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Abstract—The efficiency of network reconfiguration depends
on both the efficiency of the loss estimation technique and the
efficiency of the reconfiguration approach itself. We propose two
novel algorithmic techniques for speeding-up the computational
runtime of both problems. First, we propose an efficient heuris-
tic algorithm to solve the distribution network reconfiguration
problem for loss reduction. We formulate the problem of finding
incremental branch exchanges as a minimum cost maximum flow
problem. This approach finds the best set of concurrent branch
exchanges yielding larger loss reduction with fewer iterations,
hence significantly reducing the computational runtime. Second,
we propose an efficient random walks based technique for the
loss estimation in radial distribution systems. The novelty of
this approach lies in its property of localizing the computation.
Therefore, bus voltage magnitude updates can be calculated
in much shorter computational runtimes in scenarios where
the distribution system undergoes isolated topological changes,
such as in the case of network reconfiguration. Experiments on
distribution systems with sizes of up to 10476 buses demonstrate
that the proposed techniques can achieve computational runtimes
shorter with up to 7.78× and with similar or better loss reduction
compared to the Baran’s reconfiguration technique [1].

Index Terms—Computation time. Losses. Networks. Power
distribution control.

I. I NTRODUCTION

NETWORK reconfiguration of power distribution systems
is defined as the change in the network structure as

a result of closing tie and opening sectionalizing switches.
It has been identified as a primary mechanism that has a
direct impact on reliability, efficient service restoration and
maintenance of optimal operating conditions. For example,
Consolidated Edison, the distribution utility of the City of
New York, has proposed a third generation (G3) distribution
network whose features include flexible reconfiguration, super-
fast simulators, advanced visualization tools, and adaptive
response systems [2]. Such features are indispensable in
fulfilling the vision of a self healing grid that can automat-
ically respond to disturbances while continuously optimizing
the overall performance. Electric Power Research Institute
(EPRI)’s own endeavors to developD-FSM (Distribution Fast
Simulation and Modeling) [3] confirm the importance and
need to develop a super-fast computational platform that can
provide in real time information necessary to facilitate several
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distribution automation (DA) functions and system level look-
ahead capabilities.

There are two fundamental challenges in the problem of
reconfiguration of radial distribution systems. The first chal-
lenge is related to the combinatorial nature of the solution
space: closing tie and opening sectionalizing switches yield
a very large number of network topologies that need to
be analyzed while seeking the optimal configuration. The
second challenge is that the evaluation of each configuration
requires the estimation of losses. Therefore, the efficiency of
the network reconfiguration depends on both the efficiency of
the loss estimation technique (which has to be used multiple
times in order to evaluate loss reductions) and the efficiency
of the reconfiguration approach itself. Both these tasks are
computationally intensive and thus considerable researchhas
been devoted in developing efficient algorithms [4].

In this paper, our goal is to address these problems by
proposing a novel minimum cost maximum flow based re-
configuration algorithm and a novel random walks based loss
estimation technique. We applied the proposed reconfiguration
and loss estimation algorithms to systems with sizes of up to
10476 buses and achieved speed-ups of up to 7.78× compared
to the Baran’s reconfiguration technique [1]. Preliminary re-
sults on the proposed reconfiguration method were reported
in a conference paper [5]. In this paper, we additionally
propose the random walks based loss estimation technique,
combine the proposed algorithms to achieve further speed-up,
and provide details of our implementations.

The paper is organized as follows. Section II presents
previous work related to network reconfiguration and loss
estimation techniques. Section III describes the proposedmin-
imum cost maximum flow based reconfiguration algorithm.
Section IV describes the proposed random walks based loss
estimation technique. Section V presents experimental results.
Finally, this paper concludes with a summary in Section VI.

