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Efficient Network Reconfiguration using Minimum
Cost Maximum Flow based Branch Exchanges and
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Abstract—The efficiency of network reconfiguration depends distribution automation (DA) functions and system levelke
on both the efficiency of the loss estimation technique and the ghead capabilities.
efficiency of the reconfiguration approach itself. We propose o thare are two fundamental challenges in the problem of
novel algorithmic techniques for speeding-up the computational fi . f radial distributi The firstleh
runtime of both problems. First, we propose an efficient heuris- recon |gurat|on Ol radia 'St”_ Ut'on_ systems. e firsale .
tic algorithm to solve the distribution network reconfiguration lenge is related to the combinatorial nature of the solution
problem for loss reduction. We formulate the problem of finding space: closing tie and opening sectionalizing switchefdyie
incremental branch exchanges as a minimum cost maximum flow a very large number of network topologies that need to
problem. This approach finds the best set of concurrent branch be analyzed while seeking the optimal configuration. The

exchanges yielding larger loss reduction with fewer iterations, d chall is that th luati f h fi .
hence significantly reducing the computational runtime. Second, S€¢Ond challenge Is that the evaluation of each configuratio

we propose an efficient random walks based technique for the requires the estimation of losses. Therefore, the effigiaric
loss estimation in radial distribution systems. The novelty of the network reconfiguration depends on both the efficiency of

this approach lies in its property of localizing the computation. the |oss estimation technique (which has to be used multiple
Therefore, bus voltage magnitude updates can be calculated jmas iy order to evaluate loss reductions) and the effigienc
in much shorter computational runtimes in scenarios where . . .
the distribution system undergoes isolated topological changes,Of the ref:onflgu.ratlon.approach itself. Both these tasks are
such as in the case of network reconfiguration. Experiments on computationally intensive and thus considerable reseaash
distribution systems with sizes of up to 10476 buses demonstratebeen devoted in developing efficient algorithms [4].
that the proposed techniques can achieve computational runtinge In this paper, our goal is to address these problems by
shorter with up to 7.78x’and with similar or better loss reduction proposing a novel minimum cost maximum flow based re-
compared to the Baran’s reconfiguration technique [1]. . . .
configuration algorithm and a novel random walks based loss

_Index Terms—Computation time. Losses. Networks. Power estimation technique. We applied the proposed reconfigurat
distribution control. and loss estimation algorithms to systems with sizes of up to
10476 buses and achieved speed-ups of up tox7ctBnpared
to the Baran’s reconfiguration technique [1]. Preliminagy r

ETWORK reconfiguration of power distribution systemsults on the proposed reconfiguration method were reported

is defined as the change in the network structure s @ conference paper [5]. In this paper, we additionally
a result of closing tie and opening sectionalizing switcheBropose the random walks based loss estimation technique,
It has been identified as a primary mechanism that hasc@mbine the proposed algorithms to achieve further speed-u
direct impact on reliability, efficient service restoratiand and provide details of our implementations.
maintenance of optimal operating conditions. For example, The paper is organized as follows. Section Il presents
Consolidated Edison, the distribution utility of the City oprevious work related to network reconfiguration and loss
New York, has proposed a third generation (G3) distributiotstimation techniques. Section Ill describes the proposied
network whose features include flexible reconfiguratiopesu imum cost maximum flow based reconfiguration algorithm.
fast simulators, advanced visualization tools, and adaptiSection IV describes the proposed random walks based loss
response systems [2]. Such features are indispensableestimation technique. Section V presents experimentaltees
fulfilling the vision of a self healing grid that can automatFinally, this paper concludes with a summary in Section VI.
ically respond to disturbances while continuously optimiz
the overall performance. Electric Power Research Institut
(EPRI)'s own endeavors to devel@FSM (Distribution Fast ~ The network reconfiguration problem has been the subject
Simulation and Modeling) [3] confirm the importance an@f extensive previous research. Most of the previous work
need to de\/e|op a Super-fagt Computa[iona| p|atform that cgéan be divided into three main categories: evolutionary and

provide in real time information necessary to facilitateesal knowledge based techniques [6]-[10], heuristics [1],{l1H],
and mixed methods [16],[17]. Even though evolutionary and
This work was supported by the Department of Electrical ancn@der knowledge based techniques can handle broader objectives,
Engineering at North Dakota State University (NDSU). _they suffer from very long computational runtimes and there
C. Ababei and R. Kavasseri are with the Department of Elettric | itable f line distributi igvbrid
and Computer Engineering, NDSU, Fargo ND, 58108, USA (e-mailO'€ are less suitable for online distribution automatidybri

cristinel.ababei@ndsu.edu; rajesh.kavaseri@ndsu.edu) reconfiguration approaches are mixed solutions that cambin

