
86 Int. J. Embedded Systems, Vol. 2, Nos. 1/2, 2006

Copyright © 2006 Inderscience Enterprises Ltd.

Non-contiguous linear placement for reconfigurable
fabrics

Cristinel Ababei and Kia Bazargan*
Electrical and Computer Engineering Department,
University of Minnesota, Minneapolis, MN 55455, USA
E-mail: cababei@Magma-DA.com E-mail: kia@umn.edu
*Corresponding author

Abstract: We present efficient solutions for the non-contiguous linear placement of data-paths
for reconfigurable fabrics. A strip-based architecture is assumed for the reconfigurable fabric.
A preorder tree-expression or a general graph is placed in a strip, which can have active and/or
inactive preplaced cores representing blockages and/or cores available for reuse. Two very
efficient algorithms are proposed to solve the simpler problem of non-contiguous placement with
blockages but without core reuse for tree graphs. The linear ordering obtained with any of the
above algorithms is used as input for a third efficient algorithm to solve the problem of
non-contiguous placement with both active and inactive cores. A fourth algorithm is proposed to
solve the problem of non-contiguous placement with both core and connectivity reuse.
Simulations results are reported.

Keywords: non-contiguous; linear placement; reconfigurable architectures.

Reference to this paper should be made as follows: Ababei, C. and Bazargan, K. (2006)
‘Non-contiguous linear placement for reconfigurable fabrics’, Int. J. Embedded Systems, Vol. 2,
Nos. 1/2, pp.86–94.

Biographical notes: Cristinel Ababei (S’01) is with Magma design automation in Santa Clara,
California. He received his PhD Degree in Electrical Engineering from the University of
Minnesota in 2004. He received the MS Degree in Electrical Engineering from University of
Minnesota in 2002. He received the BS and MS Degrees in Electrical Engineering from
University of Iasi, Romania, in 1996 and 1998, respectively. His research interests include CAD
for layout and logic synthesis for robust high-performance low-power VLSI circuits, FPGA
synthesis and reconfigurable systems.

Kia Bazargan (S’97 M’00) received his BS in Computer Science from the Sharif University in
Tehran, Iran, and his MS and PhD in Electrical and Computer Engineering from Northwestern
University in Evanston, IL in 1998 and 2000, respectively. He is currently an Assistant Professor
in the Electrical and Computer Engineering at University of Minnesota. He has served on the
technical program committee of a number of IEEE sponsored conferences (e.g., ISPD, ICCAD,
GLSVLSI). He was a guest coeditor of ACM Transactions on Embedded Computing Systems
(ACM TECS), Special Issue on Dynamically Adaptable Embedded Systems in 2003. He was a
recipient of NSF CAREER award in 2004. He is the Associate Editor of IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems.

1 Introduction

Manufacturability costs of classic ASICs continue to
increase owing to the shrinking of transistor size and the
increase of circuit complexity. Therefore, the importance of
reconfigurable fabrics (e.g., including an FPGA block
within an ASIC design) has increased considerably in recent
years. A recent example is the hybrid ASIC/FPGA chip by
IBM and Xilinx (http://www-3.ibm.com/chips/products/
asics/products/cores/efpga.html). This solution offers a
combination of the performance, achievable with ASICs,
and the flexibility of reconfigurability.

One of the reasons for increased interest in
reconfigurable fabrics is the higher flexibility offered by
reconfigurability, which allows the implementation of
different applications on the same reconfigurable fabric and

the upgrade of currently deployed application specific
reconfigurable circuits, and significantly decreases the time
to market. Another reason for increased attention to
reconfigurable fabrics is the continuous increase of the size
and performance of reconfigurable fabric, which allow the
implementation of more complex and faster applications.

Reconfigurable Computing (RC) is used as an
alternative to the software implementation of digital media,
cryptographic and compute-intensive algorithms or
parts of these (hardware/software co-design) owing to the
superior speed of hardware vs. software. The greater
speed comes from the high parallelism and custom
data-path widths, which are realisable with RC. An example
of an RC platform is the Xilinx Virtex II Pro reconfigurable
fabric, which has immersed up to four PowerPC
processors (http://www.xilinx.com/products/tables/

 Non-contiguous linear placement for reconfigurable fabrics 87

fpga.htm#v2p). Reconfigurable Computing Systems (RCS)
offer efficient solutions to a variety of problems. For
example, they facilitate the implementation as well as the
upgrade (possibly via Internet) on the same platform of
different features (DSP, cryptography, etc.) for audio
and video data-streaming portable devices such as
cell phones (http://www.qstech.com/tech_products.htm;
http://www.picochip.com/; http://www.xilinx.com/apps/
epld.htm#CoolRunner). Embedded systems for automotive
applications (e.g., in-car navigating and collision
detection systems) are yet another example for use of
RCS (http://www.xilinx.com/publications/products/
sp2e/wp_pdf/wp153.pdf). Ambient intelligence
(http://www.research.philips.com/InformationCenter/Global/
FArticleSummary.asp?lNodeId=93 1#ambintel) (a developing
metaphor, which describes electronic environments that are
sensitive and responsive to the presence of people) is a
recent topic supported (especially during development
and prototyping (http://research.microsoft.com/easyliving/;
http://architecture.mit.edu/house_n/; http://www.
awarehome.gatech.edu/) by upgradeable RCS and
distributed computing.

