
Investigation of DVFS for Network-on-Chip Based
H.264 Video Decoders with Truly Real Workload

Milad Ghorbani Moghaddam and Cristinel Ababei
Dept. of Electrical and Computer Engineering

Marquette University, Milwaukee WI, USA

Email: {milad.ghorbanimoghaddam,cristinel.ababei}@marquette.edu

Abstract—We investigate dynamic voltage and frequency scal-
ing (DVFS) for a network-on-chip (NoC) based H.264 video
decoder. The investigation is done using a simulation frame-
work that combines both the communication, i.e. the NoC, and
the processing, i.e., H.264 modules, components into the same
simulation. This approach allows for the NoC to be exercised
with truly real traffic instead of synthetic traffic because the
H.264 modules process real data provided by the actual video
streams supplied as input into the decoder. Therefore, the NoC
design and optimization can be done by directly considering the
workload under which the NoC will operate later on. Because
truly real rather than synthetic traffic is utilized, evaluation of
different NoC design choices is more accurate. Our investigation
demonstrates that we are able to evaluate different NoC mapping
solutions to asses the impact of a given DVFS strategy toward
identifying optimal NoC design solutions for the specific case of
an H.264 video decoder.

Index Terms—network-on-chip; H.264 video decoder; DVFS;
hybrid simulation;

I. INTRODUCTION

Networks-on-Chip (NoCs) replace design-specific global

on-chip wires with a generic on-chip interconnection network

implemented by specialized routers that connect generic pro-

cessing elements (PEs) − such as processors, ASICs, FPGAs,

memories, etc. − to the network and facilitate communications

or links between them. NoCs are predicted to become the

primary communication paradigm for integrated circuits with

increasingly large number of cores, such as chip multiproces-

sors (CMPs) and multiprocessor systems-on-chip (MPSoCs)

[1], [2]. The benefits of the NoC based SoC design include

scalability, predictability, and higher bandwidth with support

for concurrent communications. Since the idea of routing

packets instead of wires was proposed in the early 2000’s,

the NoC concept has grown into a rich research topic, with

numerous papers published on this topic [3].

The most popular approach in studying Networks-on-Chip

(NoCs) is to use NoC simulators. In fact, in many cases,

especially when the number of PEs is very large and hardware

implementations are not yet available, simulators are the only

way to investigate the performance characteristics of design

ideas related to NoCs. As such, several NoC simulators have

been implemented and released to the pubic domain including

BookSim, Noxim, Garnet, and VNOC [4]–[7]. Moreover, sim-

ulators are used to develop design and optimization methods

for NoCs and to evaluate various design decisions. For ex-

ample, NoC simulators can used to evaluate specific dynamic

voltage and frequency scaling (DVFS) algorithms for NoCs

[10].

However, one of the main limitations of such simulation

tools is that they usually simulate synthetic traffic including

uniform random, transpose, and hotspot. In such cases, the

NoC is not exercised with realistic workload/traffic and thus

optimization techniques may be misled to suboptimal solu-

tions. The closest approaches to simulating realistic workloads

include self-similar traffic generators and application specific

trace files. However, self-similar traffic is still synthetic while

trace files are cumbersome to work with, do not include actual

payload data inside the trace files but only injection times and

number of injected packets, and cannot be used in set-ups

where DVFS is utilized because packet injection times change

under DVFS conditions. Yet another approach to simulate

realistic NoC workloads is to use full-system simulators such

as Gem5, which has integrated the Garnet NoC model [8].

The limitation of this approach is that one is limited to only

simulating chip multiprocessors, where all the PE are usually

Alpha or X86 processor architectures. It cannot be used to

simulate specific MPSoCs such as multimedia applications

where the processing elements are not processors but rather

heterogeneous modules with specific functionality.

To address this limitation of current NoC simulators in

the context of an NoC based H.264 video decoder, in our

previous work [9] we presented a new simulation framework

that combines both the NoC with the H.264 video decoder

modules. By simulating concurrently both the NoC and the

functionality of the H.264 application, we effectively operate

the NoC under truly real traffic. In this paper, we utilize

this simulation framework to investigate the DVFS algorithm

proposed in [10] applied to the NoC based H.264 video

decoder.

