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1 Introduction 

Manufacturability costs of classic ASICs continue to 
increase owing to the shrinking of transistor size and the 
increase of circuit complexity. Therefore, the importance of 
reconfigurable fabrics (e.g., including an FPGA block 
within an ASIC design) has increased considerably in recent 
years. A recent example is the hybrid ASIC/FPGA chip by 
IBM and Xilinx (http://www-3.ibm.com/chips/products/ 
asics/products/cores/efpga.html). This solution offers a 
combination of the performance, achievable with ASICs, 
and the flexibility of reconfigurability. 

One of the reasons for increased interest in 
reconfigurable fabrics is the higher flexibility offered by 
reconfigurability, which allows the implementation of 
different applications on the same reconfigurable fabric and 

the upgrade of currently deployed application specific 
reconfigurable circuits, and significantly decreases the time 
to market. Another reason for increased attention to 
reconfigurable fabrics is the continuous increase of the size 
and performance of reconfigurable fabric, which allow the 
implementation of more complex and faster applications. 

Reconfigurable Computing (RC) is used as an 
alternative to the software implementation of digital media, 
cryptographic and compute-intensive algorithms or  
parts of these (hardware/software co-design) owing to the 
superior speed of hardware vs. software. The greater  
speed comes from the high parallelism and custom  
data-path widths, which are realisable with RC. An example 
of an RC platform is the Xilinx Virtex II Pro reconfigurable 
fabric, which has immersed up to four PowerPC  
processors (http://www.xilinx.com/products/tables/ 
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fpga.htm#v2p). Reconfigurable Computing Systems (RCS) 
offer efficient solutions to a variety of problems. For 
example, they facilitate the implementation as well as the 
upgrade (possibly via Internet) on the same platform of 
different features (DSP, cryptography, etc.) for audio  
and video data-streaming portable devices such as  
cell phones (http://www.qstech.com/tech_products.htm; 
http://www.picochip.com/; http://www.xilinx.com/apps/ 
epld.htm#CoolRunner). Embedded systems for automotive 
applications (e.g., in-car navigating and collision  
detection systems) are yet another example for use of  
RCS (http://www.xilinx.com/publications/products/ 
sp2e/wp_pdf/wp153.pdf). Ambient intelligence 
(http://www.research.philips.com/InformationCenter/Global/ 
FArticleSummary.asp?lNodeId=93 1#ambintel) (a developing 
metaphor, which describes electronic environments that are 
sensitive and responsive to the presence of people) is a 
recent topic supported (especially during development  
and prototyping (http://research.microsoft.com/easyliving/; 
http://architecture.mit.edu/house_n/; http://www. 
awarehome.gatech.edu/) by upgradeable RCS and 
distributed computing. 

A typical RCS architecture may look as that shown in 
Figure 1(a). It is similar to the architecture discussed in  
Li et al. (2000a) and Bazargan et al. (2001). Such an RCS 
has to be supported by physical design CAD tools that shall 
guarantee fast run-times. Such tools are indispensable for 
the generation of (partial) reconfiguration bits in very short 
times. To achieve short run-times, one has to innovate at 
both architectural and algorithmic levels. At the 
architectural level, we propose that the Reconfigurable 
Processor Unit (RPU) be divided into physical strips.  
A physical strip represents a horizontal strip of the FPGA 
chip. Each strip could be paired at both endings with I/O 
memories, which serve as FIFO buffers for data to be 
processed or for storing results. The height of a strip (and 
therefore the total number of strips on the chip; see Figure 
1(b) can vary depending on the data width to be processed. 
The motivation behind such RPU architecture is that it 
simplifies the physical design. The placement of cores1  
(i.e., ‘hardware cores’ stored in libraries, such as multipliers 
and adders) would be linear as opposed to typical 2D 
approaches (Brebner, 1997; Bazargan et al., 2001). This 
simplification2 facilitates faster placement and routing 
engines and easier integration of techniques like the virtual 
sockets described in Dyer et al. (2002) (physical design 
becomes more platform-based) or the core communication 
interface in Mesquita et al. (2003). 