A typical RCS architecture may look as that shown in
Figure 1(a). It is similar to the architecture discussed in
Li et al. (2000a) and Bazargan et al. (2001). Such an RCS
has to be supported by physical design CAD tools that shall
guarantee fast run-times. Such tools are indispensable for
the generation of (partial) reconfiguration bits in very short
times. To achieve short run-times, one has to innovate at
both architectural and algorithmic levels. At the
architectural level, we propose that the Reconfigurable
Processor Unit (RPU) be divided into physical strips.
A physical strip represents a horizontal strip of the FPGA
chip. Each strip could be paired at both endings with I/O
memories, which serve as FIFO buffers for data to be
processed or for storing results. The height of a strip (and
therefore the total number of strips on the chip; see Figure
1(b) can vary depending on the data width to be processed.
The motivation behind such RPU architecture is that it
simplifies the physical design. The placement of cores1
(i.e., ‘hardware cores’ stored in libraries, such as multipliers
and adders) would be linear as opposed to typical 2D
approaches (Brebner, 1997; Bazargan et al., 2001). This
simplification2 facilitates faster placement and routing
engines and easier integration of techniques like the virtual
sockets described in Dyer et al. (2002) (physical design
becomes more platform-based) or the core communication
interface in Mesquita et al. (2003).

Figure 1 (a) RCS architecture and (b) RPU divided into four
strips

 (a) (b)

1.1 Previous work and current challenges

In partial dynamic reconfiguration, only the area required by
the new configuration is reconfigured based on events.3
The rest of the RPU remains intact. As a result,
reconfiguration bitstreams become smaller and hence the
reconfiguration time is smaller. Static and full dynamic
configuration modes could be supported by mature CAD
tools, which would cover all steps in the design cycle
(from high-level design specifications down to placement
and routing and then static configuration of a single or
multiple contexts). However, the partial run-time
reconfigurable model lacks the design tools for partial
reconfiguration, which makes practical implementations a
challenging task, even though the partially reconfigurable
devices (e.g., Xilinx Virtex, 2001) are already available.
We note the practical lack of a coherent design flow and an
RCS platform that shall provide real-time reconfiguration
bits generation and partial dynamic reconfigurability.
However, many RCS architectures have been proposed
with notable performance limited to specific applications
(DeHon and Wawrzynek, 1999; Hauck, 1998).

1.2 Our work

We focus on placement algorithms for RC. In particular,
we concentrate on two of the three placement problems,
which we envision to appear in a partial dynamically RCS
such as that shown in Figure 1.

• The first placement problem in such a framework is
used when a new expression is implemented into an
empty strip. An expression is a set of cores that operate
on a stream of data. In this case, the placement is static
linear placement (because the placement can be done
during compilation) similar to Callahan et al. (1998).

• When a new expression is to be implemented into a
strip, which already hosts a previous expression or the
latter needs to be augmented with additional
functionality, the placement problem becomes a
non-contiguous linear placement. In this case, only
certain areas within the strip are available for the
placement of new cores and therefore the classical
linear placement has now additional constraints under
the form of blockages (i.e., obstructions).

• The third kind of placement represents the case when
previously placed cores (possibly interconnected) are
still spread into a strip and decisions have to be made
about which ones to be reused for the expression to be
placed (therefore to reduce reconfiguration time),
which ones to be kept for future expressions, or which
ones to be erased or relocated inside the same strip.
We call this dynamic (or real-time) linear placement
because decisions, which directly impact the placement
performance, have to be made in some cases at run-time.

Callahan et al. proposed an efficient solution for the first
problem in Callahan et al. (1998). We propose solutions for
the second and third kinds of placement. Our algorithms are

88 C. Ababei and K. Bazargan

intended for fast and close to optimum implementation of
relatively simple kernels4 (which can be the result of a
dynamic hardware/software partitioning encountered in
HW/SW codesign (Chehida and Auguin, 2002)). In a typical
RCS, the application is partitioned into loops (a loop has
more kernels) implemented into hardware and software.
When a kernel is implemented in hardware, its actual
implementation (placement, core shapes, etc.) is done such
that the execution time for the whole application is
minimised. Our algorithms can be used either for fast
solution-space search during compile-time (to achieve best
configurations/contexts to be swapped during execution)
or for real-time placement in cases when the
hardware–software partitioning is done in real-time during
execution (in this case our algorithms would be behind the
physical design manager, PDM, which can be another
dedicated processor, in Figure 1(a). We exploit reusability
in a partially reconfigurable framework, which is a
characteristic of the emerging platform-based design
methodologies. This is in contrast to, for example,
(Callahan et al., 1998) where the focus is on rather
operation-merging–based regular data-path synthesis and
optimisation, which is suitable for customised
implementation of data-paths in a static framework.