I. INTRODUCTION

II. RELATED WORK
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evolutionary and heuristic techniques in order to shorten tAlgorithm 1: MCMF based reconfiguration algorithm
computational runtime without sacrificing solution quglit | 1: Reconfiguration()
Even though their runtimes are generally shorter than of: Input: Distribution system, initial configuration, tie and sectjon-
evolutionary techniques, they are still computationally- d alizing switches, threshold

. ! 7 O . 3: Output: Final configuration
manding compared to heuristics. Heuristic algorithms haVe. jier — 0: loss_reduction — oo
been proven to offer excellent results with significantigrér | 5: while loss_reduction > € do
runtimes. Thus, they are among the best candidates for rg@l  iter «— iter +1
time distribution system reconfiguration for loss mininiiaa | ”- Step 1:

[18],[19]. For instance, Civanlar et al. [11] proposed angf Sl‘e(i)ssfsumammemn'queo

efficient reconfiguration algqrithm based on the concept g§- - Construct flow network graph

branch exchange. The algorithm was later improved by Baran - Solve MCMF problem

and Wu [1], who also proposed an algebraic expression x& - MCMF sol. indicates set of branch exchanges

estimate loss reduction due to branch exchanges. 13: - Perform set of concurrent branch exchanges
14: - Computeloss_reduction

Calculation of losses can be done if the power flow solUtig]L. o while
(PFS) is already available. However, the PFS calculatssifit
is a very computationally intensive task and has also been thy. 1. Pseudocode of the proposed network-flow based regoafion.
subject of extensive previous research. Due to its nonlingZpeed-up is achieved due to fewer iterations thanks to th&K@odeling
nature, numerical methods have been employed to Obtgmi due to the efficient random walks based loss estimatidmitgae.

solutions with an acceptable tolerance. Most previous work associated with switch 26 can be implemented by closing

PFS techniques can be classified into Newton-Raphson basgfl ., 26 and opening either switch 21 (load is transferred
[20], compensation based [21], and forward/backward sWegB, teeder, to feederF,) or switch 6 (load is transferred
based methods [22],[23]. The forward/backward sweep ba: F to Fy)

method is simpler to implement and is more computationally In order to increase the amount of loss reduction during
efficient for solving radial systems. Such advantages may ho

. one iteration of the reconfiguration algorithm, one cancele
ever disappear, compared to Newton-Raphson based meth Rlose two or more tie switches simultaneously. However,

for heav_y loaded systems and when voltage control deviees il order for the loss reduction estimates to remain accurate
present in the system [24]. The forward/backward sweepdaa§R se multiple branch exchanges have tortapendentTwo

can gfficiently estimate bus voltagg magnitudes and real nch exchanges are independent if they are betweenediffer
reactive power values. Therefore, it can be used to cak;ul%eders_ For example, in Fig. 2, the branch exchange between

p205vver Lossdes.tlt dhtashbezln usetd f<|)r VOIt?ge ;tg\bility armly?éedersFl,& via the tie switch 26 is independent from the
[25] and adapted to handle mutual coupling [26]. branch exchange between feed&ssF; via the tie switch 24.

. MINIMUM COSTMAXIMUM FLOW BASED The key idea of our reconfiguration algorithm lies in the way
RECONFIGURATION we find the set of concurrent first-order branch exchanges. We
A. New Reconfiguration Algorithm do that by formulating this problem as a minimum cost max-

. . . . _._imum flow problemThis formulation includes the following
The proposed network reconfiguration algorithm is an |te£

. M . L2 teps, as described below:
ative heuristic algorithm. Its pseudocode description ris- p )
sented in Fig. 1. Each iteration of the algorithm has two 1) Construction thélow network grapht:(V, A).
steps: (i) In the first step, losses are estimated using the 2) Solve the MCMF problem. o
routine Loss estimationtechnique() For this, we use the 3) Perform .the set of branch exchanges as indicated by
DistFlow loss estimation technique studied in [22], which has the solution of the MCMF problem.
been proven to be very efficient. (i) In the second step, wel) Construction the Flow Network GrapiThe construction
search for incremental network changes that lead to lage |@f the flow network graptG(V, A), whereV and A are the
reductions. The novelty of our approach lies in the enhanced
branch exchange technique employed for this search. Using
a minimum cost maximum flow (MCMF) based modeling
approach, we find sets afultiple branch exchangetkat are
implemented concurrently.

