
A new Fault-tolerant and Congestion-aware
Adaptive Routing Algorithm for Regular

Networks-on-Chip
Hamed S. Kia, and Cristinel Ababei

Department of Electrical and Computer Engineering
North Dakota State University

Fargo ND, 58108-6050
Email: {hamed.sajjadikia, cristinel.ababei}@ndsu.edu

Abstract—In this paper, we propose a new fault-tolerant and
congestion-aware adaptive routing algorithm for Networks-on-
Chip (NoCs). The proposed algorithm is based on the ball-
and-string model and employs a distributed approach based
on partitioning of the regular NoC architecture into regions
controlled by local monitoring units. Each local monitoring unit
runs a shortest path computation procedure to identify the
best routing path so that highly congested routers and faulty
links are avoided while latency is improved. To dynamically
react to continuously changing traffic conditions, the shortest
path computation procedure is invoked periodically. Because this
procedure is based on the ball-and-string model, the hardware
overhead and computational times are minimal. Experimental re-
sults based on an actual Verilog implementation demonstrate that
the proposed adaptive routing algorithm improves significantly
the network throughput compared to traditional XY routing and
DyXY adaptive algorithms.

Index Terms—Networks on chip, Dynamic routing algorithm,
Fault tolerance.

I. INTRODUCTION

The Network-on-Chip (NoC) concept replaces design-
specific global on-chip wires with a generic on-chip intercon-
nection network realized by specialized routers that connect
generic processing elements (PE). It represents a paradigm
change from computation to communication centric design
for Systems-on-Chip (SoCs) [1], [2]. The benefits of the NoC
based SoC design include scalability, predictability, and higher
bandwidth with support for concurrent communications.

Data are transfered between PEs organized as packets along
paths computed by the routing algorithm. There are two types
of routing strategies: deterministic and adaptive routing. In de-
terministic routing, the routing path is completely determined
by the source and destination addresses. Its advantages include
the simplicity of the router architecture and the deadlock free
property. Due to the simpler hardware logic, deterministic
routing offers lower flit latency when the NoC is not con-
gested. However, as the packet injection rate increases and
some of the links and routers become congested, deterministic
routing is likely to suffer from throughput degradation as it can
not dynamically respond to network congestion [3]. In addi-
tion, permanent link failures may render the NoC inoperable.
In contrast, adaptive routing takes into consideration the traffic

variations in the network and computes dynamically alternative
paths to route data via less congested regions. Moreover, if
the NoC architecture is equipped with link failure detection
mechanisms, adaptive routing can address these failures and
thereby facilitate fault tolerance [4], [5]. However, due to the
hardware overhead to implement the detection mechanisms
and to compute good routing paths, adaptive routing has a
higher latency at low levels of network congestion. Also,
dynamic routing has to be designed so that it ensures deadlock
free property.

II. RELATED WORK AND CONTRIBUTION

Adaptive routing has attracted a lot of attention recently.
The DyAD routing algorithm proposed in [6] is a hybrid
approach, which switches between deterministic routing at low
packet injection rates and dynamic routing when the network
congestion increases. An adaptive routing architecture based
on a dynamic programming (DP) network to provide optimal
path planning is proposed in [7]. It has introduced a scalable
k-step look ahead routing strategy to reduce routing tables
storage and to maintain a high quality of adaptation. The
routing method in [8] utilizes information from all routers in
the source-target path to perform traffic routing. The source
units use the information on network conditions to adjust
the parameters that configure the path to the target router. A
dynamic routing algorithm based on monitoring the congestion
status of the neighboring routers is studied in [3]. In [9]
the objective is to route packets to their destination using
a path that is as free as possible of congested nodes. The
algorithm tries to use the situations of indecision occurring
when the routing function returns several admissible output
channels. In [10] a centralized monitoring system is used to
locate congested links and detour them. However the proposed
method is not scalable to the hundreds of cores that may
soon be integrated on a SoC. Authors in [11] have proposed
an adaptive routing scheme where intermediate routers make
decisions locally depending on the available bandwidth in
each direction to the neighboring routers and on the distance
between current and the destination routers. A congestion
aware routing algorithm, which sends congestion monitoring

values in parts of the network beyond adjacent routers, is
proposed in [12].

