) Wilton
switch box [20] eliminates the problem of routing domains and
provides greater routing flexibility. This switch-block style was
improved later in [10], to become Imran switch box as a combi-
nation of the disjoint and Wilton styles, which leads to a better
trade-off between switch-block area and routability.

All of the previous works assume a switch-block flexibility
Fs = 3, which means that every track entering and ending at
one side of the switch-block will connect to three other tracks
at the other three sides of the switch-block. This ensures a
good practical compromise between the routing flexibility of-
fered by the switch-block and its area as well as the run-time
of the routing algorithms. Based on the analysis presented in

3210

0
1

2
3

0 1 2 3

0
1

2
3

0
1

2
3

0 1 2 3

0 1 2 3

0
1

2
3

0
1

2
3

0 1 2 3

0 1 2 3

0
1

2
3

Disjoint Universal Wilton

Figure 6: Typical Switch Box Configurations

the previous section, we design a new switch box, which will in-
clude hard-wired routing patterns. This means that we remove
a certain number of programmable switches (derived from sta-
tistical analysis of the routing profiles of various circuits) from
the switch boxes and replace them with wires. The composi-
tion of these hard-wired patterns are chosen after careful anal-
ysis of the routing profiles, hence the effect on the routability
of circuits is minimized. We have experimentally verified the
minimum effect of HARP switches on the routing of circuits
(see Section 5).

Figure 7 shows some of the possible HARPs that can be
present inside the switch boxes. The hard-wired patterns are
shown using solid lines indicating that they are wires and not
programmable switches. The next section describes how the
routing tool is made aware of these patterns and how they are
exploited to reduce the delay, area and power dissipation.

"L" "+"
"T"

"H"

Figure 7: Some possible hard-wired patterns

4. ROUTING WITH HARPS
To harness the advantages of HARP architectures, the place-

ment and routing tools must be adapted to use hard-wired re-
sources for timing critical nets and only use regular switches
where hard-wired resources are not available.

In this work, we would like to fully exploit the hard-wired
patterns present inside our switch-blocks. This can be done
in the detailed routing stage by constructing a routing graph
with the hard-wired routing patterns embedded as low cost
edges. VPR [2], and the power model from Wilton, et. al.
[16], which we use for our work employ a routing graph con-
struction approach to perform detailed routing. The routing
segments and the logic block input and output pins are rep-
resented as vertices in the routing graph with a certain cost
associated with them. Edges in the routing graph correspond
to the connections between them. Edges maybe bidirectional
or unidirectional depending on whether a pass-transistor or a
buffered switch is used [3]. A sample routing graph is shown in
Figure 8 [3].

in 1 in 2

Wire 1

Wire 2

Wire 3 Wire 4

2-LUT

out

Source

Sink

out

in 1 in 2

Wire 1

Wire 2

Wire 3
Wire 4

Figure 8: Sample routing graph

The way the routing graph is constructed changes with the
presence of hard-wired patterns. These changes occur inside
the switch boxes. Figure 9 shows the routing graph for a dis-
joint switch box (with pass transistor switches) with all tracks
terminating at the switch box, and a disjoint switch box with
a T-shaped hard wired pattern embedded in it. With the T-
shaped pattern in the switch box, the routing graph contains
only those edges forming the pattern and all the other edges
are removed from the graph.
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Figure 9: Routing graph with HARPs

Based on the results of the analysis presented in Section 3,
we first determine the number of different HARP patterns that
need to be inserted inside the switch boxes. Next, the FPGA
chip is scanned row-by-row and patterns are inserted based on
their desired percentages. When introducing these patterns, we
take care not to connect different hard-wired patterns together
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to form large trees. The reason for this restriction is illustrated
by the example of Figure 10.

When we use two adjacent hard-wired patterns, an L-shaped
pattern and a T-shaped pattern to connect terminal A to ter-
minal B in the figure, a dangling segment is formed. This is
undesirable as it adds extra capacitance and resistance, which
is contrary to the goal of reducing overall power and delay. This
problem is overcome by making sure that not many hard-wired
patterns are connected back-to-back. In the rest of this section,
we present our algorithms assuming that no two HARPs are
allowed to connect back-to-back, but later on in Section 5, we
relax this restriction a little and observe that the limited use of
merged HARPs will improve the quality of the circuit.

