
Improving Fault Tolerance of Network-on-Chip
Links via Minimal Redundancy and Reconfiguration

Hamed S. Kia, and Cristinel Ababei
Department of Electrical and Computer Engineering

North Dakota State University
Fargo ND, 58108-6050

Email: {hamed.sajjadikia, cristinel.ababei}@ndsu.edu

Abstract—We propose to partition links in a network-on-chip
into multiple segments and use spare wires at the level of each
segment to address permanent errors due to manufacturing or
wearout defects. Because different segments of the spare wires
address different errors from different segments, the proposed
reconfigurable link structure can tolerate a larger number of
errors with a reduced number of spare wires. The proposed self-
repairing segmented link structure is implemented and simulated
in Verilog and verified on a Virtex 5 FPGA. Experimental results
on area, power consumption, delay, and reliability show that the
optimal link is achieved when the link is partitioned into two
segments.

I. INTRODUCTION

Advances in integrated circuit fabrication technology en-
ables the integration of tens and hundreds of cores on the same
system-on-chip (SoC). To address the demand for increased
communication and concurrency between cores, network-on-
chip (NoC) has emerged as a new communication design
paradigm [1]. An NoC is constructed by connecting a set of
routers via bidirectional links. Cores are connected to routers
through network interfaces and communicate via messages
organized as packets. For example, a typical 2D regular mesh
NoC topology is shown in Fig.1.

However, advances in fabrication technology that can make
this integration possible may also make the underlying hard-
ware less reliable due to an increasing number of defects and
wearout or aging mechanisms. Errors due to these faults may
occur in both the computation (cores) and communication
(network) components of the SoC. Because it is critical to
deal with these faults and address them with cost-effective
solutions, one of the major problems facing the design of
network-on-chip based systems-on-chip is reliability.

In this paper, we focus on the communication compo-
nent and address permanent faults which can occur in NoC
links during fabrication or due to wearout mechanisms. More
specifically, we improve the fault tolerance of NoCs by using
redundant or spare wires within the context of segmented links.
We do not focus on the computation component, which has
been studied more extensively [2], [3]. The remainder of this
paper is organized as follows. In the next section, we discuss
previous work and then outline our main contribution. Then,
we describe the proposed self repairing link and introduce a
simple technique to detect faults. Later, we report experimen-
tal results. Finally, we conclude by summarizing our main

Fig. 1. Example of typical 2D regular mesh NoC topology.

contribution.

II. PREVIOUS WORK

There are basically two methods to address permanent faults
in NoC links. The most popular method is based on the
use of adaptive or dynamic routing strategies. The idea is
that after faulty links are detected and located, specialized
routing algorithms compute new routing paths through the
network such that these broken links are avoided. Examples
of recently proposed adaptive routing algorithms for NoCs
include [4]–[9]. While this method is straightforward, it has the
disadvantage of affecting the network performance (average
flit latency) due to typically longer routing paths. Also, it must
deal with the issue of deadlock and livelock.

The second method to address permanent faults is based
on the concept of adding redundant or spare elements and
on the use of reconfiguration [10]–[14]. In the case of NoC
links, several redundant wires are added to each link. When
faults occur, reconfiguration is used to replace the faulty
wires with spare healthy wires. For example, the authors
of [15] have used redundant spare wires to repair broken
links. The use of redundant wires to replace faulty wires
without interruption of the data flow is presented in [16]. The
authors use a periodic inline test method to detect faulty wires.
The authors in [17] demonstrate link structures, which can
tolerate transient, intermittent, and permanent faults. They use
Hamming coding to address transient errors and retransmission
as the recovery technique. They have also introduced two
techniques to address intermittent and permanent faults. The
first technique is based on spare wires and reconfiguration



(a)

(b)

Fig. 2. (a) Simplified block diagram of an n-bit reconfigurable link structure with k redundant bits. (b) Details of the reconfiguration logic for an example
with k = 4.

while the second technique uses time redundancy. This method
has the disadvantage of addressing a rather small number of
faults in a given link, which is limited by the additional area
occupied by the multiplexers and demultiplexers utilized to
reconfigure the link.