Several papers focusing on fault tolerant routing algorithms
have recently been published. Reconfigurable architectures
have been employed in several papers to address faults. The
Vicis NoC architecture proposed in [13] can tolerate the loss of
routers and links due to wearout induced hard faults. Network
level reconfiguration is implemented by rewriting the routing
tables based on the information from the built-in-self-test
(BIST) units in each router. A reconfigurable fault-tolerant
deflection routing algorithm based on reinforcement learning
for NoC has been proposed in [14]. The algorithm reconfigures
the routing tables through reinforcement learning based on 2-
hop fault information. In [15] a routing algorithm that boosts
the robustness of interconnect networks by reconfiguration
to avoid faulty components while maintaining connectivity
and correct operation has been proposed. A lightweight fault-
tolerant mechanism based on the notion of default backup
paths (DBPs) has been proposed in [16]. It uses nominal
redundancy to maintain network connectivity of healthy NoC
routers and on-chip PEs in the presence of hard failures.
Most previous works on adaptive routing report simulation
results achieved with simulators developed in a programming
language (e.g., C++, SystemC). Therefore, they typically do
not report actual area overheads due to the lack of actual
hardware implementation details. In addition, they address
either congestion issues or errors (e.g., transient, intermittent,
permanent failures).

In this paper, we develop a new distributed adaptive algo-
rithm designed to address both congestion and link failures.
Our main contribution is as follows: (i) We develop a new
NoC architecture which partitions the regular NoC architecture
into regions controlled by local monitoring units. Each local
monitoring unit runs a shortest path computation procedure
to identify the best routing path so that highly congested
routers or failed links are avoided, (ii) We propose the use
of a ball-and-string model based shortest path computation
method, which together with the decentralized region based
routing approach leads to minimal hardware overhead, and
(iii) The proposed NoC architecture and routing strategy are
implemented in Verilog with Virtex 5 as the target FPGA
fabric. The experimental results on multimedia benchmarks
demonstrate the ability of the proposed routing algorithm to
significantly improve the network throughput.

III. PROPOSED ADAPTIVE ROUTING

In this section we describe the proposed dynamic routing
algorithm based on the ball-and-string model for regular mesh
NoC topologies.

A. General NoC Topology Description

For simplicity, we assume a regular mesh NoC topology to
describe and apply the proposed dynamic routing algorithm.
However, the proposed routing algorithm can also be extended
to irregular NoCs. Regular mesh NoCs are 2D arrays of
routers. Adjacent routers are connected via bi-directional links

(a) (b)

Fig. 1. (a) Example of 2D regular mesh. (b) Typical router architecture.

or channels. An example of a 3 × 3 mesh NoC is shown in
Fig.1.a. The router has a pipelined architecture where routing
computation (RC), virtual channel allocation (VA) and switch
allocation (SA), and switch traversal (ST) are the main pipeline
stages. The block diagram of the router is shown in Fig.1.b.
To minimize the required buffering space, in this paper we
assume wormhole switching. The router architecture will be
modified to add support for the adaptive routing − this will
be described in a later section.

B. Ball-and-String Model based Shortest Path Computation
Procedure

The main idea of shortest paths computation is (1) to
associate a directed graph G(V,E) with the NoC topology,
(2) to assign edge weights proportionally to congestion, and
(3) to develop a procedure to find the shortest paths in this
graph for any given source node.

To compute edge weights we propose to use buffer occu-
pancies, which are readily available in a typical NoC. More
specifically, the weight is computed as the summation of the
numbers of memory slots used in the output buffers of the
upstream router and of memory slots used in the input buffers
of the downstream router. For example, Fig.2.a illustrates the
computation of the edge weight of an individual link. Fig.2.b
shows the edge weights for a graph associated with a 3 × 2
NoC. Formally, for the purpose of computing the shortest
paths the edge weights wij , i = 1, ..., |V |, j = 1, ..., |V | are
computed as follows:

wij =

{
Used memory slots if (vi, vj) ∈ E,∀vi, vj ∈ V
∞ otherwise

(1)
Each time the shortest path procedure is invoked, the

shortest path for each source-destination communication pair
will be computed so that the path cost is minimized:

Min :
∑|V |

i=1

∑|V |
j=1 yij × wij (2)

where yij is a binary variable, which indicates if the link
(vi, vj) ∈ E is used or not as a part of the path.