1.3 Problem formulation

The framework of the non-contiguous placement is
presented in Figure 2. In order to simplify the problem, we
make the following assumptions.

• The RPU is an island-like FPGA chip excluding the
I/O memories on the left and right sides of the chip
(see Figure 1(b)). Strips are horizontally considered and
the height of each strip is determined by the data width
to be processed. The height should accommodate the
tallest core available in the library. The ‘Library’
box in Figure 2 represents the list of cores and
their characterisation obtained with JBits
(Guccione et al., 1999).

• Wire delays are estimated considering that every
connection is routed considering best possible
combination of wire segments. Our optimistic delay
estimation during and after placement is based on a
matrix look-up table of best delays – as reported by
VPR routing algorithm – which can be achieved for a
route between two generic points say (x1, y1) and
(x2, y2). Then, the entry in the matrix for the route delay
is (i, j) = (|x1 – x2|) (|y1 – y2|)|). The ‘Delay Architecture’
box in Figure 2 represents the delay look-up table.

• Coordinates of preplaced cores are given. Active
preplaced cores are considered as blockage
areas/intervals. Inactive preplaced cores are available
for reuse. The ‘Graph’ box in Figure 2 represents the
preorder binary tree or general graph, which has to be
placed together with the information about active
(i.e., blockages) and inactive cores.

• Primary Inputs (PIs) and Primary Outputs (POs) can be
placed at both sides (left and right) of the strip for
congestion minimisation.

The formulation of the non-contiguous placement with
blockages problem is as follows

• GIVEN. The delay look-up table (architecture), the
library of cores together with their characterisation,
the tree or general graph (as data flow graph – DFG)
and the location of preplaced cores inside the strip.

• OBJECTIVE. Overlap-free linear placement
(x coordinates) of all cores of the DFG such that the
Wire-Length (WL), the delay at the outputs, and the
max-cut at any column (congestion) are minimised.

2 Non-contiguous linear placement for tree
graphs

We present three different algorithms for solving the
non-contiguous linear placement for tree graphs.

2.1 Algorithm H1

The first proposed placement algorithm is based on the idea
of a heuristic partitioning algorithm presented in Cheng and
Cheng (2001). We adopted and applied it to our linear
non-contiguous placement problem because it fits well
the purposes of max-cut and wire-length minimisation.
In what follows, we describe how our algorithm works.
The pseudo-code of the first algorithm is shown in Figure 3.

Figure 2 Non-contiguous linear placement framework

Figure 3 Algorithm H1

Input:

Tree graph G(V,E)

Library of cores and delay table look up

Algorithm:

1 Build EV-matrix

2 Transform EV-matrix to band-matrix

3 Greedy overlap-free placement

First, we build the EV-matrix, which is an m × n matrix
where m – the number of rows – is the number of edges in
the directed tree-graph and n – the number of columns – is
the number of nodes. An element a(i, j) = 1 in the matrix is
nonzero if the jth node is incident to the ith net. If a node
is not incident to a net, the corresponding EV-matrix

 Non-contiguous linear placement for reconfigurable fabrics 89

element is zero. For example, Figure 4 shows the binary
tree5 for the expression Tg01.exp and the EV-matrix built
based on the counting of all nodes and nets.

Figure 4 (a) Binary expression tree and (b) the EV-matrix with
nodes placed on columns such that the 1’s for PI nodes
are in the top-left corner and the 1 for PO-pad node is
in the right-bottom corner

 (a) (b)

Then, the EV-matrix is transformed into an
as-close-as-possible to a band-form matrix using a
procedure similar to the one in Cheng and Cheng (2001).
We denote this as Bmin(EV-mtx) problem (i.e., minimisation
of the bandwidth of the EV-matrix problem). The procedure
uses row and column flips only and is based on a sorting
algorithm. The goal is getting the matrix to a band-form
(translates into a linear ordering with best trade-off between
WL and max-cut between adjacent nodes) (see Figure 5),
which serves two objectives:

• cutsize minimisation: by having all 1’s in the matrix
clustered along the diagonal shown with dashed line in
Figure 4(b), the cutsize (the number of nets cut by a
vertical cut applied between any two consecutive nodes
in the linear arrangement) is minimised everywhere in
the linear arrangement

• WL minimisation: by minimising the bandwidth
(maximum x distance spanned by any of the nets) of the
EV-matrix, the total wire-length of all nets is
minimised.