III. CONTRIBUTION

In this paper, we focus on permanent faults which can occur
in NoC links during fabrication or due to wearout mechanisms.
Our goal is to design a self repairing NoC link, using spare
wires and reconfiguration, which offers the best trade off
between the overhead in area, power consumption, delay and
reliability. Our main contribution lies in: 1) We propose to
partition NoC links into multiple segments and use spare wires
at the level of each segment. Because different segments of the
spare wires address different faults from different segments,
the proposed reconfigurable link structure can tolerate a larger
number of errors with a reduced number of spare wires.
2) We implement and simulate the proposed self repairing
link structure in Verilog using Cadence tools and verify it
on a Virtex 5 FPGA. Experimental results on area, power
consumption, delay, and reliability show that the optimal link
is achieved when the link is partitioned into two segments.

IV. PROPOSED SELF REPAIRING LINK STRUCTURE

In this section, we introduce the proposed segmented self re-
pairing link structure. However, first we present the traditional

non-segmented link structure, which we will use to build our
discussion and for comparison purposes.

A. Non-segmented link structure

The block diagram of the traditional reconfigurable link is
shown in Fig. 2.a. The main link connecting two routers of the
NoC is essentially an n-bit bus formed of n primary wires. In
addition, the link contains k spare wires. These spare wires are
redundant and are normally not used. The error detection logic
is responsible with the detection of permanent faults, which
initially are assumed to occur only in the n primary wires. This
is a reasonable assumption because the spare wires are not
normally used and therefore they are not affected by wearout
mechanisms. The error detection logic is designed to test all
n+ k wires because once a spare wire is used to reconfigure
the link, it will also be affected by wearout mechanisms. Once
a fault is detected by the error detection logic, the link is
reconfigured to replace the faulty wire with one of the healthy
k redundant wires. The reconfiguration is realized with two
sets of configurable switches (multiplexers and demultiplexers)
controlled by signals generated by controllers, which reside in
the downstream and upstream routers.

While the link structure in Fig.2.a is simple, it suffers from
poor scalability. Obviously, as the number of redundant bits
k increases the reliability of the whole link increases too.
However, the link structure must use n × 1 − to − (k + 1)



demultiplexers in the upstream router and n× (k+1)− to−1
multiplexers in the downstream router. In addition, the com-
plexity and hence area of the two controllers also increases
with the increase of k. Therefore, in order to keep the area
overhead within reasonable limits, in practice k must be
limited to a small number. The block diagram in Fig.2.b shows
implementation details. In this case the number of redundant
bits is k = 4 and therefore the link can only handle up to
4 faults. Once the number of faults increases to more than 4,
the controllers enable a failure signal to inform the routers that
the link is broken and cannot be used anymore at the initial
bandwidth. This information can then be utilized by adaptive
routing algorithms, which will find new routing paths such
that the broken link is avoided.

The reliability of the link structure from Fig.2.a can be
computed using an approach similar to the study in [18]. For
simplicity, we assume that faults can only occur in the main
link and that the redundant bits are fault free. The link structure
in Fig.2.a can be seen as a parallel system. Assuming that all
n wires of the main link are identical and that the probability
of success of any of the n bits is p (that is the probability
of the wire to be functional), then the probability of exactly
(n − k) bits working correctly out of n bits is given by the
binomial distribution:

P (n− k, n, p) =

(
n

n− k

)
pn−k(q)k (1)

where q = 1 − p represents the probability of the wire to be
non-functional.

The link structure is said to work successfully as long
as at least (n − k) bits of the main link remain functional.
Therefore, the reliability of the link structure can be defined
as the probability obtained by summing-up the probabilities
of all possible successful configurations:

R(n− k, n, p) =

n∑
i=n−k

(
n

i

)
pi(q)n−i (2)

B. Proposed segmented link structure

To improve its fault tolerance, we propose to partition the
link into multiple segments and use spare wires at the level of
each segment. Because different segments of the spare wires
address different errors from different segments, the proposed
reconfigurable link structure can tolerate a larger number of
errors with a reduced number of spare wires. Fig.3 illustrates
the main idea behind the proposed segmented link structure.
In this figure, the link with only one redundant wire is divided
into 3 segments. Faults, represented as ’x’, can occur anywhere
along the length of the link. The ’x’ on the first wire in the first
segment of the link illustrates the occurrence of a fault. The
link structure from Fig.2 would replace this faulty wire with
the only available redundant wire. However, in this example
there are two remaining faults, which can not be addressed
by the link structure from Fig.2. In the proposed segmented
link structure, we use only the first segment of the redundant
wire to replace the faulty wire from the first link segment.