26 Bus 20
Yoo21 20 19 18 17 F4
IR X0 BT TN B

B. Minimum Cost Maximum Flow Based Multiple Concurrent 2 23! 27 6 25!
Branch Exchanges b o |

. . . . . F2 Ly e F3

During each iteration of the proposed reconfiguration al- 7 a8 9o jo g1y 24 14] 13y 12
gorithm we search for multiple first-order branch exchanges 7 8 9 10 11 LA N A
that cumulatively offer a larger loss reduction compared to | Bus
conventional single branch exchange based methods [1],[14 - ?_e‘?“"f}fl]lfmg switch
fffffff 1€ switc

A first-order branch exchange is achieved by closing a tie

switch and opening the closest sectionalizing switch. Fefy. 2. Balanced one line diagram of an example distributietwork with
example, in Fig. 2, the two first-order branch exchangéar feeders. For simplicity, the loads P, Q are not represknt
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. . Source Donor Switch Acceptor Sink
sets of nodes and arcs, is crucial to the correctness of the ™ foeder nodes foeder ]

proposed technique. In order to easier describe this stefsae nodes ‘ nodes
the example in Fig. 2. The flow network graph is constructed ‘ ! !
using the followinggraph construction ruleqthe result of
the application of these rules to the example from Fig. 2 is
presented in Fig. 3):

o The graph contains sources node and aink¢ node.

« The graph containslonor feeder acceptor feederand
switchnodes. There can be up 2¢ donor and acceptor
feeder nodes anfl switch nodes, wheré’ is the number
of feeders in the system anfl is the number of tie
switches. A donor feeder node is associated with a feeder
tree, which will transfer load (i.e., donate) to anothefig. 3. Illustration of the flow network graph. Each arc ihis tagged
feeder tree, associated with an acceptor node. A switehth a (flow upper bound, cospair. The solution of the MCMF problem is
node S,,, represents the closing of tie switch and H'e%g't'i%?]t%? t‘:]sé”gr;g'g‘;gé "’,‘\;ICCSM,A: f)'g;'g gl‘g‘grﬂﬁm’.ork Is aweh during each
opening of sectionalizing switch.

« A pair of arcs from a donor feeder nodé to an acceptor
feeder nodd’; via a switch node,, ,, is created only if a

(demand) associated with nodec V. In our formulation,
b(7) is set only for the source and sink nodes. It is set to
load transferfrom feederF; to feederr; leads to a loss the minimum between the number of outgoing arcs from the

reduction. The loss reduction value is used to Compué%urce node and the number of incoming arcs into the sink

the arc costassigned to the first arc of the pair. Becausg e For instance, in the flow network graph from Fig. 3,

we seek branch exchanges that lead to the largest I%%Ss) — 2 and b(t) = —2, which capture the fact that only
$Wo branch exchanges will be part of the solution. We solve

irr??rl:gtgrrz;‘pﬁ”hzue;?{gvsv z?):)zrab?usr: doz)fzim':g‘pgxilm%rﬁgﬁis MCMF problem using an efficient implementation of the
- . : . caling push-relabel algorithm studied in [28].
in Fig. 3, the pair of arcs between feedéfsand F; via gp g [28]

S22,2 represents a branch exchange. The loss re_ductions) Perform Concurrent Branch Exchange§he solution
that would be achieved by th_|s branch exchange is us8fjthe MCMF problem practically dictates all the concurrent
to compute the cost of 9 assigned to Qrg, S22,2). branch exchanges that we select to be implemented during
* lf. a par of arcs is create_d between feedéfsand I the current iteration. In other words, the flows in the networ
via switch 5, ,, then a par of arc.s.betvveeﬁi gnd Fi flow graph found by the MCMF solution represent the load
through tth‘ same switch IS prohlblted. That IS becauﬁ%nsfer between feeders, via the corresponding switdbag a
IOSS. reduc_tlon can be achieved in only one direction kﬂﬁe paths of the flows. For example, the solution of the prable
closing a tie switch. in Fig. 3 is highlighted by using thicker lines that indicaten-