Figure 5 Illustration of the EV-matrix band-width minimisation
for both wire-length and maximum cut between
adjacent nodes

We would like to note that our EV-matrix is different from
the VV-matrix, which is commonly used to represent the
adjancency-matrix of a graph, and for which the
BANDWIDTH problem is known to be NP-complete in
general as well as for trees with maximum degree of three
or more (Diaz et al., 2002).

Congestion is indirectly minimised by the minimisation
of the cutsize as well as the assignment of the PI/PO pads
evenly to the left and right ends of the strip, if such a
freedom exists in an application.

After bandwidth minimisation, we greedily place the
cores from right-to-left in the strip, based on the final
ordering of nodes in the EV-matrix, such that no overlaps
exist and blockages are skipped. This is performed under the
assumption that the PO-pad is assigned to the right end of
the strip; otherwise, the placement is performed from
left-to-right. The run-time complexity of algorithm H1 is
O(a lg a), a = max(m, n) and it is dominated by the
quicksort algorithm behind the procedure in Step 2.

2.2 Algorithm H2

The idea of the second heuristic is also based on the
minimisation of the bandwidth of the EV-matrix. However,
this time we do not need to actually build the EV-matrix but
we rather work directly on the binary-tree graph in a
top–down approach. The main steps of our algorithm are
shown in Figure 6.

Figure 6 Algorithm H2

Input:

Tree graph G(V,E)

Library of cores and delay table look up

Algorithm:

1 Post-order computation of quantities of

interest

2 Rank assignment of nodes to get linear

ordering

3 Greedy overlap-free placement

First, a post-order walk is performed in order to compute the
following interval variables for every node.

• Latest arrival time, d (delay), up to the current node
starting at any of the leaf nodes in the corresponding
sub-tree. Initially, all delays are computed considering
zero-delay for all wires. The delay d will be actually an
interval (dmin, dmax) because every core in the library
can have multiple shapes (widths and heights) with
different delays.

• Longest (maximum) path-width, pw, up to the current
node starting at any of the leaf nodes in the
corresponding sub-tree. A path-width is the sum of all
widths of all cores along a path from a leaf-node up to
the root-node of a sub-tree. The maximum path-width
will also be computed as an interval (pwmin, pwmax)
because the width of every core is in its turn an interval
of discrete values. This variable is useful because it

90 C. Ababei and K. Bazargan

stores the total width of the path, if all modules along
the path are placed contiguously.

• Volume-width of a sub-tree, v, represents the sum of all
widths of all cores in sub-tree. The volume will also be
computed as an interval (vmin, vmax). Volume-width
gives the total width of the sub-tree, if all modules in
the sub-tree are placed contiguously.

For example, Figure 7 illustrates a generic node of a tree
with the critical path having the latest delay d, the maximum
path-width pw, and the volume-width v shown for the right
sub tree.

Figure 7 Illustration of path delay, path-width and volume

Next, a linear ordering (i.e., numbering, counting) of all
nodes is performed by assignment of ranks starting with the
root node (and its associated PO-pad) and recursively
continuing to the left (decreasing of the rank) with the left
sub-tree and to the right (increasing of the rank) with the
right sub-tree. This step is illustrated on a very simple
example in Figure 7 (corresponding to the example of
Figure 4, with the assumption that all cores in the library
have unique shapes).

The rank of the root is equal to the number of nodes in
the left sub-tree of the root. The rank of the PO-pad is the
rank of the root plus one (i.e., PO-pad is next to the right of
the root). Ranking of nodes in either the left or right
sub-trees is done in a ‘smaller-volume first’ order of their
own sub-trees. For example, in Figure 8, node 6 is ranked
such that it is to the left of node 5. The reason is that the
sub-tree {6} undergoes the process of ranking before other
sub-trees because this sub-tree has a smaller volume than
the sub-tree containing node 5, which is {5,3,4}. If both
sub-trees of the generic node have the same volume, the
ranking is decided based on max path-width or delay. At the
end of this step, we have obtained a linear numbering of
nodes as that shown in the shaded area in Figure 8.
As pointed out in the previous section, this linear ordering is
very important because it is a direct measure of the quality
of the final placement in terms of total wire-length and
maximum cutsize.

Figure 8 Illustration of rank assignment, used in order to obtain
the linear numbering for the example in Figure 4

Finally, a post processing is performed in order to assign x
coordinates to all cores from right-to-left such that there are
no overlaps and all blockages are skipped. During this step,
PIs (i.e., leaf nodes) and the PO-pad will be assigned to the
left or right of the strip depending on which one is closer, in
order to minimise the wire-length. When cores have
multiple shapes, then decision about which shape for a
given core to be used has to be made. The shape assignment
is done dynamically such that the delay of the most critical
path is minimised whereas the total area of the cores off
critical path is minimised. The run-time of the algorithm H2
is O(n).