II. COMBINED NOC AND H.264 VIDEO DECODER

SIMULATION FRAMEWORK

In this section, we present a short description of the

VNOC+H.264 video decoder full system simulation frame-

work which we reported initially in our previous work and

which we employ here as a platform to investigate the DVFS

algorithm. Further details on the architecture of this simulation

framework can be found in [9].978-1-5090-5117-5/16/$31.00 c© 2016 IEEE

Get

NAL

Decode

MB

Frame

Buffer

VNOC + H.264 Framework

Decode

Header

Inter

Pred.
Display

Communication: NoC

Router Link

Buffer CrossbarRC VC Alloc. Arbiter

NI Processing: H.264 modules

Intra

Pred.

Replaced with other modules for

different application

Fig. 2. Hierarchy of objects that make up the code architecture of the VNOC+H.264 video decoder simulation framework.

Get

NAL

Decode

Header

Decode

MB

Intra

Pred.

Inter

Pred.

Frame

Buffer

Display

R R R

R R R

R R R

NoC

Mapping

Application

NoC

Architecture

Fig. 3. Illustration of the mapping of the application modules to the routers
of the NoC architecture.

inside each router, which operates as a voltage frequency

island (VFI) and is primarily composed of two steps that are

executed at the end of each control period. First, it uses history

based predictors to predict link and buffer utilizations denoted

as LU and BU, respectively. These predictions are used to

forecast the future network load. History based prediction

works with a predefined history window (as a number of

control periods), during which the variable of interest, x, is

sampled and then averaged at the end of the window. To

predict the average value of the variable of interest, xpred,

for the next history window, the following equation is used:

xpred =
W × xcurr + xpast

W + 1
(1)

where, xcurr is the computed average value of the variable of

interest in the current history window, xpast is the previous

prediction made during the past history window, and W is a

user set parameter.

In the second step, the predictions are used to decide

whether to throttle or boost the router’s frequency in response

to the forecast congestion in the neighboring routers. In other

Algorithm: Distributed DVFS for Congestion and Power Reduction
1: Start with each router set at fbase and V DDbase

2: At end of each control period, calculate predicted BU and LU
3: for all input buffers of each router and the links that drive them
4: for i← 1 to n do // n: number of routers
5: counterswitch−down = 0, counterswitch−up = 0
6: for j ← 1 to 4 do // 4: number of output ports
7: BU j

pred = (W ∗BU j
curr +BU j

last)/(W + 1)

8: BU j

last = BU j

pred

9: LU j

pred = (W ∗ LU j
curr + LU j

last)/(W + 1)

10: LU j

last = LU j

pred

11: if BU j

pred < BUcongested then // BUcongested = 0.5
12: Tlow = TLlow, Thigh = TLhigh // 0.3, 0.4
13: else
14: Tlow = THlow, Thigh = THhigh // 0.6, 0.7
15: end if
16: if LU j

pred < Tlow then
17: Frequency of this link to be switched down
18: counterswitch−down = counterswitch−down + 1
19: else if LU j

pred > Thigh then
20: Frequency of this link to be switched up
21: counterswitch−up = counterswitch−up + 1
22: end if
23: end for
24: if counterswitch−up > 0 then
25: Increase frequency of this router
26: else if counterswitch−down > 0 then
27: Decrease/throttle frequency of this router
28: else
29: Keep the same frequency for this router
30: end if
31: end for

Fig. 4. Pseudocode of the distributed DVFS algorithm that we investigate
in this paper using the VNOC+H.264 video decoder full system simulation
framework discussed in section II.

words, frequency is tuned proactively, thereby addressing

potential congestion issues and reducing power consumption.