« If there are more possible branch exchanges between.txmrent load transfers between feedéis— F, and feeders

feederst; and Fj, only the one that leads to the maxi-p. . F,, which lead to maximum loss reduction. At the end

mum I?ss _redFu_ctlozn IS use?hln thﬁ ?hraph con?tructlon._lgf the current iteration, the power system is reconfigured by
exampie, In 9. 2, even though there areé tWo pOSSIBig,qing switches 26, 24 and opening switches 15, 6. This new

branch exchanges between feedéﬁng.via ;witches configuration represents the starting configuration in téet n
22 and 23, only the branch exchange via switch 22 (d'%ration

to its larger loss reduction) is included during the grap
construction from Fig. 3. IV. RANDOM WALKS BASED LOSSESTIMATION FOR

2) Solve the MCMF problemAfter the flow network graph _ FURTHER RECONFIGURATION SPEED UP
is constructed using the procedure described in the prsviou In t_h'S section, we propose a noyel rgndpm walks based
section, the minimum cost maximum flow problem can b€chnique for voltage magnitudes estimation in order t@dpe

formally written, using the terminology from [27], as folls: UP the DistFlow loss estimation and therefore the reconfig-
uration algorithm. The parallel between random walks and

Minimize Z CijTij (1) resistive networks was proposed by [29]. It is a statistical
(i,5)€A method that interprets similarly conductances and prdibabi
Subject to Z Tij — Z 2 =b(i) VieV ties. This idea was applied to t_he analysis Qf VLSI circuits
SGeA jGeA [30]. In what follows we adapt it for the estimation of bus
i € {0,1} (i, j) € A voltage magnitudes in radial distribution systems.

where z,, is the flow through ardi, j) € A and can be 0 A. Random Walks Based Bus Voltage Magnitude Estimation

or 1 because all arcs have unit capacity andis the cost Based on the discussion on the parallel between radial net-

associated with each arc. Variabhéi) is the flowt supply Works and random walks presented in Appendix A, we propose
to use the random walks technique for the computation of the

INot to be confused with the concept of power flow. bus voltage magnitudes. Because tiematrix is symmetric
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2021 22 @ Home node
QO Motel node
© Node to update

and diagonally dominant, one can construct a random walks
problem whose solution represents the solution of equation
(4). Normally, because the summation of the coefficient8 pf 14 15 16 17 18
from equation (4) can become greater than 1 (even though tiveder
absolute value of each of these coefficients is smaller than 1
one has to use scaling factors for the probabilities in eqoat 24725

(5) during the construction of the random walks problem [32] G
For a detailed discussion of the scaling factors, the re&der
referred to [32]. To avoid possible numerical instabilityecto
scaling factors with absolute values greater than one, tise b

26 27 28 29 30 31 32 33

voltage magnitudesH;,) are estimated by: Feeder
j . First order neighborhoods
‘Ek|/ ~ Z |YJ7]¢‘ |EJ| + 7|Ik| (2) Secondorj;:r Z;:;;::;foasj .
(k,j)€Ad] Z Yjkl Z Y] ()

(k,5)€ Adj (k.j)€Adj
. Fig. 4. (a) Two examples of random walks performed for the ndlefZzhe
In other words, based on the parallel between equatiofps system. First RW with length 17: 22, 21, 20, 21, 20, 2118, 2, 3,
(2) and (5) we construct and then solve the random walks3, 2, 19, 20, 19, 2, 1. Second RW with length 7: 22, 21, 20,209,19,

problem as described in the previous section. The solution® 1 (b) lllustration of the partial RW based update of vgpétanagnitudes of
the nodes directly affected by topology changes.

the random walks problem will give the voltage magnitudes

for all buses of the system. =

The difference between the voltage magnitudes computeggi“ 400 | ‘ ' r 0.6
using this technique and DistFlow is negligible (it does noE 3, r 05 El
affect the quality of the reconfiguration as observed thhoug%0 250 - - 04>
experimental results later on) and will always be boundeg 200 - 03 E
because the expression in equation (2) is smaller than gherupa 150 1 L 02 B
bound: j%)n 1(5)8 : +Average RW length - 0.1 ?}

) 14 —8—CPU runtime
UB = Z AWJ'H% ) < 1 4 8 | 14 | 17 ’
(k,yeAdj | Z Yirl | Z ikl Node depth
(k,j)EAd) (k,j)EA]