Figure 1 (a) RCS architecture and (b) RPU divided into four 
strips 

 
 (a) (b) 

1.1 Previous work and current challenges 

In partial dynamic reconfiguration, only the area required by 
the new configuration is reconfigured based on events.3  
The rest of the RPU remains intact. As a result, 
reconfiguration bitstreams become smaller and hence the 
reconfiguration time is smaller. Static and full dynamic 
configuration modes could be supported by mature CAD 
tools, which would cover all steps in the design cycle  
(from high-level design specifications down to placement 
and routing and then static configuration of a single or 
multiple contexts). However, the partial run-time 
reconfigurable model lacks the design tools for partial 
reconfiguration, which makes practical implementations a 
challenging task, even though the partially reconfigurable 
devices (e.g., Xilinx Virtex, 2001) are already available.  
We note the practical lack of a coherent design flow and an 
RCS platform that shall provide real-time reconfiguration 
bits generation and partial dynamic reconfigurability. 
However, many RCS architectures have been proposed  
with notable performance limited to specific applications  
(DeHon and Wawrzynek, 1999; Hauck, 1998). 

1.2 Our work 

We focus on placement algorithms for RC. In particular,  
we concentrate on two of the three placement problems, 
which we envision to appear in a partial dynamically RCS 
such as that shown in Figure 1. 

• The first placement problem in such a framework is 
used when a new expression is implemented into an 
empty strip. An expression is a set of cores that operate 
on a stream of data. In this case, the placement is static 
linear placement (because the placement can be done 
during compilation) similar to Callahan et al. (1998). 

• When a new expression is to be implemented into a 
strip, which already hosts a previous expression or the 
latter needs to be augmented with additional 
functionality, the placement problem becomes a  
non-contiguous linear placement. In this case, only 
certain areas within the strip are available for the 
placement of new cores and therefore the classical 
linear placement has now additional constraints under 
the form of blockages (i.e., obstructions). 

• The third kind of placement represents the case when 
previously placed cores (possibly interconnected) are 
still spread into a strip and decisions have to be made 
about which ones to be reused for the expression to be 
placed (therefore to reduce reconfiguration time),  
which ones to be kept for future expressions, or which 
ones to be erased or relocated inside the same strip.  
We call this dynamic (or real-time) linear placement 
because decisions, which directly impact the placement 
performance, have to be made in some cases at run-time. 

Callahan et al. proposed an efficient solution for the first 
problem in Callahan et al. (1998). We propose solutions for 
the second and third kinds of placement. Our algorithms are 
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intended for fast and close to optimum implementation of 
relatively simple kernels4 (which can be the result of a 
dynamic hardware/software partitioning encountered in 
HW/SW codesign (Chehida and Auguin, 2002)). In a typical 
RCS, the application is partitioned into loops (a loop has 
more kernels) implemented into hardware and software. 
When a kernel is implemented in hardware, its actual 
implementation (placement, core shapes, etc.) is done such 
that the execution time for the whole application is 
minimised. Our algorithms can be used either for fast 
solution-space search during compile-time (to achieve best 
configurations/contexts to be swapped during execution)  
or for real-time placement in cases when the  
hardware–software partitioning is done in real-time during 
execution (in this case our algorithms would be behind the 
physical design manager, PDM, which can be another 
dedicated processor, in Figure 1(a). We exploit reusability 
in a partially reconfigurable framework, which is a 
characteristic of the emerging platform-based design 
methodologies. This is in contrast to, for example,  
(Callahan et al., 1998) where the focus is on rather 
operation-merging–based regular data-path synthesis and 
optimisation, which is suitable for customised 
implementation of data-paths in a static framework. 

1.3 Problem formulation 

The framework of the non-contiguous placement is 
presented in Figure 2. In order to simplify the problem, we 
make the following assumptions. 

• The RPU is an island-like FPGA chip excluding the  
I/O memories on the left and right sides of the chip  
(see Figure 1(b)). Strips are horizontally considered and 
the height of each strip is determined by the data width 
to be processed. The height should accommodate the 
tallest core available in the library. The ‘Library’  
box in Figure 2 represents the list of cores and  
their characterisation obtained with JBits  
(Guccione et al., 1999). 