The procedure for the shortest path computation is based
on the parallel shortest path searching algorithm proposed in
[17], which is similar to the ball-and-string model studied

(a)

(b) (c)

Fig. 2. (a) Computation of edge weight. (b) Edge weights for a network graph
associated with a 3× 2 NoC. (c) The network matrix A and the parent-array
of the network graph.

in [18], [19]. The shortest path procedure will identify the
best paths for packets to travel to their destinations under the
congestion conditions that exist at the time of edge weights
computation. To account for the changes in these conditions
(due to the changes in network traffic) the procedure will be
called periodically multiple times. Therefore, it is important
for the implementation of such a procedure to be fast and to
require minimal hardware resources. Our custom implemen-
tation of this algorithm utilizes the adjacency matrix [A]n×n

of the network graph − referred to as the network matrix
because each entry stores the corresponding edge weight (i.e.,
aij = wij). In addition, it utilizes a specialized array −
referred to as the parent-array − which stores the IDs of
predecessor node (or the parent node) of each node along the
shortest path. For example, the network matrix and the parent-
array initialized to zero of the network graph from Fig.2.b are
shown in Fig.2.c.

To illustrate how the algorithm works, we use the example
from Fig.2.b. Let us assume node v1 as the source. In the first
step of the algorithm, all entries in the first column of the
network matrix are set to infinity. Also, the minimum value
in the first row is found and then subtracted from each entry
of the first row (see Fig.3.a). Because a14 = 0, the shortest
path to v4 is already determined and v1 is recorded in the
forth column of the parent-array. Then, all entries in the fourth
column of the network matrix are also set to infinity as shown
in Fig.3.a. In the next step of the algorithm, the minimum value
among the entries of the first and fourth rows is identified and
subtracted from the entries of these rows as shown in Fig.3.b.
Because a12 = 0 and a45 = 0, the shortest paths to v2 and
v5 are also determined at this time and these two nodes are
recorded in the second and fifth columns of the parent-array.
Also, all entries in the second and fourth columns are set to
infinity. This process is repeated until all entries in the network
matrix are set to infinity. At this time, all entries in the parent-

(a)

(b)

(c)

Fig. 3. Applying the algorithm to network matrix.

array store the predecessors of each node, which can be back-
traced to construct the shortest path from the source v1 to any
node in the graph.

Fig.4 illustrates how the network matrix and the parent-
array are implemented. To minimize the memory usage for
storing and manipulating matrices, in our actual hardware
implementation (described in detail in a later section) we
use registers to store only the entries that are initially non-
infinity in the network matrix. In other words, for example in
Fig.2 we know that a16 and a61 will remain equal to infinity
throughout the shortest paths computation process − due to
the regular mesh NoC topology which tells us that there is no
direct connection between nodes v1,v6. Therefore, there is no
need to allocate and manipulate memory for these entries of
the network matrix. However, we need to use two additional
registers shown as “Fixed” and “Flag” in Fig.4. Each time
when the entries of a given column must be set to infinity only
the corresponding entry of the “Fixed” register is set to 1. This
eliminates the need for the infinity value, which is difficult
to define in a simple hardware implementation. The “Flag”
register is used to mark the rows which are processed currently.
For example, once it is known that the first and fourth rows
are to be processed next, their corresponding entries in the
“Flag” register are set to 1. In our hardware implementation,
even though the design time was slightly longer this custom
implementation of the network matrix reduced significantly
the memory usage.

Using the additional registers, the pseudocode of the shortest
path algorithm is presented in Algorithm 1.

Fig. 4. Illustration of the hardware implementation of network matrix.

Algorithm 1: Shortest path computation
1: ∀i, F ixed(i)← 1, F lag(i)← 1 if node i is source, 0 otherwise
2: [Parent]1×n ← [0]1×n

3: Initialize network matrix [A]n×n based on network graph
4: while (Flag ̸= [1]1×n) do
5: for i← 1 to n do
6: for j ← 1 to n do
7: A(i, j)∗ = Flag(i)× Fixed(j)

′
×A(i, j)

8: end for
9: end for

10: Find the non-zero minimum of A∗(i, j)
11: for i← 1 to n do
12: for j ← 1 to n do
13: if Flag(i) = 1 then
14: A(i, j) = A(i, j)−minimum
15: end if
16: if A(i, j) = 0 then
17: Flag(i) = 0, F ixed(j) = 0, Parent(j) = i
18: end if
19: end for
20: end for
21: end while

Fig. 5. The pseudocode of the shortest path computation procedure.