Once the bus voltage magnitudes are computed using flig 5. Variation of the average length (as number of stepsy cdndom
proposed RW based technique, the real and reactive powgél;rise;fgjr”;tl"igs?;gisgefg;he system from Fig. 4.a. Thisation was
values are computed using a single forward pass similareto th
DistFlow method. Being just one pass, this step is also veapd second order of the nodes directly affected by topology
efficient. Then, power losses can be immediately calculatedanges. The rest of the nodes are treated as home nodes,
using the voltage and power values. Hence, our approaghose number is therefore increased. The voltage magsitude
can be seen as laybrid technique, which computes voltagef these additional home nodes (from outside the updated
magnitudes using random walks and power values using omeighborhoods) are available from the previous iterations
forward pass of DistFlow The approach in which we exploit this distinct property
B. Computational Runtime Discussion of Iocalizing the computatioof random walks is referred_to

' as thepartial RW based techniquén summary, the partial

The computational runtime of the proposed RW base@ly based technique for loss estimation is a hybrid approach
technique depends on (i) the length (hitting time) of thekwal with two steps: (1) Use random walks to compute locally
which in turn depends on thiepttt from home nodes and (ii) voltage magnitudes for nodes within first and second order
the number of nodes to update. neighborhoods of the nodes that are directly affected bglloc

The CPU runtime of a random walk is directly proportionahetwork topology changes. Because these random walks per-
to the length of the walk. This can be seen in Fig. 5, where Wgym |ocalized computations, the runtime compared to tise ca
plot the variation of the average length of the random wadk (f of running a full DistFlow for all nodes will be significantly
a Single nOde) and its CPU runtime as a function of depth Th‘@duced_ (2) Use one forward pass Of D|StFIOW to Compute
variation was observed for all tested SyStemS for a Variéty Qctive and reactive power values. Then, power losses can be

nodes located at different depths. Therefore, one caneshorfmmediately calculated using the voltage and power values.
the CPU runtime by increasing the number of home nodes

(Fig. 4.b). This will decrease the depth of nodes and shorten V. EXPERIMENTAL RESULTS
the hitting times of random walks. In our implementation, The proposed algorithms were implemented in C++ and
we do that by processing only neighboring nodes of firgimulations were performed on a Linux machine running on
) _ , _ a 2.8 GHz Intel Quad processor with 2 GB memory.
The depth of a node is defined as the distance from the closese h

node. For example, the depth of node 22 is five in the system desqm ~ 11'€ €xperimental setup is shown in Fig. 6. In this setup,
Fig. 4.a. we run four different experiments: (1) In the first experimen
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Experiment 1 § 14 -
Baran's reconfig. : 12 4
DistFlow loss estimation 210 -
Experiment 2 é 8 1
MCMF reconfig. B Z : ‘
P DistFlow loss estimation F— g 5 ] —e—Baran's reconfig
configuration Experiment 3 configuration % 0 _‘._MC‘MF b‘ased e conf1‘g
B il 2 1 2 3 4 5 6 7 8 9 10 11

RW based loss estimation Tteration

Experiment 4

MCMF reconfig.
RW based loss estimation

Fig. 7. Accumulated percentage of loss reduction achievegliterations
of the proposed algorithm and of Baran's reconfiguratiorodtlgm for the
first testcase distribution systebus 83.

Fig. 6. Block diagram of the experimental setup.

significantly fewer iterationsThis is because the MCMF

which represents the reference for our comparisons, we rgpfution ideptifie; multiple _branc;h exchanggs that yiehgéa

the traditional Baran’s reconfiguration method [1]. In this, loss reductions in each iteration, wh|ch_ in turn leads to
the traditional DistFlow technique is used for loss estiorat. [@Ster convergenceAs the testcase size increases, the pro-
(2) In the second experiment, we run the proposed MCNH__OSE_:(_J reconflgu_ratlon algorithm improves the solution igyal
based reconfiguration algorithm. The traditional DistFlw Significantly. This can be explained by the fact that the
again used as the loss estimation technique. Hence, in MEMF solutlon. is able to |der_1t|fy the be.st concurrent branch
experiment, we will quantify the speed-up of the propose‘?ﬁ‘Changes during each |terat|on, especially when Fhe numbe
MCMF based reconfiguration versus the Baran's reconfigl POSSible branch exchanges increases. The runtime of both
uration method from the first experiment. (3) In the third€configuration algorithms is governed by the number of sime
experiment, we use the traditional Baran's reconfiguratigd® POwer flow is executed. Because the proposed algorithm
method as a testbed to test the proposed partial RW bag%r@wma_tes_ In much fe_wer iterations, the runtime savings be
loss estimation technique. In this experiment, we will difgn come significant, Ieadmg to ar_1 average. of>2.§pe(_aq-up.