This DVFS algorithm was studied in [10] for NoCs exercised

with synthetic traffic only. It was reported that when frequency

throttle was used only, power consumption could be reduced

by up to 50% while the network latency was only slightly

degraded. When frequency boost was also used, in addition

to significant power reductions, network latency was also

improved for high packet injection rates only. In the next

section, we investigate this DVFS algorithm for an NoC where

the traffic is truly real because it is generated during the

combined simulation of both the NoC and the H.264 video

decoder modules.

IV. SIMULATION RESULTS

In this section, we report simulation results obtained with

the proposed VNOC+H.264 video decoder simulation frame-

work. We used ten diverse H.264 encoded video streams as

our benchmarks, which we downloaded from [12], [13]. These

video streams are real encoded videos that we feed as input

into the video decoder, which decodes and displays them. All

these video streams contain 100 frames and each frame is

352x288 pixels. The default NoC architectural configuration

parameters utilized in our simulations are shown in Table I. To

estimate the power consumption, the simulator is integrated

with the Orion 2.0 power model for NoCs for a 65nm

technology node [14], validated with real data from the Intel’s

80 core chip [15].

TABLE I
NOC AND DVFS ALGORITHM CONFIGURATION PARAMETERS.

Parameter Value

NoC topology Mesh
Size 3x3
Input buffer size 16
Output buffer size 16
Packet size 6
Flit size 16
Link length [mm] 2
Virtual channel number 2
Routing algorithm XY
Base frequency and voltage [2GHz, 1.2V]
Throttle frequencies and voltages [1.8GHz, 1.1V], [1.6GHz, 1V]
Boost frequency and voltage [2.5GHz, 1.2V]

A. Impact of NoC Mapping

In our investigation we selected four different placements

corresponding to four different mappings of the seven H.264

video modules to seven of the nine routers of the 3x3 regular

mesh NoC. These placements are shown in Fig.5.

Each of these placements are simulated using the ten dif-

ferent video stream benchmarks, which are provided as actual

input into the video decoder. By feeding these video streams

as input into the full system simulator, we effectively exercise

the network-on-chip with truly real traffic. The nature of this

traffic is determined by the functionality of the H.264 decoder

application and the content of the video stream supplied as

input. Thus, we are able to emulate the operation of the entire

NoC based H.264 video decoder system as a whole as closely

as possible to a real hardware implementation.

The objective of these simulations is to see the impact of

the NoC mapping on power consumption, average latency, and

power delay product (PDP). The results are summarized in

Fig.6. These results show that the placement1 from Fig.5.a

is the best one, which is what we expected because it was

manually done such that highly communicating video modules

were placed as close as possible.

B. Impact of DVFS Algorithm

In the second set of simulations, we investigate the impact of

the dynamic voltage and frequency scaling (DVFS) algorithm

studied in [10] using the placement1 that was found the best

R

Intra

Prediction

Decode

Microblock

Frame

Buffer

R R

R R R

R R R

Get

NAL

Decode

Header

Inter

Prediction
Display

(a)

R

Intra

Prediction

Decode

Microblock

Frame

Buffer

R R

R R R

R R R

Get

NAL

Decode

Header

Inter

Prediction

Display

(b)

R

Intra

Prediction

Decode

Microblock

Frame

Buffer

R R

R R R

R R R

Get

NAL

Decode

Header

Inter

Prediction

Display

(c)

R

Intra

Prediction

Decode

Microblock

Frame

Buffer

R R

R R R

R R R

Get

NAL

Decode

Header

Inter

Prediction

Display

(d)

Fig. 5. Four different manual placements of the H.264 video decoder modules
to a 3x3 regular mesh NoC. Each of the modules is mapped to its own router
of the NoC to which is connected via the network interface.

in the previous section. Each of these simulations is done

with and without the DVFS algorithm being enabled. The

0.128

0.13

0.132

0.134

0.136

0.138

0.14

0.142
P

o
w

er
 (

W
)

placement1 placement2 placement3 placement4

(a)

0

5

10

15

20

25

L
at

en
cy

 (
cy

cl
es

)

placement1 placement2 placement3 placement4

(b)