Fig. 3. Illustration of proposed segmented link structure.

The second and third faults denoted with ’x’ in Fig.3 can be
handled using the second and third segments of the redundant
wire. Next, we discuss the main limitation of the proposed
segmented link structure and present an elegant solution to
address it.

The proposed segmented link has better fault toler-
ance (hence better reliability) compared to traditional non-
segmented link structure. However, it also suffers from the
scalability problem as the link structure from Fig.2. In fact,
the proposed link structure would utilize larger area overheads
due to the segmentation, which requires multiple sets of
multiplexers and demultiplexers, error detection circuits, and
more sophisticated controllers.

To solve the scalability problem and to reduce the hardware
overhead, the main and redundant wires are divided into L
groups or subsets. Each of the groups of main wires has
ni bits and each of the groups of redundant wires has ki
bits, where i = 1, 2, ..., L. Each of the groups of main
wires has designated a group of redundant wires. Faulty
wires from a given main group can be replaced only by
wires from the designated group of redundant wires. This
solution effectively reduces the size of the programmable
switches (that is multiplexers and demultiplexers) yet enabling
the improvement in fault tolerance. In this case, we only
need to use L × ni × 1 − to − (ki + 1) demultiplexers and
L×ni× (ki+1)− to−1 multiplexers. The proposed solution
is illustrated in the block diagram from Fig.4.

To derive an expression for reliability, we again assume
that faults can only occur in the main wires and that the
redundant wires are fault free. Our derivation is based on the
block diagram shown in Fig.5. In this figure Rb represents
the reliability of a block composed of a group of main wires
together with its designated group of redundant wires. Notice
that since we divided the link into m segments, the probability
of failure of a bit of the main link in any segment is now 1

m×q,
and hence the probability of success is (p+ m−1

m ×q). Similar
to the discussion from the previous section, we assume that
all wires of the main link are identical. Then, the probability
of exactly (ni − ki) bits working correctly out of ni bits is
given by the binomial distribution:

P (ni−ki, ni, p) =

(
ni

ni − ki

)
(p+

m− 1

m
×q)ni−ki(

1

m
×q)ki

(3)
Therefore the reliability of one block of a segment (formed



Fig. 4. Block diagram of the proposed segmented self repairing link. In each segment, the link is divided into groups of main wires and redundant wires.

Fig. 5. System level diagram utilized for reliability computation.

by a group of main wires and its designated group of redundant
wires) can be computed as:

Rb(ni−ki, ni, p) =

ni∑
j=ni−ki

(
ni

j

)
(p+

m− 1

m
×q)j(

1

m
×q)ni−j

(4)
Because failure of any block of a segment results in system

failure, the segment must be modeled as a system of a series of
blocks as illustrated in Fig.5. Therefore, the overall reliability
of a segment can be computed as:

Rs = RL (5)

Finally, the whole segmented link is modeled as a series
system, for which the total reliability of the system can be
computed as:

Rlink = Rm
s (6)

V. FAULT DETECTION

The operation of both non-segmented and segmented recon-
figurable links depends on the ability to detect faulty wires.
To detect faulty wires, we propose an effective FSM-based
fault detection circuit. We assume that the NoC based system
enters a test mode periodically. Fig.6 shows the design of the
fault detection circuit for one bit of the link. In this circuit,
during normal operation, the test mode enable signal is 0,
hence the link carries regular packets from the upstream router.
When the system enters the test mode (test mode enable signal
becomes 1) the link carries the test signal. Testing is done by
sending over the link a pre-defined pulse test signal, which
exercises each wire of the link with both low and high logic
levels (to address stuck at low or high faults). At the receiving
downstream router side, initially the error signal is set to 0 by
the reset signal. As long as the test mode enable signal is 0
the error signal holds its value in state S0. When the system
enters the test mode, the receiving downstream router expects
to receive a 0 first and then a 1. This causes a transition from
S0 to S1 and then a transition back to S0 while the error
signal remains 0 indicating that the wire is healthy. However,
any different signal received during the test mode, generates
an error signal, which is set to 1. Once the system leaves the
test mode (test mode enable = 0) the fault detection circuit
holds the value of the final error signal. This error signal will
be used by controllers during normal operation to decide if a
wire needs to be replaced by a healthy redundant wire or not.