• Wire delays are estimated considering that every 
connection is routed considering best possible 
combination of wire segments. Our optimistic delay 
estimation during and after placement is based on a 
matrix look-up table of best delays – as reported by 
VPR routing algorithm – which can be achieved for a 
route between two generic points say (x1, y1) and 
(x2, y2). Then, the entry in the matrix for the route delay 
is (i, j) = (|x1 – x2|) (|y1 – y2|)|). The ‘Delay Architecture’ 
box in Figure 2 represents the delay look-up table. 

• Coordinates of preplaced cores are given. Active 
preplaced cores are considered as blockage 
areas/intervals. Inactive preplaced cores are available 
for reuse. The ‘Graph’ box in Figure 2 represents the 
preorder binary tree or general graph, which has to be 
placed together with the information about active  
(i.e., blockages) and inactive cores. 

• Primary Inputs (PIs) and Primary Outputs (POs) can be 
placed at both sides (left and right) of the strip for 
congestion minimisation. 

The formulation of the non-contiguous placement with 
blockages problem is as follows 

• GIVEN. The delay look-up table (architecture), the 
library of cores together with their characterisation, 
the tree or general graph (as data flow graph – DFG) 
and the location of preplaced cores inside the strip. 

• OBJECTIVE. Overlap-free linear placement  
(x coordinates) of all cores of the DFG such that the 
Wire-Length (WL), the delay at the outputs, and the 
max-cut at any column (congestion) are minimised. 

2 Non-contiguous linear placement for tree 
graphs 

We present three different algorithms for solving the  
non-contiguous linear placement for tree graphs. 

2.1 Algorithm H1 

The first proposed placement algorithm is based on the idea 
of a heuristic partitioning algorithm presented in Cheng and 
Cheng (2001). We adopted and applied it to our linear  
non-contiguous placement problem because it fits well  
the purposes of max-cut and wire-length minimisation.  
In what follows, we describe how our algorithm works.  
The pseudo-code of the first algorithm is shown in Figure 3. 

Figure 2 Non-contiguous linear placement framework 

 

Figure 3 Algorithm H1 

Input: 

Tree graph G(V,E) 

Library of cores and delay table look up 

Algorithm: 

1 Build EV-matrix 

2 Transform EV-matrix to band-matrix 

3 Greedy overlap-free placement 

First, we build the EV-matrix, which is an m × n matrix 
where m – the number of rows – is the number of edges in 
the directed tree-graph and n – the number of columns – is 
the number of nodes. An element a(i, j) = 1 in the matrix is 
nonzero if the jth node is incident to the ith net. If a node  
is not incident to a net, the corresponding EV-matrix  
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element is zero. For example, Figure 4 shows the binary 
tree5 for the expression Tg01.exp and the EV-matrix built 
based on the counting of all nodes and nets. 

Figure 4 (a) Binary expression tree and (b) the EV-matrix with 
nodes placed on columns such that the 1’s for PI nodes 
are in the top-left corner and the 1 for PO-pad node is 
in the right-bottom corner 

 
 (a) (b) 

Then, the EV-matrix is transformed into an  
as-close-as-possible to a band-form matrix using a 
procedure similar to the one in Cheng and Cheng (2001). 
We denote this as Bmin(EV-mtx) problem (i.e., minimisation 
of the bandwidth of the EV-matrix problem). The procedure 
uses row and column flips only and is based on a sorting 
algorithm. The goal is getting the matrix to a band-form 
(translates into a linear ordering with best trade-off between 
WL and max-cut between adjacent nodes) (see Figure 5), 
which serves two objectives: 

• cutsize minimisation: by having all 1’s in the matrix 
clustered along the diagonal shown with dashed line in 
Figure 4(b), the cutsize (the number of nets cut by a 
vertical cut applied between any two consecutive nodes 
in the linear arrangement) is minimised everywhere in 
the linear arrangement 

• WL minimisation: by minimising the bandwidth 
(maximum x distance spanned by any of the nets) of the 
EV-matrix, the total wire-length of all nets is 
minimised. 