C. Adaptive Routing

To minimize the required extra hardware we propose a
distributed (or decentralized) scheme for the implementation
of the adaptive routing. The NoC is partitioned into several
partitions (or regions) and each partition is managed by a
local monitoring unit (LMU). LMUs represent the controllers
responsible with routing packets that enter their partitions. For
example, the 4 × 4 NoC from Fig.6 is partitioned into four
equal regions controlled by four LMUs. Even though in this
example the partitions have equal size, they may have different
sizes too.

Each LMU is in charge with routing data to routers within
its own partition and to the first-order neighboring routers
adjacent to its own partition. To compute edge weights for
links that connect routers from different partitions, adjacent
LMUs are interconnected to be able to share information. For
example in Fig.6, LMU1 is responsible for routing packets
injected within the partition formed by the routers {1, 2, 5, 6}
and the packets that arrive from adjacent routers {3, 7, 9, 10}.
This LMU will implement the shortest path computation
procedure described in the previous section, which will utilize
the network matrix of the sub-graph corresponding to routers
{1, 2, 3, 5, 6, 7, 9, 10} and all edges between these routers
except the two edges corresponding to the links between

Fig. 6. NoC partitioned into four partitions controlled by four LMUs.

routers {3, 7} and {9, 10}.
As an example consider a situation when a packet arrives to

router 2 in partition 1 via the boundary-crossing link between
routers {3, 2} (shown in thicker line in Fig.6). In this case, the
source node in the shortest path procedure will correspond to
router 2. LMU1 will extract the destination address from the
header flit. If the destination router is located inside partition
1 or is one of the adjacent routers {9, 10}, then LMU1, which
has already computed the shortest paths, will update the header
flit (Fig.9) with the shortest path routing information. If the
destination is in partition 3, then the header flit will be updated
with the routing information toward one of the routers {9, 10}
− to the one with the shortest path − and packets will be
routed accordingly. Then, LMU3 will be responsible with
routing to the final destination inside partition 3.

As another example, let us consider the source-destination
pair v1, v16. Because the destination is in partition 4, the
algorithm will first find the shortest path to either of the routers
{3, 7, 9, 10} in partitions 2 and 3. Assuming that the shortest
path is to router 7, the packets may be routed as shown in
Fig.6. Then, LMU2 will be responsible with routing packets
toward partition 4. This will be done by utilizing the shortest
path from the source 7 to either of the routers {11, 12}. If this
path is to the router 11 as shown in Fig.6, then LMU4 will
be responsible with routing along the shortest path from the
local source 11 to the final destination 16.

D. Addressing Link Failures

As CMOS fabrication technologies move to nano-scale
feature sizes, integrated circuits become more susceptible to
manufacturing faults, transient faults, and aging mechanisms
that can lead to permanent faults. In NoC architectures without
fault tolerance mechanisms, permanent link failures can render
the NoC inoperable. The adaptive algorithm proposed in this
paper, can easily address link failures and thereby facilitate
fault tolerance. When a link failure is detected inside a given
partition, the corresponding LMU can remove that link from

Fig. 7. Block diagram of the communication between two adjacent routers.

the adjacency matrix. Hence, the shortest path computation
procedure will compute thereafter paths formed by the remain-
ing healthy links only.

E. Deadlock

Deadlock occurs when packets are unable to move forward
because they are waiting on one another to release resources
(i.e., there is a cyclic dependency between packets). This
is undesirable because it can paralyze the operation of the
network. Therefore, routing algorithms must be designed so
that deadlock is avoided [1]. While the proposed routing al-
gorithm is not designed to directly guarantee the deadlock free
property1, it indirectly minimizes the likelihood of deadlock
occurrence. If a deadlock situation occurs, the affected links
(which do not see activity for long periods of time) can be
interpreted as if they were congested or broken. Because,
the proposed adaptive algorithm is called periodically, the
new computed routing paths will avoid the affected links,
thereby most likely eliminating the deadlock situation. In other
words, in the event that a packet dependency occurs, it will be
eliminated during the next call of the shortest path computation
procedure, which will find a different path (using other links)
along which packets can move forward.

IV. HARDWARE IMPLEMENTATION

The implementation of the adaptive routing requires changes
in the NoC architecture. First, we added the local monitoring
units and their connections as discussed in the previous section
and as illustrated in Fig.7. Second, we design a new router
architecture to provide support for the mechanics of the
proposed routing algorithm as described below.