2.3 Algorithm H3

In this section, we address the third kind of non-contiguous
placement. In this case, preplaced cores may be inactive and
available to be reused as resources for the new expression to
be placed. The goal here is to reuse as many inactive cores
as possible, hence to reduce the reconfiguration time, while
minimising the same objective functions: wire-length, the
delay at the output of the expression tree and the max-cut at
any x. In this case, the problem is more difficult because the
way the inactive cores are placed on the strip can lead to
increase in wire-length and delay as well as of max-cut. The
number of inactive cores usually is not equal to the number
of cores of the expression to be placed. Therefore, we have
to decide on which inactive cores to reuse and which cores
to be placed to match with. Other important factors are the
‘distribution’ of inactive cores on the strip and their type
(e.g., multipliers, adders, etc.). If all inactive cores are
‘flushed’ to one end of the strip, then their reuse is likely to
be more difficult compared to the case when they are
uniformly distributed on the strip between blockages. If, for
instance, all inactive cores are of one type (e.g., multipliers)
and all cores to be placed are of another type (e.g., adders),
then all inactive cores have to be treated as blockages or to
be ‘overwritten’.

The main steps of algorithm H3 are shown in Figure 9.
First, a linear ordering is found for the expression to be
placed using one of the algorithms presented in previous
two sections. Because the linear ordering directly affects
wire-length and maximum cutsize, we would first like to
find a very good linear ordering irrespective of the type and
distribution of the inactive cores.6

Figure 9 Algorithm H3

Input:

Tree graph G(V,E)

Library of cores and delay table look up

Location and type of pre-placed cores

Algorithm:

1 Use Algorithm H1 or H2 to find linear ordering

2 Max-matching between pre-placed and currently

placed cores

3 Greedy placement of left-over cores

 Non-contiguous linear placement for reconfigurable fabrics 91

Next, we perform a maximum matching between the
inactive cores and the cores to be placed. Maximum
matching means that we look for reusing as many inactive
cores as possible in a manner which will also lead to a
minimum perturbation of the linear ordering obtained
during Step 1, hence, a minimum deterioration of the
wire-length, delay and max-cut. This step is implemented as
follows. We model the inactive cores and the empty
intervals between them as nodes of a linear graph denoted
strip_g. The cores to be placed in the linear ordering
obtained during the first step represent a second linear graph
denoted linord_g. We then perform a linear mapping
between the two graphs.

The mapping is performed by first partitioning
(i.e., dividing) the larger graph into a set of blocks equal to
the number of nodes in the smaller graph. Then we match
every node in the smaller graph with its corresponding
block in the larger graph. For example, Figure 10 shows the
example from Figure 8 to illustrate how the linear mapping
is performed. For example, node 8 in linord_g, which is an
adder, is mapped to the nodes 3 and 4 in strip_g, which are
inactive adder cores placed at x = 17 and an empty interval
(http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html;
http://www-3.ibm.com/chips/products/asics/products/cores/
efpga.html). This means that adder 8 from linord_g will be
most likely matched either with the inactive adder 3 or with
the empty interval 4 in strip_g. A core to be placed, as a
node in linord_g, can also be matched with nodes, which are
first order7 (or higher, depending by how much the linear
ordering is allowed to change) neighbours of the nodes to
which the core is mapped by the linear mapping.
For example, multiplier 5 of linord_g can be matched with
the inactive core 6 of strip_g (see Figure 10).

Figure 10 Illustration of the linear mapping between the two
linear graphs corresponding to the example in Figure 4

After mapping and matching, some of the cores of the
currently placed expression (nodes of linord_g) may not be
matched. Therefore, as a last step we greedily match those
cores to empty intervals as close as possible to those, which
are already matched, in a manner that preserves the initial
linear ordering.

Note that our method is constructive rather than an
iterative one. Hence, short run-times are facilitated. The
run-time complexity of algorithm H3 depends on which
algorithm is used in Step 1.

3 Non-contiguous linear placement for general
graphs

We now present a solution for the non-contiguous linear
placement for general graphs, which can have multiple
primary outputs. Our goal in this case is similar to that of
the problem statement in Section 2.3. We would like to
reuse as many inactive cores as possible in order to decrease
the amount of reconfiguration bits and hence the
reconfiguration time. However, we further consider the
interconnection reuse as well. In other words, fully
preplaced general graphs are considered as inactive in a
strip. We would like to reuse inactive cores together with
their connectivity. That would require less routing effort
(and possibly even smaller amounts of reconfiguration bits)
for the new graph to be placed. Figure 11 describes what the
optimal core and interconnect reuse is for a very simple
example. The pseudo-code of our algorithm is shown in
Figure 12.