Figure 5 Illustration of the EV-matrix band-width minimisation 
for both wire-length and maximum cut between 
adjacent nodes 

 

We would like to note that our EV-matrix is different from 
the VV-matrix, which is commonly used to represent the 
adjancency-matrix of a graph, and for which the 
BANDWIDTH problem is known to be NP-complete in 
general as well as for trees with maximum degree of three 
or more (Diaz et al., 2002). 

Congestion is indirectly minimised by the minimisation 
of the cutsize as well as the assignment of the PI/PO pads 
evenly to the left and right ends of the strip, if such a 
freedom exists in an application. 

After bandwidth minimisation, we greedily place the 
cores from right-to-left in the strip, based on the final 
ordering of nodes in the EV-matrix, such that no overlaps 
exist and blockages are skipped. This is performed under the 
assumption that the PO-pad is assigned to the right end of 
the strip; otherwise, the placement is performed from  
left-to-right. The run-time complexity of algorithm H1 is 
O(a lg a), a = max(m, n) and it is dominated by the 
quicksort algorithm behind the procedure in Step 2. 

2.2 Algorithm H2 

The idea of the second heuristic is also based on the 
minimisation of the bandwidth of the EV-matrix. However, 
this time we do not need to actually build the EV-matrix but 
we rather work directly on the binary-tree graph in a  
top–down approach. The main steps of our algorithm are 
shown in Figure 6. 

Figure 6 Algorithm H2 

Input: 

Tree graph G(V,E) 

Library of cores and delay table look up 

Algorithm: 

1 Post-order computation of quantities of 

interest 

2 Rank assignment of nodes to get linear 

ordering 

3 Greedy overlap-free placement 

First, a post-order walk is performed in order to compute the 
following interval variables for every node. 

• Latest arrival time, d (delay), up to the current node 
starting at any of the leaf nodes in the corresponding 
sub-tree. Initially, all delays are computed considering 
zero-delay for all wires. The delay d will be actually an 
interval (dmin, dmax) because every core in the library 
can have multiple shapes (widths and heights) with 
different delays. 

• Longest (maximum) path-width, pw, up to the current 
node starting at any of the leaf nodes in the 
corresponding sub-tree. A path-width is the sum of all 
widths of all cores along a path from a leaf-node up to 
the root-node of a sub-tree. The maximum path-width 
will also be computed as an interval (pwmin, pwmax) 
because the width of every core is in its turn an interval 
of discrete values. This variable is useful because it 
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stores the total width of the path, if all modules along 
the path are placed contiguously. 

• Volume-width of a sub-tree, v, represents the sum of all 
widths of all cores in sub-tree. The volume will also be 
computed as an interval (vmin, vmax). Volume-width 
gives the total width of the sub-tree, if all modules in 
the sub-tree are placed contiguously. 

For example, Figure 7 illustrates a generic node of a tree 
with the critical path having the latest delay d, the maximum 
path-width pw, and the volume-width v shown for the right 
sub tree. 

Figure 7 Illustration of path delay, path-width and volume 

 

Next, a linear ordering (i.e., numbering, counting) of all 
nodes is performed by assignment of ranks starting with the 
root node (and its associated PO-pad) and recursively 
continuing to the left (decreasing of the rank) with the left 
sub-tree and to the right (increasing of the rank) with the 
right sub-tree. This step is illustrated on a very simple 
example in Figure 7 (corresponding to the example of 
Figure 4, with the assumption that all cores in the library 
have unique shapes). 