0

0.5

1

1.5

2

2.5

3

3.5

P
D

P

placement1 placement2 placement3 placement4

(c)

Fig. 6. Investigation of the impact of video decoder module placements on
power, latency, and power delay product of the NoC. The horizontal axis
lists the name of the video stream benchmarks. (a) Power consumption, (b)
Average network latency, (c) Power delay product (PDP).

reference or base case is when DVFS is turned off. When the

DVFS algorithm is turned on, all the routers are set initially to

the base frequency and base voltage. Then, as the simulation

progresses, frequencies and voltages are changed dynamically

as described in Fig. 4. Following the approach in [10], we

have ran our simulations for different lengths of the history

window (HW) that characterizes the link and buffer utilization

predictors.

With DVFS turned on, we investigate two different modes.

The first is when only frequency throttling is used. The second

mode is when we also allow frequency boost, which is 25%

higher than the base frequency. This is similar to the study in

[16] and is often employed in real designs with overclocking

strategies [17]. The simulation results are summarized in Fig.7,

where for each of the ten video stream benchmarks (shown on

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

P
o
w

er
 (

W
)

base t5 t50 t100 t500 b5 b50 b100 b500

(a)

0
2
4
6
8

10
12
14
16
18
20

L
at

en
cy

 (
cy

cl
es

)

base t5 t50 t100 t500 b5 b50 b100 b500

(b)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

P
D

P

base t5 t50 t100 t500 b5 b50 b100 b500

(c)

Fig. 7. Investigation of the impact of DVFS on power, latency, and power
delay product. The horizontal axis lists the name of the video stream
benchmarks. (a) Power consumption, (b) Average network latency, (c) Power
delay product (PDP).

the x axis) we show nine data points (i.e., a cluster of nine

bars), which include the base case (i.e, no DVFS being used),

the cases where frequency is only throttled t5, t50, t100, t500

for history windows of length 5, 50, 100, 500 control periods,

and finally the cases where frequency can be both throttled

and boosted b5, b50, b100, b500 again for history windows

of length 5, 50, 100, 500 control periods.

We observe that as the history window is increased the

impact of the DVFS in terms of reducing power consumption

is more significant as shown by the smaller power consumption

for each of the ten benchmarks in Fig.7.a. In addition, as

expected, once frequency boosting is enabled, the power

consumption increases compared to when only frequency

throttling is used (see taller four bars on the right hand side

for each benchmark in Fig.7.a). Frequency boost does help to

reduce the average network latency compared to when only

frequency throttling is used as seen in Fig.7.b. However, the

latency is larger than in the base case when no DVFS is used.

This is because when any of the video stream benchmarks

are processed by the VNOC+H.264 simulator, the NoC is

not operated at a packet injection rate that is high enough

to trigger a lot of frequency boosting. Because at low and

moderate packet injection rates mostly frequency throttling is

triggered by the DVFS algorithm, the latency is worse than the

base case. Nevertheless, from a power delay product (PDP)

perspective the DVFS algorithm has a positive impact in that

the PDP values are lower across the board compared to the

base case as seen in Fig.7.c.

C. Qualitative Validation of Decoded Video Quality

Finally, to validate the VNOC+H.264 video decoder work-

ing under DVFS, we compared frame by frame its decoded

video stream with that produced by the traditional implemen-

tation where the communication was done using the traditional

memory-mapped programming model. Fig.8 shows qualita-

tively a side by side comparison of selected frames from the

decoded output of one of the video stream benchmarks. The

decoded video streams are the same confirming the correctness

of the NoC based implementation.

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Qualitative comparison of three different frames processed with the
original memory-mapped based communication H.264 decoder and with the
new NoC based communication H.264 decoder. a), c), e) Frames index 1, 30,
and 60 of video stream benchmark Stefan decoded by the reference memory-
mapped implementation. b), d), f) The same frames decoded by the NoC
based implementation.