VI. SIMULATION AND EXPERIMENTAL RESULTS

In this section we compare the proposed segmented link
structure against the non-segmented link structure. Both link
structures, shown in Fig.2.b and Fig.4, are coded in Verilog-
HDL. The Verilog-HDL implementations are synthesized and
simulated using Cadence tools [19] while the hardware val-
idation is done using Xilinx ISE tools [20]. We use an



Fig. 6. Block diagram of the error detection circuit for one bit of the link.
Each wire of the link is equipped with an error detection circuit.

Fig. 7. Simulation result that illustrates how a segmented link recovers a
faulty bit of the link. A fault is injected on 63th bit of the main link.

FPGA development board with an Virtex 5 FPGA. Numerical
simulations to estimate reliability is done using Matlab [21].

Our experiments reveal that in order to keep the area
overheads within reasonable limits, the number of redundant
wires k should be limited to only a few. For the same reason,
the number of segments m for the segmented link should be
a small number. In our implementation n = 64 main bits and
k = 4 redundant bits. For the segmented link, the main link is
divided into L = 4 groups (each group has ni = 16 bits) with
a single redundant bit, ki = 1, designated to each group. We
have implemented three different variants of the segmented
link structure with m = 2, 3, 4.

Fig.7 shows a snap-shot of our simulation of the segmented
link for m = 3. In this simulation, we inject a fault on the
second segment of the last bit (bit index 63) of the main link.
As can be seen, once the fault is detected, the error signal is
set to logic high permanently. The controllers reconfigure the
link to replace the faulty wire with the healthy redundant wire,
thereby facilitating self repairing.

A. Reliability

Numerical results based on the expressions of reliability
derived in Section IV show that the proposed segmented link
structure offers considerably higher reliability compared to the

Fig. 8. Percentage of increase in reliability achieved with the proposed
segmented link compared to the non-segmented link.

Fig. 9. Percentage of increase in area occupied by the proposed segmented
link compared to non-segmented link.

non-segmented link. Fig.8 shows the percentage of increase in
reliability for different values of the probability of wire failure.
This result is intuitive and confirms that the more segments the
link has, the higher its reliability (or fault tolerance) will be.
However, as we will see shortly, the increase in the number of
segments results also into an increase in area overhead, power
consumption, and link delay.

B. Area

Fig.9 shows the percentage of increase in area occupied by
the proposed segmented link structure compared to the non-
segmented link. Notably, the area occupied by the 2-segmented
link structure is only 3.71% larger than area of the non-
segmented link. This is due to the considerable reduction in
size of the programmable switches achieved via the proposed
grouping of the main and redundant wires. Nevertheless, it can
be seen that as the number of segments increases, the area
overhead increases significantly compared to non-segmented
link.

C. Power consumption

Fig.10 shows the comparison in terms of power consump-
tion, estimated using Cadence tools. The power consumption
of the 2-segmented link is 23.19% higher than that of the
non-segmented link. It can be seen that as the number of seg-
ments increases, the amount of power consumption increases
considerably too.



Fig. 10. Percentage of increase in power consumption of the segmented link
compared to non-segmented link.

Fig. 11. Percentage of increase in link delay of the segmented link compared
to non-segmented link.

D. Delay

Fig.11 shows the comparison in terms of link delay, as
reported by Xilinx ISE tools. The increase in delay of the
2-segmented link is 16.41% compared to the non-segmented
link. Similar to the cases of area and power comparisons, as
the number of segments increases, the performance penalty
increase considerably.

E. Discussion

It is clear that the best trade off between reliability improve-
ment and penalty in area overhead, power consumption, and
link delay is offered by the 2-segmented link structure. It is
interesting to note that the concept of link segmentation for
further improvement in fault tolerance can also be applied on
top of the reconfigurable link designs presented in [15]–[17].

VII. CONCLUSION

We proposed link segmentation and wire grouping as a
novel technique to improve the fault tolerance against per-
manent faults of NoC links. Because different segments of the
spare wires address different errors from different segments,
the proposed reconfigurable link structure can tolerate a larger
number of errors with a reduced number of spare wires. Cost
effective fault detection circuits and segment level multiplexers
and demultiplexers enable link reconfigurability, thereby self

repairing capability. Experimental results reveal that the 2-
segmented link structure offers the best trade off between
reliability improvement and penalty in area overhead, power
consumption, and link delay.