II. RELATED WORK

The network reconfiguration problem has been the subject
of extensive previous research. Most of the previous work
can be divided into three main categories: evolutionary and
knowledge based techniques [6]-[10], heuristics [1],[11]-[15],
and mixed methods [16],[17]. Even though evolutionary and
knowledge based techniques can handle broader objectives,
they suffer from very long computational runtimes and there-
fore are less suitable for online distribution automation.Hybrid
reconfiguration approaches are mixed solutions that combine
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evolutionary and heuristic techniques in order to shorten the
computational runtime without sacrificing solution quality.
Even though their runtimes are generally shorter than of
evolutionary techniques, they are still computationally de-
manding compared to heuristics. Heuristic algorithms have
been proven to offer excellent results with significantly shorter
runtimes. Thus, they are among the best candidates for real
time distribution system reconfiguration for loss minimization
[18],[19]. For instance, Civanlar et al. [11] proposed an
efficient reconfiguration algorithm based on the concept of
branch exchange. The algorithm was later improved by Baran
and Wu [1], who also proposed an algebraic expression to
estimate loss reduction due to branch exchanges.

Calculation of losses can be done if the power flow solution
(PFS) is already available. However, the PFS calculation itself
is a very computationally intensive task and has also been the
subject of extensive previous research. Due to its nonlinear
nature, numerical methods have been employed to obtain
solutions with an acceptable tolerance. Most previous workon
PFS techniques can be classified into Newton-Raphson based
[20], compensation based [21], and forward/backward sweep
based methods [22],[23]. The forward/backward sweep based
method is simpler to implement and is more computationally
efficient for solving radial systems. Such advantages may how-
ever disappear, compared to Newton-Raphson based methods,
for heavy loaded systems and when voltage control devices are
present in the system [24]. The forward/backward sweep based
can efficiently estimate bus voltage magnitudes and real and
reactive power values. Therefore, it can be used to calculate
power losses. It has been used for voltage stability analysis
[25] and adapted to handle mutual coupling [26].

III. M INIMUM COST MAXIMUM FLOW BASED

RECONFIGURATION

A. New Reconfiguration Algorithm

The proposed network reconfiguration algorithm is an iter-
ative heuristic algorithm. Its pseudocode description is pre-
sented in Fig. 1. Each iteration of the algorithm has two
steps: (i) In the first step, losses are estimated using the
routine Loss estimationtechnique(). For this, we use the
DistFlow loss estimation technique studied in [22], which has
been proven to be very efficient. (ii) In the second step, we
search for incremental network changes that lead to large loss
reductions. The novelty of our approach lies in the enhanced
branch exchange technique employed for this search. Using
a minimum cost maximum flow (MCMF) based modeling
approach, we find sets ofmultiple branch exchangesthat are
implemented concurrently.

B. Minimum Cost Maximum Flow Based Multiple Concurrent
Branch Exchanges

During each iteration of the proposed reconfiguration al-
gorithm we search for multiple first-order branch exchanges
that cumulatively offer a larger loss reduction compared to
conventional single branch exchange based methods [1],[14].
A first-order branch exchange is achieved by closing a tie
switch and opening the closest sectionalizing switch. For
example, in Fig. 2, the two first-order branch exchanges

Algorithm 1 : MCMF based reconfiguration algorithm
1: Reconfiguration()
2: Input: Distribution system, initial configuration, tie and section-

alizing switches, threshold (ǫ)
3: Output: Final configuration
4: iter ← 0; loss reduction←∞

5: while loss reduction > ǫ do
6: iter ← iter + 1

7: Step 1:
8: Loss estimationtechnique()
9: Step 2:

10: - Construct flow network graph
11: - Solve MCMF problem
12: - MCMF sol. indicates set of branch exchanges
13: - Perform set of concurrent branch exchanges
14: - Computeloss reduction

15: end while

Fig. 1. Pseudocode of the proposed network-flow based reconfiguration.
Speed-up is achieved due to fewer iterations thanks to the MCMF modeling
and due to the efficient random walks based loss estimation technique.

associated with switch 26 can be implemented by closing
switch 26 and opening either switch 21 (load is transferred
from feederF4 to feederF1) or switch 6 (load is transferred
from F1 to F4).

In order to increase the amount of loss reduction during
one iteration of the reconfiguration algorithm, one can select
to close two or more tie switches simultaneously. However,
in order for the loss reduction estimates to remain accurate,
these multiple branch exchanges have to beindependent. Two
branch exchanges are independent if they are between different
feeders. For example, in Fig. 2, the branch exchange between
feedersF1,F4 via the tie switch 26 is independent from the
branch exchange between feedersF2,F3 via the tie switch 24.