The rank of the root is equal to the number of nodes in 
the left sub-tree of the root. The rank of the PO-pad is the 
rank of the root plus one (i.e., PO-pad is next to the right of 
the root). Ranking of nodes in either the left or right  
sub-trees is done in a ‘smaller-volume first’ order of their 
own sub-trees. For example, in Figure 8, node 6 is ranked 
such that it is to the left of node 5. The reason is that the 
sub-tree {6} undergoes the process of ranking before other 
sub-trees because this sub-tree has a smaller volume than 
the sub-tree containing node 5, which is {5,3,4}. If both 
sub-trees of the generic node have the same volume, the 
ranking is decided based on max path-width or delay. At the 
end of this step, we have obtained a linear numbering of 
nodes as that shown in the shaded area in Figure 8.  
As pointed out in the previous section, this linear ordering is 
very important because it is a direct measure of the quality 
of the final placement in terms of total wire-length and 
maximum cutsize. 

Figure 8 Illustration of rank assignment, used in order to obtain 
the linear numbering for the example in Figure 4 

 
 
 

Finally, a post processing is performed in order to assign x 
coordinates to all cores from right-to-left such that there are 
no overlaps and all blockages are skipped. During this step, 
PIs (i.e., leaf nodes) and the PO-pad will be assigned to the 
left or right of the strip depending on which one is closer, in 
order to minimise the wire-length. When cores have 
multiple shapes, then decision about which shape for a 
given core to be used has to be made. The shape assignment 
is done dynamically such that the delay of the most critical 
path is minimised whereas the total area of the cores off 
critical path is minimised. The run-time of the algorithm H2 
is O(n). 

2.3 Algorithm H3 

In this section, we address the third kind of non-contiguous 
placement. In this case, preplaced cores may be inactive and 
available to be reused as resources for the new expression to 
be placed. The goal here is to reuse as many inactive cores 
as possible, hence to reduce the reconfiguration time, while 
minimising the same objective functions: wire-length, the 
delay at the output of the expression tree and the max-cut at 
any x. In this case, the problem is more difficult because the 
way the inactive cores are placed on the strip can lead to 
increase in wire-length and delay as well as of max-cut. The 
number of inactive cores usually is not equal to the number 
of cores of the expression to be placed. Therefore, we have 
to decide on which inactive cores to reuse and which cores 
to be placed to match with. Other important factors are the 
‘distribution’ of inactive cores on the strip and their type 
(e.g., multipliers, adders, etc.). If all inactive cores are 
‘flushed’ to one end of the strip, then their reuse is likely to 
be more difficult compared to the case when they are 
uniformly distributed on the strip between blockages. If, for 
instance, all inactive cores are of one type (e.g., multipliers) 
and all cores to be placed are of another type (e.g., adders), 
then all inactive cores have to be treated as blockages or to 
be ‘overwritten’. 

The main steps of algorithm H3 are shown in Figure 9. 
First, a linear ordering is found for the expression to be 
placed using one of the algorithms presented in previous 
two sections. Because the linear ordering directly affects 
wire-length and maximum cutsize, we would first like to 
find a very good linear ordering irrespective of the type and 
distribution of the inactive cores.6 

Figure 9 Algorithm H3 

Input: 

Tree graph G(V,E) 

Library of cores and delay table look up 

Location and type of pre-placed cores 

Algorithm: 

1 Use Algorithm H1 or H2 to find linear ordering 

2 Max-matching between pre-placed and currently 

placed cores 

3 Greedy placement of left-over cores 
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Next, we perform a maximum matching between the 
inactive cores and the cores to be placed. Maximum 
matching means that we look for reusing as many inactive 
cores as possible in a manner which will also lead to a 
minimum perturbation of the linear ordering obtained 
during Step 1, hence, a minimum deterioration of the  
wire-length, delay and max-cut. This step is implemented as 
follows. We model the inactive cores and the empty 
intervals between them as nodes of a linear graph denoted 
strip_g. The cores to be placed in the linear ordering 
obtained during the first step represent a second linear graph 
denoted linord_g. We then perform a linear mapping 
between the two graphs. 