A. Modified Router Architecture

Because we use input and output buffers occupancies to
compute edge weights, we modify the input and output buffers
by adding local input and output control units as shown in
Fig.8.

To minimize the router area, all buffers are implemented
using registers instead of SDRAM structures. Input and output
ports use 2 virtual channels. Messages are divided into packets,

1Specialized adaptive algorithms can be designed to guarantee the deadlock
free property, but at the expense of increased complexity and larger area
penalty [20], [21].

(a)

(b)

Fig. 8. (a) Block diagram of the input buffer. (b) Block diagram of the
output buffer.

Fig. 9. Header flit description.

which are further divided into 3 flits (header, body, and tail).
The header flit contains the routing information and destination
address. Fig.9 shows the format of the header flit. Once a
header flit arrives to the input port of a given router, the routing
information (i.e., the output port ID to which the flit should be
forwarded to) is provided by the local monitoring unit. When
the header flit is received the routing bits are shifted as shown
in Fig.9. Routers use the routing data bits to determine the
output port. In this way the usage of routing tables is avoided.
After gaining access to the output port and before the transfer
to the output buffer is started, the input control unit (ICU)
saves the destination port ID in the port ID control bits (see
Fig.8.a) where it will be stored until after the tail flit of the
same packet will traverse this router. The ICU also sets the
“Port request” bit whenever a flit requests access to any output
port.

At each positive edge of the clock the ICU computes the
number of occupied slots in the input buffer. This information
is sent to LMU, upstream router and arbiter. The “Full” bit (see
Fig.8.a) is set to 1 when there is at least an empty slot available
and this information is communicated to the upstream router.

Whenever there is an empty slot in the output buffers, the

output control unit (OCU) sets the “Full” bit in Fig.8.b and
sends this info to the arbiter, which continuously monitors the
output buffers. If an empty slot is available in the output buffer
the arbiter will check if it is reserved or not. When both virtual
channels of an output port are available the arbiter will select
and grant access first the one with more empty slots. When
the output buffer receives a header flit the arbiter will set the
reserved bit to logic 1, which will be kept until after the tail flit
will be received. The OCU also computes the number of used
buffer slots (i.e., the output buffer occupancy), which is sent
to the local monitoring unit, arbiter, and output interface unit.
In addition, OCU also sets the “Request port” bit whenever a
flit requests access to physical link. This bit is continuously
monitored by the output interface unit.

The output interface unit shown in Fig.8.b functions as
an arbiter. A packet in the output buffer will be sent to a
virtual channel with more empty slots in the input port of
the downstream router. When both output virtual channels
compete over the physical link, the output interface unit will
select and grant access first to the VC that has the least
available memory. When the input buffer of the downstream
router receives a header flit it will be marked as being reserved.

The shortest path computation requires eight clock cycles.
Therefore, every other eight clock cycles the LMUs update
the shortest paths. This period is small enough to ensure rapid
response to changes in traffic as observed in our experiments.

V. EXPERIMENTAL RESULTS

To validate and test the proposed adaptive algorithm, we
have coded in Verilog a 4 × 4 NoC prototype with an
architecture similar to that shown in Fig.6. The NoC design is
synthesized using the Xilinx ISE compiler [22] and the RTL
implementation is verified via dynamic simulation. The target
hardware platform is a Virtex 5 FPGA. The ISE tool is utilized
to estimate total area. The static timing analysis feature of
the ISE tool is used to measure and compute the average flit
latency.

A. Adaptive Routing to Address Congestion

In the first set of experiments, we compare the proposed
adaptive routing algorithm against the traditional XY routing.
We also compare the proposed routing algorithm against
DyXY adaptive algorithm [3] due to its popularity and ease of
implementation. Even though DyXY was studied only based
on simulations, we have implemented it in Verilog using our
own adapted router architecture. The hardware implementation
of other previously proposed adaptive routing algorithms is
not available. Moreover, because of the complexity of these
adaptive algorithms, their Verilog implementation is very chal-
lenging. Therefore, we restrict our experiments to comparisons
against XY and DyXY algorithms.

We report our results for two multimedia benchmarks. The
communication task graph (CTG) and optimized mapping of
the first benchmark are from [23] and are shown in Fig.10. The
injected traffic at all sources of the CTG is generated by local
generators. The average number of injected packets at each

(a) (b)

Fig. 10. CTG and optimized mapping of the first multimedia benchmark.