The key idea of our reconfiguration algorithm lies in the way
we find the set of concurrent first-order branch exchanges. We
do that by formulating this problem as a minimum cost max-
imum flow problem. This formulation includes the following
steps, as described below:

1) Construction theflow network graphG(V,A).
2) Solve the MCMF problem.
3) Perform the set of branch exchanges as indicated by

the solution of the MCMF problem.

1) Construction the Flow Network Graph:The construction
of the flow network graphG(V,A), whereV and A are the

Fig. 2. Balanced one line diagram of an example distribution network with
four feeders. For simplicity, the loads P, Q are not represented.
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sets of nodes and arcs, is crucial to the correctness of the
proposed technique. In order to easier describe this step weuse
the example in Fig. 2. The flow network graph is constructed
using the followinggraph construction rules(the result of
the application of these rules to the example from Fig. 2 is
presented in Fig. 3):

• The graph contains asources node and asink t node.
• The graph containsdonor feeder, acceptor feeder, and

switchnodes. There can be up to2F donor and acceptor
feeder nodes andS switch nodes, whereF is the number
of feeders in the system andS is the number of tie
switches. A donor feeder node is associated with a feeder
tree, which will transfer load (i.e., donate) to another
feeder tree, associated with an acceptor node. A switch
node Su,v represents the closing of tie switchu and
opening of sectionalizing switchv.

• A pair of arcs from a donor feeder nodeFi to an acceptor
feeder nodeFj via a switch nodeSu,v is created only if a
load transferfrom feederFi to feederFj leads to a loss
reduction. The loss reduction value is used to compute
the arc costassigned to the first arc of the pair. Because
we seek branch exchanges that lead to the largest loss
reduction, the cost is inversely proportional to the loss
reduction. All other arcs have a cost of zero and all arcs
in the graph have a flow upper bound of 1. For example,
in Fig. 3, the pair of arcs between feedersF1 andF2 via
S22,2 represents a branch exchange. The loss reduction
that would be achieved by this branch exchange is used
to compute the cost of 9 assigned to arc(F1, S22,2).

• If a pair of arcs is created between feedersFi and Fj

via switch Su,v, then a pair of arcs betweenFj and Fi

through the same switch is prohibited. That is because
loss reduction can be achieved in only one direction by
closing a tie switch.

• If there are more possible branch exchanges between two
feedersFi and Fj , only the one that leads to the maxi-
mum loss reduction is used in the graph construction. For
example, in Fig. 2, even though there are two possible
branch exchanges between feedersF1,F2 via switches
22 and 23, only the branch exchange via switch 22 (due
to its larger loss reduction) is included during the graph
construction from Fig. 3.

2) Solve the MCMF problem:After the flow network graph
is constructed using the procedure described in the previous
section, the minimum cost maximum flow problem can be
formally written, using the terminology from [27], as follows:

Minimize
∑

(i,j)∈A

cijxij (1)

Subject to
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = b(i) ∀i ∈ V

xij ∈ {0, 1} ∀(i, j) ∈ A

where xij is the flow through arc(i, j) ∈ A and can be 0
or 1 because all arcs have unit capacity andcij is the cost
associated with each arc. Variableb(i) is the flow1 supply

1Not to be confused with the concept of power flow.

Fig. 3. Illustration of the flow network graph. Each arc inA is tagged
with a (flow upper bound, cost)pair. The solution of the MCMF problem is
highlighted using thicker arcs. A similar flow network is created during each
iteration of the proposed MCMF based algorithm.

(demand) associated with nodei ∈ V . In our formulation,
b(i) is set only for the source and sink nodes. It is set to
the minimum between the number of outgoing arcs from the
source node and the number of incoming arcs into the sink
node. For instance, in the flow network graph from Fig. 3,
b(s) = 2 and b(t) = −2, which capture the fact that only
two branch exchanges will be part of the solution. We solve
this MCMF problem using an efficient implementation of the
scaling push-relabel algorithm studied in [28].