REFERENCES

[1] L. Benini, and G. De Micheli, “Networks on chips: technology and
tools,” Morgan Kaufmann, 2006.

[2] F.A. Bower, S. Ozev, and D.J. Sorin,“Automatic microprocessor execu-
tion via self-repairing arrays,” IEEE Trans. on Dependable and Secure
Computing, vol. 2, no. 4, pp. 297-310, 2005.

[3] Z. Vasicek, L. Capka, and L. Sekanina, “Analysis of reconfiguration op-
tion for a reconfigurable polymorphic circuit,” NASA/ESA Conference
on Adaptive Hardware and Systems, 2008.

[4] S. D. Mediratta and J. Draper, “Characterization of a fault-tolerant NoC
router,” IEEE Int. Symposium on Circuits and Systems (ISCAS), 2007.

[5] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester,
“Vicis: a reliable network for unreliable silicon,” ACM/IEEE Design
Automation Conference (DAC), 2009.

[6] D. Fick, A. Deorio, G. Chen, D. Sylvester, and D. Blaauw, “A highly
resilient routing algorithm for fault tolerant NoCs,” ACM/IEEE Design
Automation and Test in Europe Conference (DATE), 2009.

[7] C. Feng, Z. Lu, A. Jantsch, J. Li, and M. Zhang, “A reconfigurable fault
tolerant deflection routing algorithm based on reinforcement learning
for network-on-chip,” Int. Workshop on Network-on-Chip Architectures
(NocArc), 2010.

[8] H.S. Kia and C. Ababei, “A new fault-tolerant and congestion-
aware adaptive routing algorithm for regular Networks-on-Chip,” IEEE
Congress on Evolutionary Computation (CEC), 2011.

[9] S. Pasricha and Y. Zou, “A low overhead fault tolerant routing scheme
for 3D Networks-on-Chip,” IEEE Int. Symposium on Quality Electronic
Design (ISQED 2011), 2011.

[10] D. Kim, K. Lee, S.J. Lee, and H.J. Yoo, “A reconfigurable crossbar
switch with adaptive bandwidth control for Networks-on-Chip,” IEEE
Int. Symposium on Circuits and Systems, 2005.

[11] B. Ahmad, A. T. Erdogan, and S. Khawam, “Architecture of a dy-
namically reconfigurable NoC for adaptive reconfigurable MPSoC,”
NASA/ESA Conference on Adaptive Hardware and Systems, 2006.

[12] M. Palesi, S.i Kumar, R. Holsmark, and V. Catania, “Exploiting
communication concurrency for efficient deadlock free routing in
reconfigurable NoC platforms,” IEEE Int. Symposium on Parallel and
Distributed Processing, 2007.

[13] R. Dafali, J. Ph. Diguet, and M. Sevaux, “Key research issues for
reconfigurable Network-on-Chip,” Int. Conference on Reconfigurable
Computing and FPGAs, 2008.

[14] M. B. Stensgaard and J. Sparso, “ReNoC: a Network-on-Chip archi-
tecture with reconfigurable topology,” ACM/IEEE Int. Symposium on
Networks-on-Chip (NOCS), 2008.

[15] Q. Yu and P. Ampadu, “Transient and permanent error co-management
method for reliable Networks-on-Chip,” ACM/IEEE Int. Symposium on
Networks-on-Chip (NOCS), 2010.

[16] T. Lehtonen, D. Wolpert, P. Liljeberg, J. Plosila, and P. Ampadu,
“Self-adaptive system for addressing permanent errors in on-chip
interconnects,” IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, vol. 18, no. 4, 2010.

[17] T. Lehtonen, P. Liljeberg, and J. Plosila, “Online reconfigurable self-
timed links for fault tolerant NoC,” VLSI Design, 2007.

[18] C. Ortega and A. Tyrrell, “Reliability analysis in self-repairing embry-
onic systems,” NASA/DoD Workshop on Evolvable Hardware, 1999.

[19] http://www.cadence.com.
[20] Xilinx ISE Tools, http://www.xilinx.com.
[21] http://www.mathworks.com/products/matlab.