V. CONCLUSION

As a departure from traditional NoC simulation tools that

use mostly synthetic traffic workloads, we described the use

of an NoC simulation framework, that is able to exercise the

NoC with truly real traffic in order to investigate dynamic

voltage and frequency scaling for a network-on-chip based

H.264 video decoder. The simulation framework combines

both the NoC and the H.264 video decoder modules. Without

such a simulation capability, the NoC would be designed

using simulations based on synthetic traffic, which may not

be accurate and could lead to sub-optimal solutions.

REFERENCES

[1] P. Guerrier and A. Grenier, “A generic architecture for on-chip packet-
switched interconnections,” ACM/IEEE Design Automation and Test in

Europe Conference (DATE), pp. 250-256, 2000.
[2] W.J. Dally and B. Towles, “Route packets, not wires: on-chip intercon-

nection networks,” ACM/IEEE Design Automation Conference (DAC),
pp. 684-689, June 2001.

[3] R. Marculescu, U.Y. Ogras, L.-S. Peh, N.E. Jerger, and Y. Hoskote,
“Outstanding research problems in NoC design: system, microarchitec-
ture, and circuit perspectives,” IEEE Trans. on Computer-Aided Design

of Integrated Circuits and Systems (TCAD), vol. 28, no. 1, pp. 3-21,
2009.

[4] BookSim Interconnection Network Simulator, Stanford University,
2016. [Online]. Available: http://nocs.stanford.edu/cgi-bin/trac.cgi/
wiki/Resources/BookSim.

[5] Noxim - the NoC Simulator, University of Catania, 2016. [Online].
Available: https://github.com/davidepatti/noxim.

[6] GARNET: a detailed on-chip network model inside a full-system
simulator, MIT, 2016. [Online]. Available: http://projects.csail.mit.edu/
cgi-bin/wiki/view/LSPgroup/GarnetPage.

[7] Software downloads at MESS Lab, Marquette University, 2016. [On-
line]. Available: http://dejazzer.com/software.html.

[8] N. Binkert, B. Beckmann, G. Black, S.K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D.R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewall,
M. Shoaib, N. Vaish, M. D. Hill, D.A. Wood, “The gem5 simulator,”
ACM SIGARCH Computer Architecture News Archive, 2011.

[9] M.G. Moghaddam and C. Ababei, “Performance evaluation of network-
on-chip based H.264 video decoders via full system simulation,” IEEE

Embedded Systems Letters, Under Review, 2016.
[10] C. Ababei and N. Mastronarde, “Benefits and costs of prediction based

DVFS for NoCs at router level,” IEEE Int. SoC Conference (SOCC),
2014.

[11] Martin Fiedler, Implementation of a basic H.264/AVC Decoder, 2016.
[Online]. Available: http://keyj.emphy.de/files/projects/h264-src.tar.gz

[12] FastVDO: H.264 Video streams, 2016. [Online]. Available: http://www.
fastvdo.com/H.264.html

[13] YUV Video Sequences, 2016. [Online]. Available: http://trace.eas.asu.
edu/yuv

[14] A.B. Kahng, B. Li, L.-S. Peh, K. Samadi, “ORION 2.0: A power-area
simulator for interconnection networks,” IEEE Trans. on Very Large

Scale Integration (VLSI) Systems, vol. 20. no. 1, pp. 191-196, Jan.
2012.

[15] S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y.
Hoskote, N. Borkar, and S. Borkar, “An 80-tile sub-100-W TeraFLOPS
processor in 65-nm CMOS,” IEEE Journal of Solid-state Circuits, vol.
43, no. 1, pp. 29-41, Feb. 2008.

[16] A.K. Mishra, A. Yanamandra, R. Das, S. Eachempati, R.R. Iyer,
N. Vijaykrishnan, and C.R. Das, “RAFT: a router architecture with
frequency tuning for on-chip networks,” J. Parallel Distrib. Comput.,
vol. 71, no. 5, pp. 625-640, 2011.

[17] D. Lo and C. Kozyrakis, “Dynamic management of TurboMode in
modern multi-core chips,” IEEE Int. Symp. on High Performance

Computer Architecture (HPCA), 2014.