3) Perform Concurrent Branch Exchanges:The solution
of the MCMF problem practically dictates all the concurrent
branch exchanges that we select to be implemented during
the current iteration. In other words, the flows in the network
flow graph found by the MCMF solution represent the load
transfer between feeders, via the corresponding switches along
the paths of the flows. For example, the solution of the problem
in Fig. 3 is highlighted by using thicker lines that indicatecon-
current load transfers between feedersF1 → F4 and feeders
F3 → F2, which lead to maximum loss reduction. At the end
of the current iteration, the power system is reconfigured by
closing switches 26, 24 and opening switches 15, 6. This new
configuration represents the starting configuration in the next
iteration.

IV. RANDOM WALKS BASED LOSSESTIMATION FOR

FURTHER RECONFIGURATIONSPEED UP

In this section, we propose a novel random walks based
technique for voltage magnitudes estimation in order to speed
up the DistFlow loss estimation and therefore the reconfig-
uration algorithm. The parallel between random walks and
resistive networks was proposed by [29]. It is a statistical
method that interprets similarly conductances and probabili-
ties. This idea was applied to the analysis of VLSI circuits
[30]. In what follows we adapt it for the estimation of bus
voltage magnitudes in radial distribution systems.

A. Random Walks Based Bus Voltage Magnitude Estimation

Based on the discussion on the parallel between radial net-
works and random walks presented in Appendix A, we propose
to use the random walks technique for the computation of the
bus voltage magnitudes. Because theY matrix is symmetric
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and diagonally dominant, one can construct a random walks
problem whose solution represents the solution of equation
(4). Normally, because the summation of the coefficients ofEj

from equation (4) can become greater than 1 (even though the
absolute value of each of these coefficients is smaller than 1),
one has to use scaling factors for the probabilities in equation
(5) during the construction of the random walks problem [32].
For a detailed discussion of the scaling factors, the readeris
referred to [32]. To avoid possible numerical instability due to
scaling factors with absolute values greater than one, the bus
voltage magnitudes (Ek) are estimated by:

|Ek|
′ ≈

∑

(k,j)∈Adj

|Yjk|∑

(k,j)∈Adj

|yjk|
|Ej | +

|Ik|∑

(k,j)∈Adj

|yjk|
(2)

In other words, based on the parallel between equations
(2) and (5) we construct and then solve the random walks
problem as described in the previous section. The solution of
the random walks problem will give the voltage magnitudes
for all buses of the system.

The difference between the voltage magnitudes computed
using this technique and DistFlow is negligible (it does not
affect the quality of the reconfiguration as observed through
experimental results later on) and will always be bounded
because the expression in equation (2) is smaller than the upper
bound:

UB =
∑

(k,j)∈Adj

|Yjk|

|
∑

(k,j)∈Adj

yjk|
|Ej | +

|Ik|

|
∑

(k,j)∈Adj

yjk|
(3)

Once the bus voltage magnitudes are computed using the
proposed RW based technique, the real and reactive power
values are computed using a single forward pass similar to the
DistFlow method. Being just one pass, this step is also very
efficient. Then, power losses can be immediately calculated
using the voltage and power values. Hence, our approach
can be seen as ahybrid technique, which computes voltage
magnitudes using random walks and power values using one
forward pass of DistFlow.

B. Computational Runtime Discussion

The computational runtime of the proposed RW based
technique depends on (i) the length (hitting time) of the walks,
which in turn depends on thedepth2 from home nodes and (ii)
the number of nodes to update.

The CPU runtime of a random walk is directly proportional
to the length of the walk. This can be seen in Fig. 5, where we
plot the variation of the average length of the random walk (for
a single node) and its CPU runtime as a function of depth. This
variation was observed for all tested systems for a variety of
nodes located at different depths. Therefore, one can shorten
the CPU runtime by increasing the number of home nodes
(Fig. 4.b). This will decrease the depth of nodes and shorten
the hitting times of random walks. In our implementation,
we do that by processing only neighboring nodes of first

2The depth of a node is defined as the distance from the closest home
node. For example, the depth of node 22 is five in the system example from
Fig. 4.a.