SB SB

A

B

Unused

Dangling branch

Hard-wired L pattern Hard-wired T pattern

Figure 10: Connecting Hard-wired patterns together

Once we know the number and location of these hard-wired
patterns, we change the way VPR constructs the routing graph
and include only those edges (corresponding to wire segments)
that are actually connected to the pattern3. These edges are
inserted as low cost edges so that the router will automati-
cally choose these hard-wired patterns when performing de-
tailed routing. The cost is calculated based on the lumped re-
sistance and capacitance of the wire segment (including HARP
and regular segments) connected to a switch. The pseudo-
code for inserting the hard-wired patterns inside switch boxes
is shown in Algorithm 1.

Figure 11 shows how the pattern distribution array used in
Algorithm 1 is populated. An array size of 10 is used for il-
lustration purposes. In the figure, V, C, H, T and L denote
Vertical, Cross, Horizontal, T and L shaped HARPs (no orien-
tation considered yet). The percentages in the figure are 20%,
10%, 20%, 20% and 30% respectively and the patterns are dis-
tributed uniformly in the array (these numbers are taken from
the statistical analysis of the routing pattern frequencies).

C V L H T L V T H L

Figure 11: Initialization of Pattern Distribution Array (P)

Note that p and y can be combined into one switch con-
figuration which makes two disjoint connections (one between
right and bottom segments, and the other between top and left
segments). The same is true with q and x. See Figure 13 for

3For example, the “T” shapes of Figure 13 eliminate one edge
from the side that T does not connect to.

examples of L patterns (in SB2, the fourth switch from the
bottom is an {p, y} switch). Our architectural generation code
is available for download from [8] for non-commercial use.

Algorithm 1 Pseudo-code to Insert HARPs

Input:

Tech mapped netlist .net G(V,E)
Architecture description file
Initialization:

Initialize switch box(SB) matrix of dimensions (nx,ny,CW)
to unknown
/*nx, ny denote number of channels in x and y directions
and CW denotes channel width*/
Initialize Pattern distribution array(P) of size 100 with sym-
bolic entries denoting various HARPs according to the fre-
quency of distribution.
Pattern Counter ← 1
Algorithm:

for i = 1 to nx do

for j = 1 to ny do

for track = 1 to CW do

orientation← Random {0,90,-90,180}
PatternID← pattern id(P (pattern counter%100),

orientation)
S ← switches adjacent to switch(i,j,track)
/*Here we assume a disjoint SB with Fs=3 and seg-
ments of lengths 1,2 and 6.*/
patternIncompatible← false

for ∀s ∈ S do

if s and PatternID make two joined HARPs then

patternIncompatible← true

end if

end for

if patternIncompatible == false then

SB(i, j, track)← PatternID

pattern counter ← pattern counter + 1
else

SB(i, j, track)← regular switch
/*This denotes a regular switch where all sides of
the SB participate in the connections*/

end if

end for

end for

end for

/*To insert edges in the routing graph*/
for all Switch Boxes for i in 1. . . nx, j in 1. . . ny do

for track = 1 to CW do

if SB(i, j, track) > 1 then

Insert only the edges forming the pattern into the
routing graph
/*For example, if a T pattern is formed, then the
north segment should be eliminated.*/

else

Insert all possible connections into the routing graph
end if

end for

end for

4.1 Estimation of Delay, Area and Power
We use the delay and area models in VPR and the power

model developed by [16] to estimate the circuit delay, total
area of the chip and the total power dissipation after inserting
the hard-wired switches. VPR uses an Elmore delay model to
estimate the delay of every net. In this model, pass transis-
tors are represented as resistors and diffusion capacitances to
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ground. Pass transistors add parasitic capacitance to the wire
irrespective of whether they are on or off leading to a higher
delay [3]. In our hard-wired switches, we eliminate the pass
transistors and replace the resistance and capacitance values
of the pass transistors, used in the delay model, with those of
the metal wire (of segment length 1). This is illustrated in
Figure 12.