the speed-up that can be achieved by using the proposed Rwhe Proposed reconfiguration algorithm additionally re-
based loss estimation technique versus the traditionaFig  duires the runtime responsible for constructing and sgivin
approach from the first experiment. (4) Finally, in the fourtth®€ MCMF problem. This additional runtime (included in
experiment, we run the proposed MCMF based reconfiguratifl results reported in Table 1) is negligible for all testes,
combined with the proposed partial RW based loss estimatiBaPecially because the size of the network-flow graph islsmal
technique. In this experiment, we expect to achieve thetrg 1hat is, the MCMF problem size (as number of nodes of the

speed-up compared to the first experiment. network-flow graph) is bound bgF + S, where F' is the
number of feeders anfl is the number of tie switches in the

A. MCMF Based Reconfiguration versus Baran's Reconfiggystem.
ration 1) Discussion:In order to better illustrate the behavior of
In this section, we compare the results from the secotite proposed algorithm, we plot in Fig. 7 tlecumulated
experiment versus the results from the first experiment. \[dercentage of loss reduction achieved during each iteratio
report the loss reduction achieved with the proposed MCMhRe reconfiguration algorithms for the first testcéss 83. It
based reconfiguration algorithm versus the traditionabBar can be seen that, for example, the proposed MCMF based re-
method on the distribution systems presented in Table |. Thenfiguration algorithm reduces losses witB5% and3.35%
first power system testcase is from [6], the next two tesgcasduring the first and second iterations, out of a total 286%
are from [7], and the last two testcases are constructed uséturing a total of five iterations. The same amount of loss
data from the cited testcases. reduction is achieved only after five iterations using B&ran
As shown in Table I, the solution achieved using theeconfiguration method, out of a total of eleven iterations.
proposed MCMF based algorithm is similar to that achievdd other words, the proposed MCMF based reconfiguration
using the Baran’s method (i.e., with similar losses), buhwi algorithm achieves the bulk majority of loss reduction imyve

TABLE |
PROPOSEDMCMF BASED RECONFIGURATION VERSUBARAN’S RECONFIGURATION
Characteristics Baran’s reconfiguration [1] Proposed MCMF reconfiguration ~ Speed-up
Num. Num.  Num. Loss Iter. CPU Loss Iter. CPU

Testcase feeders  buses ties red. [%] Num. runtime [ms] red%] Num. runtime [ms]
bus 83 11 83 13 12.36 11 3.05 12.36 5 1.65 1.85
bus 135 8 135 21 13.54 17 4.4 13.54 11 2.2 2.0
bus 201 3 201 15 6.74 22 5.73 6.74 13 2.75 2.08
bus 873 7 873 27 69.09 104 85.6 69.09 29 21.9 3.91
bus 10476 84 10476 260 37.22 274 2207 47.44 43 472 4.68

Avg: 2.9%x
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TABLE Il
NUMBER OF ITERATIONS REQUIRED TO ACHIEVE AT LEAST95% OF THE
TOTAL LOSS REDUCTION

Baran'’s reconfig. Proposed MCMF reconfig.

based loss estimation technique is compared against tlie Dis
Flow technique in the context of Baran'’s reconfiguration. We
use Baran’s reconfiguration for loss reduction as a testbenc
to illustrate the efficiency benefits of the proposed RW based