(a)

(b)

Fig. 4. (a) Two examples of random walks performed for the node 22 of the
33-bus system. First RW with length 17: 22, 21, 20, 21, 20, 21, 20, 19, 2, 3,
4, 3, 2, 19, 20, 19, 2, 1. Second RW with length 7: 22, 21, 20, 19,20, 19,
2, 1. (b) Illustration of the partial RW based update of voltage magnitudes of
the nodes directly affected by topology changes.

Fig. 5. Variation of the average length (as number of steps) ofa random
walk as a function of depth for the system from Fig. 4.a. This variation was
observed for all tested systems.

and second order of the nodes directly affected by topology
changes. The rest of the nodes are treated as home nodes,
whose number is therefore increased. The voltage magnitudes
of these additional home nodes (from outside the updated
neighborhoods) are available from the previous iterations.

The approach in which we exploit this distinct property
of localizing the computationof random walks is referred to
as thepartial RW based technique. In summary, the partial
RW based technique for loss estimation is a hybrid approach
with two steps: (1) Use random walks to compute locally
voltage magnitudes for nodes within first and second order
neighborhoods of the nodes that are directly affected by local
network topology changes. Because these random walks per-
form localized computations, the runtime compared to the case
of running a full DistFlow for all nodes will be significantly
reduced. (2) Use one forward pass of DistFlow to compute
active and reactive power values. Then, power losses can be
immediately calculated using the voltage and power values.

V. EXPERIMENTAL RESULTS

The proposed algorithms were implemented in C++ and
simulations were performed on a Linux machine running on
a 2.8 GHz Intel Quad processor with 2 GB memory.

The experimental setup is shown in Fig. 6. In this setup,
we run four different experiments: (1) In the first experiment,
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Fig. 6. Block diagram of the experimental setup.

which represents the reference for our comparisons, we run
the traditional Baran’s reconfiguration method [1]. In thisrun,
the traditional DistFlow technique is used for loss estimations.
(2) In the second experiment, we run the proposed MCMF
based reconfiguration algorithm. The traditional DistFlowis
again used as the loss estimation technique. Hence, in this
experiment, we will quantify the speed-up of the proposed
MCMF based reconfiguration versus the Baran’s reconfig-
uration method from the first experiment. (3) In the third
experiment, we use the traditional Baran’s reconfiguration
method as a testbed to test the proposed partial RW based
loss estimation technique. In this experiment, we will quantify
the speed-up that can be achieved by using the proposed RW
based loss estimation technique versus the traditional DistFlow
approach from the first experiment. (4) Finally, in the fourth
experiment, we run the proposed MCMF based reconfiguration
combined with the proposed partial RW based loss estimation
technique. In this experiment, we expect to achieve the largest
speed-up compared to the first experiment.

A. MCMF Based Reconfiguration versus Baran’s Reconfigu-
ration

In this section, we compare the results from the second
experiment versus the results from the first experiment. We
report the loss reduction achieved with the proposed MCMF
based reconfiguration algorithm versus the traditional Baran’s
method on the distribution systems presented in Table I. The
first power system testcase is from [6], the next two testcases
are from [7], and the last two testcases are constructed using
data from the cited testcases.

As shown in Table I, the solution achieved using the
proposed MCMF based algorithm is similar to that achieved
using the Baran’s method (i.e., with similar losses), but with

Fig. 7. Accumulated percentage of loss reduction achieved during iterations
of the proposed algorithm and of Baran’s reconfiguration algorithm for the
first testcase distribution systembus 83.

significantly fewer iterations.This is because the MCMF
solution identifies multiple branch exchanges that yield larger
loss reductions in each iteration, which in turn leads to
faster convergence. As the testcase size increases, the pro-
posed reconfiguration algorithm improves the solution quality
significantly. This can be explained by the fact that the
MCMF solution is able to identify the best concurrent branch
exchanges during each iteration, especially when the number
of possible branch exchanges increases. The runtime of both
reconfiguration algorithms is governed by the number of times
the power flow is executed. Because the proposed algorithm
terminates in much fewer iterations, the runtime savings be-
come significant, leading to an average of 2.9× speed-up.