Figure 11 Illustration of the Maximum Common Sub-graph
(MCS) match for both core and connectivity reuse

Figure 12 Algorithm H4

Input:

Graphs G1(V1,E1) G2(V2,E2)

Library of cores and delay table look up

Location and type of pre-placed cores

Algorithm:

1 Use Algorithm H1 to find linear ordering

2 MCS between pre-placed and currently

placed cores with connectivity considered

3 Greedy placement of left-over cores

First, a linear ordering (similar to the first step of the
algorithm in Section 2.3) of the graph to be placed is found
using the same procedure as the one described in
Section 2.1, which applies for general graphs as well.

Then we find the Maximum Common Sub-graph (MCS)
between the preplaced inactive graph and the graph to be

92 C. Ababei and K. Bazargan

placed. For this purpose we employ a specialised algorithm,
developed by Foggia et al. as an extension of the algorithm
presented in Foggia et al. (2001) and available at
http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html.
In its simpler version, the MSC algorithms finds the
maximum connected sub-graph and in its more complex
form (requires longer run-times) the MSC algorithm finds a
maximum disconnected sub-graph (e.g., a forest of trees)
like for instance the example shown in Figure 10.
The MCS algorithm finds the maximum number of cores
(similar to Memik et al. (2003)), which can be reused as
well as the connectivity between these cores (similarly to
Moreano et al. (2002)).

In the last step, the leftover cores of the graph to be
placed are greedily placed into empty intervals as close as

possible to cores, which are already placed (coordinates
determined by the MCS), in a manner that preserves the
linear ordering obtained in the first step. The run-time
complexity is determined by the MCS algorithm, which is
O(b(n1 + n2)), b = number of branches involving any two
nodes of the two matched graphs, and n1, n2 number of
nodes of the two matched graphs.

4 Simulation results

We now report simulation results obtained with our
algorithms. The first three heuristic algorithms (described in
Section 2) are used to test a set of six randomly constructed
binary expressions.8 The simulations results are shown in
Table 1.

Table 1 Simulations results for tree graphs

 SA H1 H2 H3

Tree graph Nodes Delay WL CPU (s) Delay WL CPU (s) Delay WL CPU (s) Delay WL CPU (s)

Tg01 10 1.16 169 16 1.16 191 0 1.16 187 <0.015 1.21 152 0.015
Tg02 20 1.8 336 60 1.8 328 0.015 1.8 330 <0.015 1.87 350 0.015
Tg03 12 1.58 227 16 1.58 235 0.015 1.58 219 0.015 1.58 224 0.015
Tg04 20 2.6 369 68 2.6 371 0.015 2.6 289 <0.015 2.64 304 0.015
Tg05 20 2.6 302 73 2.6 314 0.015 2.59 293 0.015 2.6 309 0.015
Tg06 28 2.66 371 44 2.66 386 0.015 2.65 367 <0.015 2.66 416 <0.015

We also implemented a Simulated Annealing (SA) algorithm
for delay minimisation.9 We see that, the timing-driven
Simulated Annealing engine cannot improve on the delay
results obtained with H1 and H2. The reason is that the
critical path usually starts at the left and ends at the right.
This makes, in the case of trees, the ordering of cores (i.e.,
their counting) to be more important than the core coordinates.

Comparing the first two heuristics, it can be seen that
the delay obtained with H2 is similar to the delay obtained
with the H1 but the wire-length is improved. That is because
of the better bandwidth minimisation obtained with H2.
The last three columns of Table 1 present the simulation
results obtained with H3. When inactive cores are reused,
more factors come into play and contribute to the tradeoffs
existing between wire-length, delay and the number of
available inactive cores, which are actually used. We
observed in our experiments a stable tradeoff between
how well the best linear ordering (obtained in the first step
of H3) is preserved and the number of inactive cores, which
are actually reused. The more inactive cores are reused
(which eventually will translate in faster reconfiguration
times) the worse the preservation of the linear ordering is
(which translates in slightly higher delay and wire-length).

Table 2 presents simulation results obtained with the
algorithm presented in Section 3. We tested our algorithm
on a set of selected basic blocks (as data flow graphs) of the
Honeywell and MediaBench benchmarks (Lee et al., 1997).
For comparison purposes, we first placed each graph
contiguously (each graph is placed without reusing any
cores). Then, every graph – starting with the second – is
placed considering as preplaced reusable graph the previous
one. This is performed with the MCS algorithm set to search
for the maximum common disconnected sub-graph
(maximum core and connectivity reuse but longer
run-times) or set to search for the maximum common
connected sub-graph (lower core and connectivity reuse but
much faster). We can see that in the first setting the
percentage of cores and connectivity that are reused is larger
(up to 74% core and up to 36% connectivity reuse) than in
the second setting, but at the expense of longer run-times.
More core and connectivity reuse translates into
smaller amounts of reconfiguration bits, hence shorter
reconfiguration times. However, the longer run-times
(entirely owing to the MCS algorithm) suggest the use of
our algorithm – with the first setting – for optimisation
placement at compile time.