The mapping is performed by first partitioning  
(i.e., dividing) the larger graph into a set of blocks equal to 
the number of nodes in the smaller graph. Then we match 
every node in the smaller graph with its corresponding 
block in the larger graph. For example, Figure 10 shows the 
example from Figure 8 to illustrate how the linear mapping 
is performed. For example, node 8 in linord_g, which is an 
adder, is mapped to the nodes 3 and 4 in strip_g, which are 
inactive adder cores placed at x = 17 and an empty interval 
(http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html; 
http://www-3.ibm.com/chips/products/asics/products/cores/ 
efpga.html). This means that adder 8 from linord_g will be 
most likely matched either with the inactive adder 3 or with 
the empty interval 4 in strip_g. A core to be placed, as a 
node in linord_g, can also be matched with nodes, which are 
first order7 (or higher, depending by how much the linear 
ordering is allowed to change) neighbours of the nodes to 
which the core is mapped by the linear mapping.  
For example, multiplier 5 of linord_g can be matched with 
the inactive core 6 of strip_g (see Figure 10). 

Figure 10 Illustration of the linear mapping between the two 
linear graphs corresponding to the example in Figure 4 

 

After mapping and matching, some of the cores of the 
currently placed expression (nodes of linord_g) may not be 
matched. Therefore, as a last step we greedily match those 
cores to empty intervals as close as possible to those, which 
are already matched, in a manner that preserves the initial 
linear ordering. 
 
 
 

Note that our method is constructive rather than an 
iterative one. Hence, short run-times are facilitated. The 
run-time complexity of algorithm H3 depends on which 
algorithm is used in Step 1. 

3 Non-contiguous linear placement for general 
graphs 

We now present a solution for the non-contiguous linear 
placement for general graphs, which can have multiple 
primary outputs. Our goal in this case is similar to that of 
the problem statement in Section 2.3. We would like to 
reuse as many inactive cores as possible in order to decrease 
the amount of reconfiguration bits and hence the 
reconfiguration time. However, we further consider the 
interconnection reuse as well. In other words, fully 
preplaced general graphs are considered as inactive in a 
strip. We would like to reuse inactive cores together with 
their connectivity. That would require less routing effort 
(and possibly even smaller amounts of reconfiguration bits) 
for the new graph to be placed. Figure 11 describes what the 
optimal core and interconnect reuse is for a very simple 
example. The pseudo-code of our algorithm is shown in 
Figure 12. 

Figure 11 Illustration of the Maximum Common Sub-graph 
(MCS) match for both core and connectivity reuse 

 

Figure 12 Algorithm H4 

Input: 

Graphs G1(V1,E1) G2(V2,E2) 

Library of cores and delay table look up 

Location and type of pre-placed cores 

Algorithm: 

1 Use Algorithm H1 to find linear ordering 

2 MCS between pre-placed and currently 

placed cores with connectivity considered 

3 Greedy placement of left-over cores 

First, a linear ordering (similar to the first step of the 
algorithm in Section 2.3) of the graph to be placed is found 
using the same procedure as the one described in  
Section 2.1, which applies for general graphs as well. 

Then we find the Maximum Common Sub-graph (MCS) 
between the preplaced inactive graph and the graph to be  
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placed. For this purpose we employ a specialised algorithm, 
developed by Foggia et al. as an extension of the algorithm 
presented in Foggia et al. (2001) and available at 
http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html. 
In its simpler version, the MSC algorithms finds the 
maximum connected sub-graph and in its more complex 
form (requires longer run-times) the MSC algorithm finds a 
maximum disconnected sub-graph (e.g., a forest of trees) 
like for instance the example shown in Figure 10.  
The MCS algorithm finds the maximum number of cores  
(similar to Memik et al. (2003)), which can be reused as 
well as the connectivity between these cores (similarly to 
Moreano et al. (2002)). 

In the last step, the leftover cores of the graph to be 
placed are greedily placed into empty intervals as close as  
 

possible to cores, which are already placed (coordinates 
determined by the MCS), in a manner that preserves the 
linear ordering obtained in the first step. The run-time 
complexity is determined by the MCS algorithm, which is 
O(b(n1 + n2)), b = number of branches involving any two 
nodes of the two matched graphs, and n1, n2 number of 
nodes of the two matched graphs. 