Fraction of Iter. Fraction of Iter. . . .
total loss Num. total loss Num. loss estimation technique.
Testcase _reduction [%] reduction [%] The results are shown in Table IV. As it can be seen in
bus 83 99 5 98 2 the second and third columns, the overall computational run
bus 135 96 11 95 6 . , X : . e
bus 201 95 14 97 8 time of the Baran’s reconfiguration algorithm is S|gn|ﬂd§1nt
bus 873 95 49 95 23 reduced for each testcase when the proposed partial RW based
bus 10476 95 154 95 21 loss estimation technique is used instead of the traditiona
TABLE I DistFlow technique. The RW based technique helps speeding
QUALITATIVE COMPARISON OF CPURUNTIMES. up the reconfiguration algorithm by 2.98n average. We also
report, in the last two columns of Table 1V, tifiraction of the
Reconfiguration CPU Syst. size Processor,  overall reconfiguration algorithm runtime taken by the loss
‘;pp'oacz e '“m(')";‘zz[j] Num. ;’(‘J’i‘es 2Nelzegary| — estimation calculations. It can be observed that this ifsads
ropose . . z Inte P
0.0219 873 Ouad, 2 ge  Significantly reduced.
0.472 10476 ) .
Baran’s [1] 0.0057 201 28 GHz Intel C. MCMF Based Reconfiguration and Random Walks based
%02%576 1826 Quad, 2GB | 555 Estimation versus Baran's Reconfiguration and DistFlo
Tabu search [7] 46 135 2.4 GHz AMD Loss Estimation
49 202 Athlon, 512 MB Finall h Its f he fourth . ;
Multi-tier heuristic [12] 60 309 200 MHz inally, we compare the results from the fourth experimen
Pentium, 32 MB  versus the results from the first experiment. The results are
Ant colony [6] 241 96 NA shown in Table V. As expected, the combination of the pro-
Genetic algorithm [6] 303 96 NA . . . .
Simulated annealing [6] 257 96 NA posed MCMF reconfiguration and RW based loss estimation
Sensitivity heuristic [13] 9.73 258 NA algorithms leads to shorter CPU runtimes compared to the

_ _ o . results from the first three experimental setups. Howevhas

few iterations. Table 1l reports th_e number of fl_rst iteraio ¢4 phe noted that when compared to the results from the third
requm_ed by each of the two r_econflguratlon _algorlthms ireord experiment (see Table 1V), the speed-up is significantlyebet
to achieve at Iea$15%.of the. final Ios; reductlo_n. For example,omy for the larger testcases. In other words, for the smalle
the proposed reconfiguration algorithm achie9e$o of the tegicases, the reconfiguration approach based on the mbin
total loss reduction ofl2.36 during the first two iterations tjon of MCMF based reconfiguration and random walks based
while the Baran's method needs five iterations to achieygss estimation achieves a speed-up similar to that acthieye
99% of the same total oft2.36 loss reduction for the first {6 combination of Baran’s reconfiguration and random walks
distribution systenbus 83. _ _based loss estimation. This can be explained as follows. The

The solution quality achieved using the proposed algorithfjcimr based reconfiguration has the CPU runtime overhead
is similar or better than that achieved using the traditiong,,+ is spent on the construction and solving of the MCMF
Baran’s method and with significantly fewer iterations. dt iproblem. This overhead becomes comparable with the CPU
important to note that even a small percentage reduction jfhtime saving that is obtained due to the decrease of the
losses can translate into substantial cost savings. FONERA 45| number of iterations when the Baran’s reconfiguration
a 0.5% (from 3.5% to 3.0%) reduction in losses equates r@placed with the MCMF based reconfiguration.
savings of $50 million per year for the state of Californid [2  These results indicate that, first, when the loss estimation
_ Inorder to compare the runtime of the proposed reconfiguigchnique accounts for a significant fraction of the recanmig
tion algprlthm with other previous approaches, we I|.st ibléa tign algorithm (see Table 1), reducing the number of itenagi
Il previously reported results and the corresponding&yst of the reconfiguration algorithm has a significant impact on
sizes in terms of the number of buses. The CPU runtime jfle overall CPU runtime across the board, irrespective ef th
Table Il indicate that the proposed algorithm is scalale.  sjze of the distribution system. Second, reducing the CPU
attempt only aqualitative comparison, because the runtimesntime of the loss estimation technique alone leads totgrea
reported in this paper and in previous work depend on t@eed-ups compared to when the reconfiguration approach
differences in processor speeds, memory used, and algoritfiself is improved (compare Table IV versus Table 1). Figall
implementation. Moreover, computational runtimes havé n@ombining the MCMF based reconfiguration and the random
been reported in many of the previously published pap&fgiks based loss estimation technique achieves the greates
and alg_orlthm implementations are not publicly availalde fspeed-up (compare Table V versus Table I), which is even
comparison purposes. more significant for large systems.