The proposed reconfiguration algorithm additionally re-
quires the runtime responsible for constructing and solving
the MCMF problem. This additional runtime (included in
the results reported in Table I) is negligible for all testcases
especially because the size of the network-flow graph is small.
That is, the MCMF problem size (as number of nodes of the
network-flow graph) is bound by2F + S, where F is the
number of feeders andS is the number of tie switches in the
system.

1) Discussion: In order to better illustrate the behavior of
the proposed algorithm, we plot in Fig. 7 theaccumulated
percentage of loss reduction achieved during each iteration of
the reconfiguration algorithms for the first testcasebus 83. It
can be seen that, for example, the proposed MCMF based re-
configuration algorithm reduces losses with7.85% and3.35%
during the first and second iterations, out of a total of12.36%
during a total of five iterations. The same amount of loss
reduction is achieved only after five iterations using Baran’s
reconfiguration method, out of a total of eleven iterations.
In other words, the proposed MCMF based reconfiguration
algorithm achieves the bulk majority of loss reduction in very

TABLE I
PROPOSEDMCMF BASED RECONFIGURATION VERSUSBARAN ’ S RECONFIGURATION.

Characteristics Baran’s reconfiguration [1] Proposed MCMF reconfiguration Speed-up
Num. Num. Num. Loss Iter. CPU Loss Iter. CPU

Testcase feeders buses ties red. [%] Num. runtime [ms] red. [%] Num. runtime [ms]
bus 83 11 83 13 12.36 11 3.05 12.36 5 1.65 1.85
bus 135 8 135 21 13.54 17 4.4 13.54 11 2.2 2.0
bus 201 3 201 15 6.74 22 5.73 6.74 13 2.75 2.08
bus 873 7 873 27 69.09 104 85.6 69.09 29 21.9 3.91
bus 10476 84 10476 260 37.22 274 2207 47.44 43 472 4.68

Avg: 2.9×
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TABLE II
NUMBER OF ITERATIONS REQUIRED TO ACHIEVE AT LEAST95% OF THE

TOTAL LOSS REDUCTION.

Baran’s reconfig. Proposed MCMF reconfig.
Fraction of Iter. Fraction of Iter.
total loss Num. total loss Num.

Testcase reduction [%] reduction [%]
bus 83 99 5 98 2
bus 135 96 11 95 6
bus 201 95 14 97 8
bus 873 95 49 95 23
bus 10476 95 154 95 21

TABLE III
QUALITATIVE COMPARISON OF CPU RUNTIMES.

Reconfiguration CPU Syst. size Processor,
approach runtime [s] Num. buses Memory
Proposed MCMF 0.0027 201 2.8 GHz Intel

0.0219 873 Quad, 2 GB
0.472 10476

Baran’s [1] 0.0057 201 2.8 GHz Intel
0.0856 873 Quad, 2 GB
2.207 10476

Tabu search [7] 46 135 2.4 GHz AMD
49 202 Athlon, 512 MB

Multi-tier heuristic [12] 60 399 200 MHz
Pentium, 32 MB

Ant colony [6] 241 96 NA
Genetic algorithm [6] 303 96 NA
Simulated annealing [6] 257 96 NA
Sensitivity heuristic [13] 9.73 258 NA

few iterations. Table II reports the number of first iterations
required by each of the two reconfiguration algorithms in order
to achieve at least95% of the final loss reduction. For example,
the proposed reconfiguration algorithm achieves98% of the
total loss reduction of12.36 during the first two iterations
while the Baran’s method needs five iterations to achieve
99% of the same total of12.36 loss reduction for the first
distribution systembus 83.

The solution quality achieved using the proposed algorithm
is similar or better than that achieved using the traditional
Baran’s method and with significantly fewer iterations. It is
important to note that even a small percentage reduction in
losses can translate into substantial cost savings. For example,
a 0.5% (from 3.5% to 3.0%) reduction in losses equates to
savings of $50 million per year for the state of California [2].