4 Simulation results 

We now report simulation results obtained with our 
algorithms. The first three heuristic algorithms (described in 
Section 2) are used to test a set of six randomly constructed 
binary expressions.8 The simulations results are shown in 
Table 1. 

Table 1 Simulations results for tree graphs 

 SA  H1  H2  H3 

Tree graph Nodes Delay WL CPU (s) Delay WL CPU (s) Delay WL CPU (s) Delay WL CPU (s)

Tg01 10 1.16 169 16 1.16 191 0 1.16 187 <0.015 1.21 152 0.015 
Tg02 20 1.8 336 60 1.8 328 0.015 1.8 330 <0.015 1.87 350 0.015 
Tg03 12 1.58 227 16 1.58 235 0.015 1.58 219 0.015 1.58 224 0.015 
Tg04 20 2.6 369 68 2.6 371 0.015 2.6 289 <0.015 2.64 304 0.015 
Tg05 20 2.6 302 73 2.6 314 0.015 2.59 293 0.015 2.6 309 0.015 
Tg06 28 2.66 371 44 2.66 386 0.015 2.65 367 <0.015 2.66 416 <0.015 

 
We also implemented a Simulated Annealing (SA) algorithm 
for delay minimisation.9 We see that, the timing-driven 
Simulated Annealing engine cannot improve on the delay 
results obtained with H1 and H2. The reason is that the 
critical path usually starts at the left and ends at the right. 
This makes, in the case of trees, the ordering of cores (i.e., 
their counting) to be more important than the core coordinates. 

Comparing the first two heuristics, it can be seen that 
the delay obtained with H2 is similar to the delay obtained 
with the H1 but the wire-length is improved. That is because 
of the better bandwidth minimisation obtained with H2.  
The last three columns of Table 1 present the simulation 
results obtained with H3. When inactive cores are reused, 
more factors come into play and contribute to the tradeoffs 
existing between wire-length, delay and the number of 
available inactive cores, which are actually used. We 
observed in our experiments a stable tradeoff between  
how well the best linear ordering (obtained in the first step 
of H3) is preserved and the number of inactive cores, which 
are actually reused. The more inactive cores are reused 
(which eventually will translate in faster reconfiguration 
times) the worse the preservation of the linear ordering is 
(which translates in slightly higher delay and wire-length). 

Table 2 presents simulation results obtained with the 
algorithm presented in Section 3. We tested our algorithm 
on a set of selected basic blocks (as data flow graphs) of the 
Honeywell and MediaBench benchmarks (Lee et al., 1997). 
For comparison purposes, we first placed each graph 
contiguously (each graph is placed without reusing any 
cores). Then, every graph – starting with the second – is 
placed considering as preplaced reusable graph the previous 
one. This is performed with the MCS algorithm set to search 
for the maximum common disconnected sub-graph 
(maximum core and connectivity reuse but longer  
run-times) or set to search for the maximum common 
connected sub-graph (lower core and connectivity reuse but 
much faster). We can see that in the first setting the 
percentage of cores and connectivity that are reused is larger 
(up to 74% core and up to 36% connectivity reuse) than in 
the second setting, but at the expense of longer run-times. 
More core and connectivity reuse translates into  
smaller amounts of reconfiguration bits, hence shorter 
reconfiguration times. However, the longer run-times 
(entirely owing to the MCS algorithm) suggest the use of 
our algorithm – with the first setting – for optimisation 
placement at compile time. 
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Table 2 Simulations results for general graphs 

 Contiguous  
placement 

 Non-contiguous placement 
(disconnected MCS) 

 Non-contiguous placement 
(connected MCS) 

Graph placed/ 
graph reused 

Nodes/ 
nets 

PI/ 
PO Delay WL 

CPU 
(s) Delay WL 

CPU 
(s) 

Reuse 
Core %/
Conn. % Delay WL 

CPU 
(s) 