B. Random Walks Based Loss Estimation versus DistFlow VI. CONCLUSION

Loss Estimation In this paper, we proposed a novel and efficient iterative

Here, we compare the results from the third experimeheuristic algorithm for solving the network reconfiguratio
versus the results from the first experiment. The proposed RMbblem for loss reduction. We also proposed a novel and
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TABLE IV
RECONFIGURATION RESULTS WHEN THE LOSS ESTIMATIONS ARE DONESING DISTFLOW OR THE PROPOSED PARTIAIRW BASED TECHNIQUE
Baran’s reconfiguration Loss estimation
CPU runtime [ms] CPU runtime fraction [%]
Testcase DistFlow Partial RW Speed-up DistFlow Partial RW Faction
loss estimation  loss estimation loss estimation  loss estition  reduction [%]
bus 83 3.05 1.06 2.88 82.38 56.82 31.02
bus 135 4.4 19 2.32 76.85 47.87 37.7
bus 201 5.73 2.87 2.0 75.81 49.04 35.31
bus 873 85.6 23.04 3.72 83.35 43.32 48.02
bus 10476 2207 549 4.02 85.2 19.86 76.69
Avg: 2.98 x
TABLE V
MCMF BASED RECONFIGURATION ANDRW BASED LOSS ESTIMATION VERSUSBARAN'S RECONFIGURATION ANDDISTFLOW LOSS ESTIMATION.
Baran’s reconfiguration and Proposed MCMF reconfiguration and Speed-up
DistFlow loss estimation proposed RW based loss estimation
Testcase Loss red. [%] CPU runtime [ms] Loss red. [%)] CPU runtme [ms]
bus 83 12.36 3.05 12.36 1.03 2.96
bus 135 13.54 4.4 13.54 1.9 2.32
bus 201 6.74 5.73 6.74 2.28 2.51
bus 873 69.09 85.6 69.09 11 7.78
bus 10476 37.22 2207 47.44 350 6.31
Avg: 4.38%

efficient random walks based technique for estimating tmeotelotherwise. The random walk starts by traversing one of
power losses. The proposed algorithms can shorten the tiee adjacent arcs of node with probability p,; (associated
configuration CPU runtime by up to 7.%8with similar or with the arcs of the network graph from Fig. 8.b) and then
better loss reduction compared to the Baran’s reconfiguraticontinues until ahomenode is reached. During the walk, at
and DistFlow algorithms. Therefore, they can be used tosvarevery motel node a priceu, (corresponding to the voltage
building faster reconfiguration tools for distribution aota- magnitude at node k) is paid and a rewatg (corresponding
tion. The implementation of the proposed algorithms togethto the voltage of 1 p.u. at the root node) is earned at the home
with the distribution systems studied in this paper areiplbl node. The expected amount of earnings denotefl &sat the

available for download at [33]. end of the walk can be proved to be given by [30]:
APPENDIXA FRy=" > pinf(i) —ma (5)
THE PARALLEL BETWEEN THERADIAL NETWORK AND (k,j)EAdj

RANDOM WALKS In order to find f at every node, one has to solve a system

In this section, we discuss the parallel between a radigd N — 1 such equations. The key idea of this paper lies in
network and random walks, which represents the basis of i@ parallel that can be drawn by comparing equations (4)
proposed loss estimation technique. Without loss of geneind (5). That is, the coefficients @) can be interpreted as
ality, we illustrate the proposed technique using a bahncgrobabilitieSpjk ~ % and f(k) ~ Ejx. For a sufficiently
distribution system whose one line diagram is presented |rge number of random walks started from négléhe average
Fig. 8.a. The feeder voltage is assumed to be constant, lin@sue of f(k) will converge to the actual value of the voltage
are represented by series impedances, and loads are assumed
constant power sinks located at the end of the lines. Shunt
capacitors are represented as reactive power injections. Feeder

For this radial system, one can compute the bus voltages
E}. using the following expression [31]:

Home

Y; I
Ej=— YL’“EJ- - Y—’“ )
(k,j)€Adj kk kk
where [}, is the current sink that is loading the bés and
by notationYj, = —y, and Yz, = Z Yik, With y;p,
(k,j)€Adj

being the admittance between busnd busk corresponding
to every branchk, j) from the adjacency list of buk. One
has to solve a system @& — 1 such equations in order to find (b)
out voltages for allNV — 1 buses. ] o o

Let us now consider a random walk staring from a motgf, &, (@ O Ine dagram,of an exanple of adel dntmteysir,
nodek on the associatedetwork graphshown in Fig. 8.b. We the rest of the nodes as motel nodes. Nodes in the graph repiasses of
denote a node dwmeif its voltage magnitude is known and aghe system, while arcs are associated with system lines.
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magnitude,f (k) — Ej. Therefore, for a given network one [19]
can construct an equivalent random walks problem whose
solution is also a solution for the bus voltage equations
This result represents the basis of our bus voltage magnitugbo]
estimation technique described in Section IV.A.
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