In order to compare the runtime of the proposed reconfigura-
tion algorithm with other previous approaches, we list in Table
III previously reported results and the corresponding system
sizes in terms of the number of buses. The CPU runtime in
Table III indicate that the proposed algorithm is scalable.We
attempt only aqualitative comparison, because the runtimes
reported in this paper and in previous work depend on the
differences in processor speeds, memory used, and algorithm
implementation. Moreover, computational runtimes have not
been reported in many of the previously published papers
and algorithm implementations are not publicly available for
comparison purposes.

B. Random Walks Based Loss Estimation versus DistFlow
Loss Estimation

Here, we compare the results from the third experiment
versus the results from the first experiment. The proposed RW

based loss estimation technique is compared against the Dist-
Flow technique in the context of Baran’s reconfiguration. We
use Baran’s reconfiguration for loss reduction as a testbench
to illustrate the efficiency benefits of the proposed RW based
loss estimation technique.

The results are shown in Table IV. As it can be seen in
the second and third columns, the overall computational run-
time of the Baran’s reconfiguration algorithm is significantly
reduced for each testcase when the proposed partial RW based
loss estimation technique is used instead of the traditional
DistFlow technique. The RW based technique helps speeding
up the reconfiguration algorithm by 2.98× on average. We also
report, in the last two columns of Table IV, thefraction of the
overall reconfiguration algorithm runtime taken by the loss
estimation calculations. It can be observed that this fraction is
significantly reduced.

C. MCMF Based Reconfiguration and Random Walks based
Loss Estimation versus Baran’s Reconfiguration and DistFlow
Loss Estimation

Finally, we compare the results from the fourth experiment
versus the results from the first experiment. The results are
shown in Table V. As expected, the combination of the pro-
posed MCMF reconfiguration and RW based loss estimation
algorithms leads to shorter CPU runtimes compared to the
results from the first three experimental setups. However, it has
to be noted that when compared to the results from the third
experiment (see Table IV), the speed-up is significantly better
only for the larger testcases. In other words, for the smaller
testcases, the reconfiguration approach based on the combina-
tion of MCMF based reconfiguration and random walks based
loss estimation achieves a speed-up similar to that achieved by
the combination of Baran’s reconfiguration and random walks
based loss estimation. This can be explained as follows. The
MCMF based reconfiguration has the CPU runtime overhead
that is spent on the construction and solving of the MCMF
problem. This overhead becomes comparable with the CPU
runtime saving that is obtained due to the decrease of the
total number of iterations when the Baran’s reconfigurationis
replaced with the MCMF based reconfiguration.

These results indicate that, first, when the loss estimation
technique accounts for a significant fraction of the reconfigura-
tion algorithm (see Table I), reducing the number of iterations
of the reconfiguration algorithm has a significant impact on
the overall CPU runtime across the board, irrespective of the
size of the distribution system. Second, reducing the CPU
runtime of the loss estimation technique alone leads to greater
speed-ups compared to when the reconfiguration approach
itself is improved (compare Table IV versus Table I). Finally,
combining the MCMF based reconfiguration and the random
walks based loss estimation technique achieves the greatest
speed-up (compare Table V versus Table I), which is even
more significant for large systems.

VI. CONCLUSION

In this paper, we proposed a novel and efficient iterative
heuristic algorithm for solving the network reconfiguration
problem for loss reduction. We also proposed a novel and
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TABLE IV
RECONFIGURATION RESULTS WHEN THE LOSS ESTIMATIONS ARE DONE USING DISTFLOW OR THE PROPOSED PARTIALRW BASED TECHNIQUE.

Baran’s reconfiguration Loss estimation
CPU runtime [ms] CPU runtime fraction [%]

Testcase DistFlow Partial RW Speed-up DistFlow Partial RW Fraction
loss estimation loss estimation loss estimation loss estimation reduction [%]

bus 83 3.05 1.06 2.88 82.38 56.82 31.02
bus 135 4.4 1.9 2.32 76.85 47.87 37.7
bus 201 5.73 2.87 2.0 75.81 49.04 35.31
bus 873 85.6 23.04 3.72 83.35 43.32 48.02
bus 10476 2207 549 4.02 85.2 19.86 76.69

Avg: 2.98×

TABLE V
MCMF BASED RECONFIGURATION ANDRW BASED LOSS ESTIMATION VERSUSBARAN ’ S RECONFIGURATION ANDDISTFLOW LOSS ESTIMATION.