 Non-contiguous linear placement for reconfigurable fabrics 93

Table 2 Simulations results for general graphs

 Contiguous
placement

 Non-contiguous placement
(disconnected MCS)

 Non-contiguous placement
(connected MCS)

Graph placed/
graph reused

Nodes/
nets

PI/
PO Delay WL

CPU
(s) Delay WL

CPU
(s)

Reuse
Core %/
Conn. % Delay WL

CPU
(s)

Reuse
Core %/
Conn. %

Honeywell-intfc01/
Honeywell-intfc01

16/13 4/3 1.079 255 <0.015 1.079 255 <0.015 100/
100

1.079 261 0.016 62.5/
75

Dft/
Honeywell-intfc01

19/12 4/7 0.955 386 <0.015 0.979 382 0.094 52.63/
33.33

0.985 412 0.015 15.79/
13.33

Honeywell-versatil/
Dft

27/20 6/7 1.038 430 0.015 1.078 433 0.469 51.81/
28

1.075 425 0.015 22.22/
20

Honeywell-intfc02/
Honeywell-versatil

27/21 6/6 1.467 458 <0.015 1.508 481 18.6 74.07/
36

1.467 460 0.032 18.51/
16

Honeywell-fft01/
Honeywell-intfc02

31/23 8/8 1.411 595 0.015 1.414 564 187.3 51.61/
24.13

1.411 596 0.016 16.12/
13.79

Honeywell-fft02/
Honeywell-fft01

31/24 5/7 1.057 471 <0.015 1.072 471 414.7 45.16/
23.33

1.057 479 0.032 16.12/
13.33

MediaBench-jpeg/
Honeywell-fft02

35/27 9/8 1 650 <0.015 1.031 607 597.2 54.28/
27.27

1.009 643 0.015 11.42/
9.09

5 Conclusion

We presented efficient solutions for the non-contiguous
linear placement problem for reconfigurable computing.
Our placement algorithms are based on heuristic for
Bmin(EV-mtx) (minimisation of the bandwidth of the
EV-matrix of the expression graph), which translates into
direct minimisation of the cutsize (congestion) and
wire-length and indirect minimisation of timing. When
inactive cores are reused, our algorithms look for finding the
maximum matching between the inactive cores and those,
which have to be placed. Core and connectivity reuse can be
as much as 74% and 36%, respectively.

Current and future work focuses on developing a direct
delay minimisation integrated into the presented algorithms,
which should be in the form of either net-based (slack) or
path-based (k-most critical paths).

Acknowledgement

Pasquale Foggia, of the Federico II University of Naples,
provided timely clarifications about the MCS algorithm
used in Section 3.

This work was supported in part by the Office of the
Vice President for Research and Dean of the Graduate
School of the University of Minnesota, under grant number
1546-522-5980.

References
Bazargan, K., Ogrenci, S. and Sarrafzadeh, M. (2001) ‘Integrating

scheduling and physical design into coherent compilation
cycle for reconfigurable computing architectures’,
Proc. ACM/IEEE DAC, pp.635–640.

Brebner, G. (1997) ‘The swappable logic unit: a paradigm for virtual
hardware’, Proc. Int. Symposium on Field-Programmable
Custom Computing Machines (FCCM), pp.72–81.

Callahan, T.J., Chong, P., DeHon, A. and Wawrzynek, J. (1998)
‘Fast module mapping and placement for datapaths in
FPGAs’, Proc. FPGA, pp.123–132.

Chehida, K.B. and Auguin, M. (2002) ‘HW/SW partitioning
approach for reconfigurable systems design’, Proc. Int. Conf.
on Compilers, Architectures, and Synthesis for Embedded
Systems (CASES), pp.247–251.

Cheng, S-W. and Cheng, K-H. (2001) ‘ENISLE: an intuitive
heuristic nearly optimal solution for mincut and ratio mincut
partitioning’, Proc. Int. Symposium on Circuits and Systems
(ISCAS), pp.167–170.

DeHon, A. and Wawrzynek, J. (1999) ‘Embedded tutorial:
reconfigurable computing: what, why, and implications for
design automation’, Proc. ACM/IEEE DAC, pp.610–615.

Diaz, J., Petit, J. and Serna, M. (2002) ‘A survey of
layout problems’, ACM Computing Surveys, September,
pp.313–356.

Dyer, M., Plessl, C. and Platzner, (2002) ‘Partially reconfigurable
cores for Xilinx Virtex’, Proc. Int. Conf. on
Field-Programmable Logic and Applications (FPL),
pp.292–301.