wire

Pass transistor

Control

Cdiff

Rpass
If "on" If "off"

Cdiff Cdiff

Rwire

Cwire/2 Cwire/2

 

Figure 12: Modeling Pass transistor Switches

To accurately determine the delay of using a hard-wired
switch, the capacitance of all the segments forming the pat-
tern are included in the total capacitive load being switched.
In addition, when only some of the segments of a hard-wired
switch are used to route a signal, the remaining segments are
made unavailable to route other nets. This avoids potential
resource conflicts that could occur when different nets try to
use different parts of the same hard-wired switch. The area
model in VPR is based on counting the number of transistors
required to implement the FPGA architecture and reports area
in terms of the number of minimum width transistor areas re-
quired to implement the circuit on the FPGA [3]. For our hard
wired switches, we use the same procedure and count the total
number of transistors in our implementation. We use the power
model developed by [16] to estimate the total power dissipation.
Leakage power is estimated by counting the number of unused
transistors and SRAM cells and multiplying them with their
individual leakage power. Dynamic power is dependent on the
charging and discharging capacitance and the clock frequency,
which is the critical path delay. The short circuit power is taken
as 10% of the dynamic power. The charging and discharging
capacitance is obtained from the parasitics used in the delay
model of VPR. Since we replaced the pass transistors with the
resistance and capacitance values of metal wires for hard-wired
switches, the power results reported in our paper accurately
reflect the effect of these hard-wired patterns.

5. EXPERIMENTAL RESULTS
We inserted the hard-wired patterns in the switch boxes

and used a multi-segment routing architecture with routing-
segments of lengths 1, 2, 6, and long lines (similar to the Vir-
tex architecture) for all simulation experiments. HARPs were
not inserted on long lines, though. We placed and routed 10
MCNC circuit benchmarks of the VPR package on HARP ar-
chitectures and report the results of circuit delay, area, leakage
power, total power dissipation and channel width.

We updated the delay look up tables used by the placement
tool of VPR to reflect delays of HARP connections. However,
this had only a marginal impact on the placement quality. The
reason is that these delay lookup tables are built assuming no
congestion is present, and hence the best routing resources for

delay are always available. This is an optimistic lower bound
on the routing delay between two points. In reality, the router
will have to use traditional, slower switches for some nets due to
congestion. As a result, the delay estimated at placement will
not be an accurate representation of the delay at routing, and
placement optimizations are not as effective. Consequently, we
decided to leave the delay tables untouched from the original
implementation in order to account for the fact that the router
may not always be able to use HARPs for routing.

Results of the execution of VPR with 50% of all switches
replaced with HARPs and that of the traditional “Virtex-like”
architecture is presented in Table 14. Columns labeled “Vtx”
show the results of the traditional “Virtex-like” routing archi-
tecture. The last two rows of the table show average values for
Vtx and HARP, and the ratio between HARP average and Vtx
average.

We observe that the insertion of hard-wired routing patterns
has a profound impact on delay and leakage power dissipation,
reducing delay by about 21.7% and leakage power by 19.7% on
average. Insertion of hard-wired routing patterns as low cost
edges in the routing graph encourages the routing tool to use
them whenever possible. This leads to a considerable speed
up of the circuit. Also, the elimination of the program bits
results in fewer SRAM cells and a lower leakage power dissi-
pation. We find that the total area of the circuit decreases by
about 5.3% on average. However, the average channel width
increases by around 15.4%. This is expected, since, the intro-
duction of hard-wired routing patterns reduces the flexibility of
the routing architecture causing the router to use more tracks to
route certain connections. However, the overall routing area of
the circuit decreases because the reduction in individual switch
area dominates the increase in number of switches caused by
increased channel width.