Fig. 11. Comparison of the average latency achieved by the proposed adaptive
routing, the traditional XY routing algorithm and DyXY algorithm for the first
benchmark.

source is proportional to the communication volume of each
source-destination pair shown in Fig.10.a. The average latency
is computed under the assumption that packets are consumed
immediately upon arrival to their destinations. Fig.11 presents
the average latencies achieved using the proposed adaptive
routing algorithm, the traditional XY routing algorithm, and
DyXY algorithm respectively. It can be observed that the
proposed adaptive routing improves the network throughput at
high packet injection rates. However, at low packet injection
rates latency is slightly degraded compared to XY routing due
to the delay penalty incurred in the hardware for adaptive
routing support.

The communication task graph (CTG) and optimized map-
ping of the second benchmark are from [24] and are shown
in Fig.12. Again the proposed adaptive routing improves the
network throughput at high packet injection rates (Fig.13). The
improvement in throughput and the extra hardware needed
to implement the proposed algorithm is shown in Table I.
Throughput is defined at the point where the latency is twice
as the low packet injection rate latency. The extra hardware
to implement the proposed algorithm is around 17%, which is
less than 42% of [13]. The area penalty is slightly higher than
the area penalty for the DyXY routing algorithm. However,
note that DyXY routing algorithm is designed to address only
congestion, while the proposed routing algorithm addresses
both congestion and link failures for fault tolerance.

B. Adaptive Routing to Address Link Failures

In this section we investigate the performance of the pro-
posed adaptive routing algorithm in the presence of link fail-
ures. We investigate the fault tolerance of the proposed routing

(a) (b)

Fig. 12. CTG and optimized mapping of the second multimedia benchmark.

Fig. 13. Comparison of the average latency achieved by the proposed adaptive
routing and the traditional XY routing algorithms for the second benchmark.

TABLE I
COMPARISON AGAINST XY ROUTING

Routing algorithm Extra hardware Test Case Throughput
improvement

Proposed algorithm 17 % Test case 1 21%
Test case 2 20%

DyXY algorithm 12 % Test case 1 11%
Test case 2 10%

algorithm for a number of injected link failures varied between
1 and 4. For each of these numbers, we randomly inject
link failures several times and then we compute the average
throughput. To keep the CPU computational runtimes of ISE
tool within reasonable limits we study a simpler testcase whose
mapping is shown in Fig.14. Each of the injected set of faults
are handled by the proposed algorithm as described in Section
III.D. The network throughput degradation as a function of
the number of injected faults is shown in Fig.15. It can be
noted that the network throughput degrades gracefully, which
demonstrates the ability of the proposed routing algorithm to
address link failures.

Fig. 14. The mapping of the third benchmark.

Fig. 15. Throughput depredation for different amount of fault injection.

VI. CONCLUSION

We proposed a new fault-tolerant and congestion-aware
adaptive routing algorithm for NoCs. To implement the pro-
posed algorithm the NoC architecture is partitioned into re-
gions controlled by local monitoring units. Each local monitor-
ing unit runs a shortest path computation procedure to identify
the best routing path so that highly congested routers are
avoided. To dynamically react to continuously changing traffic
conditions the procedure is invoked periodically. Because the
procedure is based on the ball-and-string model, the hardware
overhead and computational times are minimal. Experimental
results based on an actual Verilog implementation demonstrate
that the proposed adaptive routing algorithm improves signif-
icantly the network throughput compared to traditional XY
routing and DyXY adaptive algorithms.

REFERENCES

[1] W. J. Dally, and B. Towles, Principles and Practices of Interconnection
Networks, Morgan Kaufmann, 2004.

[2] G.D. Micheli, and L. Benini, Networks on Chips: Technology and
Tools, Morgan Kaufmann, 2006.

[3] M. Li, Q.A. Zeng, and W.B. Jone, “DyXY: a proximity congestion
aware deadlock-free dynamic routing method for network on chip,”
ACM/IEEE Design Automation Conference (DAC), 2006.

[4] R. Marculescu, “Networks-on-chip: the quest for on-chip fault-tolerant
communication,” IEEE Computer Society Annual Symposium on VLSI,
2003.