Foggia, P., Sansone, C. and Vento, M. (2001) ‘An improved
algorithm for matching large graphs’, The 3rd IAPR-TC15
Workshop on Graph-based Representations, Ischia.

Guccione, S., Levi, D. and Sundararajan, P. (1999) ‘JBits: Java
based interface for reconfigurable computing’, Proc. Military
and Aerospace Programmable Logic Devices Int. Conf.
(MAPLD).

Hauck, S. (1998) ‘The roles of FPGAs in reprogrammable systems’,
Proceedings of the IEEE, Vol. 86, No. 4, pp.615–638.

Lee, C., Potkonjak, M. and Mangione-Smith, W.H. (1997)
‘MediaBench: a tool for evaluating and synthesizing
multimedia and communications systems’, Thirtieth Annual
IEEE/ACM International Symposium on Microarchitecture,
pp.330–335.

Li, Y., Callahan, T., Darnell, E., Harr, R., Kurkure, U. and
Stockwood, J. (2000a) ‘Hardware-software co-design of
embedded reconfigurable architectures’, Proc. ACM/IEEE
Design Automation Conf. (DAC), pp.507–512.

94 C. Ababei and K. Bazargan

Li, Z., Compton, K. and Hauck, S. (2000b) ‘Configuration
caching techniques for FPGA’, Proc. Int. Symposium on
Field-Programmable Gate Arrays (FPGA), pp.22–36.

Memik, S.O., Memik, G., Jafari, R. and Kursun, E. (2003) ‘Global
resource sharing for synthesis of control data flow graphs on
FPGAs’, Proc. DAC, pp.604–609.

Mesquita, D., Moraes, F., Palma, J., Moller, L. and Calazans, N.
(2003) ‘Remote and partial reconfiguration of FPGAs: tools
and trends’, Proc. Reconfigurable Architectures Workshop
(RAW), 22–26 April, Nice, France, p.8.

Moreano, N., Araujo, G., Huang, Z. and Malik, S. (2002)
‘Datapath merging and interconnection sharing for
reconfigurable architectures’, Proc. Int. Symposium on System
Synthesis (ISSS), pp.38–43.

Xilinx Inc. (2001) Virtex II FPGA Advance Product Specification,
Available at: http://www.xilinx.com/.

Notes
1Also referred to as reconfigurable functional unit operations
(RFUOPs) in frameworks like those in Brebner (1997) and
Bazargan et al. (2001).

2It is worth mentioning that such architecture would not impair the
achievable performance but would only possibly require larger
areas, as experiments reported in Callahan et al. (1998) showed.

3One can also talk about static configuration – the whole RPU area
has to be reconfigured during each reconfiguration or full
dynamic reconfiguration – more configurations are stored in the
FPGA or in a cache onchip memory and they are switched during
execution as response to requests (Li et al., 2000b). In this work,
our focus is however on partial dynamic reconfiguration only.

4In this work, a kernel is a preorder binary expression (i.e., a tree
graph) or a general directed graph.

5Note that an extra node – PO pad – was inserted. This is done for
every tree with the purpose of connects the root to the I/O
memories and for wire-length computations.

6Delay is also affected by the linear ordering. The linear ordering
has to ensure a ‘straight’ (from left to right or right to left) rather
than a ‘back-and-forth’ critical path in order to achieve delay

minimisation. This is true irrespective of the fixed locations of the
PIs and POs. However, blockages can have a certain impact
(depending on the delay–distance relationship – captured in the
look-up table in our case) on the overall delay as well as when the
final placement will be obtained by flushing all cells to the right
or to the left.

7This is a control parameter that allows the user to tune the
algorithm.

8All tree and general graphs together with the C++ implementation
of all algorithms presented in this work are available for
download at http://www.ece.umn.edu/users/ababei/.

9There is no prior work on non-contiguous linear placement to
which we can compare our results. The only work somewhat
similar to our work is Callahan et al. (1998). However, the
placement algorithm in Callahan et al. (1998) solves the problem
of static linear placement, which is different from the
non-contiguous linear placement problem tackled in this work.
Additionally, wire-length is not considered in Callahan et al.
(1998).

Websites
http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html.
http://www-3.ibm.com/chips/products/asics/products/cores/

efpga.html.
http://www.xilinx.com/products/tables/fpga.htm#v2p.
http://www.research.philips.com/InformationCenter/Global/

FArticleSummary.asp?lNodeId=93 1#ambintel.
http://research.microsoft.com/easyliving/.
http://architecture.mit.edu/house_n/.
http://www.awarehome.gatech.edu/.
http://www.qstech.com/tech_products.htm.
http://www.picochip.com/.
http://www.xilinx.com/apps/epld.htm#CoolRunner.
http://www.xilinx.com/publications/products/sp2e/wp_pdf/

wp153.pdf.
http://www.ece.umn.edu/users/ababei/.