Total power dissipation reduces on average by about 6.23%.
In spite of the 20% reduction in the leakage power dissipa-
tion, the total power reduces by only around 6% on average.
This is explained by taking into account the dynamic power
dissipation. Dynamic power dissipation is dependent on the
switching rate of the circuit. With hard-wired patterns in the
switch boxes, the critical path delays of the circuits are reduced
considerably resulting in a higher clock rate. This causes in-
creased dynamic power dissipation. A fair comparison metric
between the Virtex-like routing architecture and HARPs would
probably be the power-delay product. We can explore differ-
ent configurations by considering the energy dissipation or the
power-delay product. Power-delay of HARP is 30% better than
Vtx. Depending on whether optimizing for speed or power is
more critical, we can clock the circuits at a higher clock fre-
quency to get a faster circuit or we can clock the circuit at
a lower speed (e.g., the clock speed that a traditional Virtex
routing architecture can achieve) to achieve more savings in
power dissipation.

Another point to be observed is that the performance of the
hard-wired patterns is considerably better for larger circuits.
From Table 1, we observe that for the 3 biggest circuits, spla,
pdc and ex1010, introducing hard-wired patterns cause an im-
provement of 26% in the circuit delay and 34% in the total
energy consumption. Leakage power is becoming increasingly
more important compared to other sources of power consump-
tion according to ITRS [9]. As a result, our proposed HARP
architecture will become more effective as technology advances.

We also explored the potential benefits of increasing the per-

4Results for only 10 of the benchmarks are reported for want
of space. The others yield similar results
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Circuit Delay (x10−8) Area (x106) Channel Width Leakage power Total power Energy (x10−8)
Vtx HARP Vtx HARP Vtx HARP Vtx HARP Vtx HARP Vtx HARP

misex3 6.31 5.33 2.88 2.71 20 23 0.119 0.094 0.223 0.222 1.407 1.183
alu4 7.12 5.97 3.11 2.74 19 21 0.129 0.096 0.235 0.225 1.673 1.343
apex4 7.17 5.98 2.83 2.58 22 24 0.117 0.092 0.183 0.166 1.312 0.993
ex5p 6.40 5.50 2.36 2.23 22 25 0.098 0.080 0.173 0.164 1.107 0.902
des 7.89 6.00 6.02 5.75 16 18 0.251 0.209 0.415 0.408 3.274 2.448
seq 6.39 5.31 3.58 3.46 20 24 0.149 0.121 0.271 0.270 1.732 1.433
apex2 7.45 5.92 4.01 3.80 21 24 0.168 0.134 0.281 0.281 2.093 1.663
spla 12.40 8.93 9.90 9.70 28 33 0.428 0.342 0.525 0.479 6.51 4.278
pdc 14.20 10.70 14.80 13.70 33 39 0.637 0.505 0.750 0.652 10.65 6.976
ex1010 15.50 11.50 8.95 8.66 19 23 0.378 0.314 0.477 0.448 7.393 5.152

Avg 9.083 7.114 5.844 5.533 22 25.4 0.2474 0.1987 0.3533 0.3315 3.715 2.637
Ratio 78.32% 94.68% 115.45% 80.32% 93.83% 70.98%

Table 1: Comparison of 50% HARPs with no HARPs

centage of HARPs inside the switch boxes by allowing a small
percentage (10%) of HARPs to connect to each other. This is
illustrated in Figure 13, which shows HARP switches (HARP
SW) and regular switches (FlexSW) lumped to form distinct
regions inside the switch boxes. This representation is just
for illustration purposes. In reality, HARPs are distributed
throughout the switch boxes, and not just at lower tracks.
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Figure 13: Overlaps in HARPs

Allowing a small percentage of HARPs to connect directly
could create more complex routing patterns to be formed by
combining hardwired patterns that we have used. However, do-
ing so could also have the undesired affect of creating dangling
wire segments (as illustrated in Figure 10) which could have an
adverse effect on delay and power. Part of our future work is
to find the best percentage of HARPs that could connect di-
rectly. In terms of implementation, to increase the percentage
of HARPS beyond 50%, we relax the constraint present in al-
gorithm 1 of not allowing different HARPs to connect together
and allow HARPs to connect together sometimes (e.g., to allow
60% of the switches to be HARP, we should allow HARPs to
connect 10% of the time). As before, we take care not to form
large trees of HARPs. This is done by making sure that there
is at least one regular switch after every K switches, K being
a constant (in our experiments, we used K = 3). The results
of increasing the percentage of HARPs is presented in Table 2.