Reuse 
Core %/
Conn. % 

Honeywell-intfc01/ 
Honeywell-intfc01 

16/13 4/3 1.079 255 <0.015 1.079 255 <0.015 100/ 
100 

1.079 261 0.016 62.5/ 
75 

Dft/ 
Honeywell-intfc01 

19/12 4/7 0.955 386 <0.015 0.979 382 0.094 52.63/ 
33.33 

0.985 412 0.015 15.79/ 
13.33 

Honeywell-versatil/ 
Dft 

27/20 6/7 1.038 430 0.015 1.078 433 0.469 51.81/ 
28 

1.075 425 0.015 22.22/ 
20 

Honeywell-intfc02/ 
Honeywell-versatil 

27/21 6/6 1.467 458 <0.015 1.508 481 18.6 74.07/ 
36 

1.467 460 0.032 18.51/ 
16 

Honeywell-fft01/ 
Honeywell-intfc02 

31/23 8/8 1.411 595 0.015 1.414 564 187.3 51.61/ 
24.13 

1.411 596 0.016 16.12/ 
13.79 

Honeywell-fft02/ 
Honeywell-fft01 

31/24 5/7 1.057 471 <0.015 1.072 471 414.7 45.16/ 
23.33 

1.057 479 0.032 16.12/ 
13.33 

MediaBench-jpeg/ 
Honeywell-fft02 

35/27 9/8 1 650 <0.015 1.031 607 597.2 54.28/ 
27.27 

1.009 643 0.015 11.42/ 
9.09 

 
5 Conclusion 

We presented efficient solutions for the non-contiguous 
linear placement problem for reconfigurable computing. 
Our placement algorithms are based on heuristic for 
Bmin(EV-mtx) (minimisation of the bandwidth of the  
EV-matrix of the expression graph), which translates into 
direct minimisation of the cutsize (congestion) and  
wire-length and indirect minimisation of timing. When 
inactive cores are reused, our algorithms look for finding the 
maximum matching between the inactive cores and those, 
which have to be placed. Core and connectivity reuse can be 
as much as 74% and 36%, respectively. 

Current and future work focuses on developing a direct 
delay minimisation integrated into the presented algorithms, 
which should be in the form of either net-based (slack) or 
path-based (k-most critical paths). 
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Notes 
1Also referred to as reconfigurable functional unit operations 
(RFUOPs) in frameworks like those in Brebner (1997) and 
Bazargan et al. (2001). 

2It is worth mentioning that such architecture would not impair the 
achievable performance but would only possibly require larger 
areas, as experiments reported in Callahan et al. (1998) showed. 

3One can also talk about static configuration – the whole RPU area 
has to be reconfigured during each reconfiguration or full 
dynamic reconfiguration – more configurations are stored in the 
FPGA or in a cache onchip memory and they are switched during 
execution as response to requests (Li et al., 2000b). In this work, 
our focus is however on partial dynamic reconfiguration only. 

4In this work, a kernel is a preorder binary expression (i.e., a tree 
graph) or a general directed graph. 

5Note that an extra node – PO pad – was inserted. This is done for 
every tree with the purpose of connects the root to the I/O 
memories and for wire-length computations. 

6Delay is also affected by the linear ordering. The linear ordering 
has to ensure a ‘straight’ (from left to right or right to left) rather 
than a ‘back-and-forth’ critical path in order to achieve delay  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

minimisation. This is true irrespective of the fixed locations of the 
PIs and POs. However, blockages can have a certain impact 
(depending on the delay–distance relationship – captured in the 
look-up table in our case) on the overall delay as well as when the 
final placement will be obtained by flushing all cells to the right 
or to the left. 

7This is a control parameter that allows the user to tune the 
algorithm. 

8All tree and general graphs together with the C++ implementation 
of all algorithms presented in this work are available for 
download at http://www.ece.umn.edu/users/ababei/. 

9There is no prior work on non-contiguous linear placement to 
which we can compare our results. The only work somewhat 
similar to our work is Callahan et al. (1998). However, the 
placement algorithm in Callahan et al. (1998) solves the problem 
of static linear placement, which is different from the  
non-contiguous linear placement problem tackled in this work. 
Additionally, wire-length is not considered in Callahan et al. 
(1998). 
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