Baran’s reconfiguration and Proposed MCMF reconfiguration and Speed-up
DistFlow loss estimation proposed RW based loss estimation

Testcase Loss red. [%] CPU runtime [ms] Loss red. [%] CPU runtime [ms]
bus 83 12.36 3.05 12.36 1.03 2.96
bus 135 13.54 4.4 13.54 1.9 2.32
bus 201 6.74 5.73 6.74 2.28 2.51
bus 873 69.09 85.6 69.09 11 7.78
bus 10476 37.22 2207 47.44 350 6.31

Avg: 4.38×

efficient random walks based technique for estimating the
power losses. The proposed algorithms can shorten the re-
configuration CPU runtime by up to 7.78× with similar or
better loss reduction compared to the Baran’s reconfiguration
and DistFlow algorithms. Therefore, they can be used towards
building faster reconfiguration tools for distribution automa-
tion. The implementation of the proposed algorithms together
with the distribution systems studied in this paper are publicly
available for download at [33].

APPENDIX A
THE PARALLEL BETWEEN THERADIAL NETWORK AND

RANDOM WALKS

In this section, we discuss the parallel between a radial
network and random walks, which represents the basis of the
proposed loss estimation technique. Without loss of gener-
ality, we illustrate the proposed technique using a balanced
distribution system whose one line diagram is presented in
Fig. 8.a. The feeder voltage is assumed to be constant, lines
are represented by series impedances, and loads are assumed
constant power sinks located at the end of the lines. Shunt
capacitors are represented as reactive power injections.

For this radial system, one can compute the bus voltages
Ek using the following expression [31]:

Ek = −
∑

(k,j)∈Adj

Yjk

Ykk

Ej −
Ik

Ykk

(4)

where Ik is the current sink that is loading the busk, and
by notationYjk = −yjk and Ykk =

∑

(k,j)∈Adj

yjk, with yjk

being the admittance between busj and busk corresponding
to every branch(k, j) from the adjacency list of busk. One
has to solve a system ofN −1 such equations in order to find
out voltages for allN − 1 buses.

Let us now consider a random walk starting from a motel
nodek on the associatednetwork graphshown in Fig. 8.b. We
denote a node ashomeif its voltage magnitude is known and as

motelotherwise. The random walk starts by traversing one of
the adjacent arcs of nodek with probability pkj (associated
with the arcs of the network graph from Fig. 8.b) and then
continues until ahomenode is reached. During the walk, at
every motel node a pricemk (corresponding to the voltage
magnitude at node k) is paid and a rewardm0 (corresponding
to the voltage of 1 p.u. at the root node) is earned at the home
node. The expected amount of earnings denoted asf(k) at the
end of the walk can be proved to be given by [30]:

f(k) =
∑

(k,j)∈Adj

pjkf(j) − mk (5)

In order to findf at every node, one has to solve a system
of N − 1 such equations. The key idea of this paper lies in
the parallel that can be drawn by comparing equations (4)
and (5). That is, the coefficients ofEk can be interpreted as
probabilitiespjk ≈

Yjk

Ykk
and f(k) ≈ Ek. For a sufficiently

large number of random walks started from nodek, the average
value off(k) will converge to the actual value of the voltage

(a) (b)

Fig. 8. (a) One line diagram of an example of radial distribution system
with one feeder. (b) The associated network graph with one home node and
the rest of the nodes as motel nodes. Nodes in the graph represent buses of
the system, while arcs are associated with system lines.
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magnitude,f(k) → Ek. Therefore, for a given network one
can construct an equivalent random walks problem whose
solution is also a solution for the bus voltage equations.
This result represents the basis of our bus voltage magnitude
estimation technique described in Section IV.A.
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