We observe that increasing the percentage of HARPs(60%)
inside switch boxes increases the potential savings in circuit
delay, energy and area to about 24%, 34% and 7% respectively.

6. RELATED WORK
There has been a lot of work on programmable architectures

to improve the performance of FPGAs. Modern FPGAs utilize
multi-length horizontal and vertical segments. Recently, there
has been a flurry of research in structured ASIC solutions [24],
which aim to provide a middle ground between ASICs and
FPGA. Tong et. al. [18], Jayakumar and Khatri [11], and

Yan and Marek-Sadowska [22] proposed via-configurable gate
array implementation platforms, in which connections are pro-
grammed by the presence or absence of vias. This results in
improvements in power-delay performance but the flexibility
and cost savings are limited because of its mask programma-
bility.

There have been several CAD techniques aimed at reducing
the number of “bends” in the routing architecture. This paper
was inspired by our initial work on pattern routing [12, 13].
This work focused on the concept of using prespecified patterns
to route a net. By doing so, we allow a more accurate prediction
mechanism for metrics such as congestion and wirelength earlier
in the design flow. The work focused on an ASIC design flow,
rather than the FPGA flow found in this paper.

Maidee et. al. [15] proposed a “terminal alignment” heuris-
tic, which reduces the number of bends on nets, and hence
eliminates switches that need to connect horizontal tracks to
vertical ones. As a result, the number of switches used in rout-
ing of critical nets decreases. They achieved 5% delay improve-
ment over VPR.

7. DISCUSSION AND CONCLUSION
We propose a technique to reduce circuit delay, area and

power dissipation by introducing hard-wired patterns inside
switch boxes. The population of the HARPs is guided by statis-
tical analysis of routing trees that are generated on a traditional
architecture by the VPR tool. We analyzed the routing pro-
files of various circuit benchmarks and came up with a statis-
tical measure of the routing patterns present inside the switch
boxes. The routing graph construction of VPR was modified to
include these patterns. Simulation results after detailed rout-
ing showed a potential improvement of 24% in circuit delay, 7%
in the circuit area, 24% in the leakage power dissipation and
about 8% in the total power dissipation. We observed that by
introducing hardwired patterns, we can considerably speed up
the circuit and at the same time achieve reasonable savings in
circuit area and power dissipation.

In Section 3.1 we mentioned that the placement and routing
algorithm and the architecture will affect the outcome of the
statistical analysis. In Section 3.2.2 we showed that the archi-
tecture has a bigger role compared to the routing algorithm.
But nevertheless, both the physical design algorithms and the
architecture will skew the pattern frequency analysis. Apart
from the fact that there is a certain degree of inevitability in
this influence, we argue that such effect could be considered
useful. We would like to generate the architecture with an eye
on the CAD algorithms. If we create an architecture that con-
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Circuit Delay x(10−8) Area x(106) Channel Width Leakage power Total power Energy x(10−8)
misex3 4.98 2.68 24 0.093 0.226 1.125
alu4 5.67 2.73 22 0.0101 0.228 1.292
apex4 5.74 2.59 26 0.093 0.168 0.964
ex5p 5.6 2.19 26 0.062 0.157 0.879
des 6.36 5.66 18 0.188 0.388 2.467
seq 5.30 3.45 26 0.121 0.268 1.420
apex2 6.10 3.74 25 0.114 0.270 1.647
spla 8.31 9.38 33 0.314 0.465 3.864
pdc 9.42 13.5 40 0.490 0.645 6.075
ex1010 11.4 8.45 24 0.299 0.429 4.891
Average 6.88 5.437 26 0.188 0.324 2.463
Ratio 0.758 0.930 1.20 0.760 0.917 0.663

Table 2: Comparison of 60% HARPs with no HARPs

forms to the behavior of the placement and routing algorithms,
the potential benefits will be greater. Further work is needed
in making the placer aware of the changes in the routing archi-
tecture. We also need to look at the possibility of modifying
Steiner tree routing algorithms to make full use of the hard-
wired patterns and to achieve better correlation between the
placement tool, routing tool and the routing architecture.
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