[5] M. Yang, T. Li, Y. Jiang, and Y. Yang, “Fault tolerant routing schemes
in RDT(2,2,1)/a-based interconnection for networks on chip designs,”
Int. Symposium on Parallel Architectures, Algorithms and Networks,
2005.

[6] J. Hu and R. Marculescu, “DyAD: smart routing for networks-on-chip,”
ACM/IEEE Design Automation Conference (DAC), 2004.

[7] T. Mak, P.Y.K. Cheung, W. Luk, and K.P. Lam, “A DP-network
for optimal dynamic routing in Network-on-Chip,” ACM/IEEE Int.
Conference on Hardware Software Codesign, 2009.

[8] L. Tedesco, F. Clermidy, and F. Moraes, “A path-load based adaptive
routing algorithm for Networks-on-Chip,” ACM Annual Symposium on
Integrated Circuits and System Design, 2009.

[9] G. Ascia, V. Catania, M. Palesi, and D. Patti, “Implementation and
analysis of a new selection strategy for adaptive routing in networks
on chip,” IEEE Trans. on Computers, vol. 57, no. 6, pp. 809-820, 2008.

[10] F. Ge, N. Wu, and Y. Wan, “A network monitor based dynamic
routing scheme for network on chip,” IEEE Asia Pacific Conference
on Microelectronics and Electronics, 2009.

[11] M.A. Al Faruque, T. Ebi, and J. Henkel, “Run-time adaptive on-
chip communication scheme,” ACM/IEEE Int. Conference on Computer
Aided-Design (ICCAD), 2007.

[12] P. Gratz, B. Grot, and S.W. Keckler, “Regional congestion awareness
for load balance in networks-on-chip,” IEEE Int. Symposium on High
Performance Computer Architecture, 2008.

[13] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester,
“Vicis: a reliable network for unreliable silicon,” ACM/IEEE Design
Automation Conference (DAC), 2009.

[14] C. Feng, Z. Lu, A. Jantsch, J. Li, and M. Zhang, “A reconfigurable fault
tolerant deflection routing algorithm based on reinforcement learning
for network-on-chip,” Int. Workshop on Network on Chip Architectures
(NocArc), 2010.

[15] D. Fick, A. Deorio, G. Chen, D. Sylvester, and D. Blaauw, “A highly
resilient routing algorithm for fault tolerant NoCs,” ACM/IEEE Design
Automation and Test in Europe Conf. (DATE), 2009.

[16] M. Koibuchi, H. Matsutani, H. Amano, and T.M. Pinkston,
“A lightweight fault tolerant mechanism for Network-on-Chip,”
ACM/IEEE Int. Symposium on Networks-on-Chip (NoCS), 2008.

[17] H. Ishikawa, S. Shimizu, Y. Arakawa, N. Yamanaka, and K. Shiba,
“New parallel shortest path searching algorithm based on dynamically
reconfigurable processor DAPDNA-2,” IEEE Int. Conference on Com-
munications, 2007.

[18] P. Narvaez, K.Y. Siu, and H.Y. Tzeng, “New dynamic SPT algorithm
based on a ball-and-string model,” ACM/IEEE Trans. on Networking
(TON), vol. 9, no. 6, pp. 706-718, 2001.

[19] T. Shi and J.J. Lee, “An O(L) parallel shortest path algorithm,” Int.
Conference on Computer Design (CDES), pp. 119-124, 2009.

[20] A.D. Choudhury, G. Palermo, C. Silvano, and V. Zaccaria, “Yield
enhancement by robust application-specific mapping on Network-on-
Chips,” Int. Workshop on Network on Chip Architectures (NocArc),
2009.

[21] C. Seiculescu, S. Murali, L. Benini, G. De Micheli, “A method to
remove deadlocks in Networks-on-Chips with wormhole flow control,”
ACM/IEEE Design Automation and Test in Europe Conf. (DATE), pp.
1625-1628, 2010.

[22] Xilinx ISE Tools, http://www.xilinx.com
[23] M. Lai, L. Gao, N. Xiao, and Z. Wang, “An accurate and efficient

performance analysis approach based on queuing model for Network
on Chip,” ACM/IEEE Int. Conference on Computer-Aided Design
(ICCAD), 2009.

[24] E.B. van der Tol, E.G.T. Jaspers, “Mapping of MPEG-4 decoding on
a flexible architecture platform,” SPIE, Media Processors, pp. 1-13,
2002.

