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Abstract— Due to technology downscaling, embedded
systems have increased in complexity and heterogeneity.
Increasingly large process, voltage, and temperature varia-
tions negatively affect the design and optimization process
of these systems. These factors contribute to increased
uncertainties that in turn undermine the accuracy and ef-
fectiveness of traditional design approaches. In this paper,
we formulate the problem of uncertainty aware mapping for
multicore embedded systems as a multi-objective optimiza-
tion problem. We present a solution to this problem that
integrates uncertainty models as a new design methodol-
ogy constructed with Monte Carlo and evolutionary algo-
rithms. The methodology is uncertainty aware because it
is able to model uncertainties in design parameters and to
identify robust design solutions that limit the influence of
these uncertainties onto the objective functions. The pro-
posed design methodology is implemented as a tool that
can generate the robust Pareto frontier in the objective
space formed by reliability, performance, and energy con-
sumption.

Keywords— Embedded systems, uncertainties, robust
mapping, reliability, performance, energy consumption

I. Introduction

Continuous technology downscaling and the increase in
size of embedded systems resulted in new design challenges:
increased design uncertainties due to variations in fabrica-
tion processes, supply voltage, and temperatures [1]; poor
reliability and performance degradation caused by elevated
rates of faults and increasingly adverse aging mechanisms
[2]; and increased design complexity caused by heterogene-
ity of the hardware platform, diversity in hardware and
software components, and new communication infrastruc-
tures such as networks-on-chip [3]. These factors make for
design parameters not to be deterministic anymore; instead
they become less precisely known or more uncertain. If
these design parameters become uncertain then, the path of
explored solutions during design space exploration (DSE)
may become uncertain and divergent from the path towards
the true optimal solution.

In this context, it becomes desirable to be able to quan-
tify such divergence and to develop a design methodology
capable of finding design solutions that are the most likely,
with certain confidence, to be robust against uncertainties.
Normally, such design solutions would be points on the
Pareto frontier generated during the design space explo-
ration, an example of which is shown in Fig. 1.a. However,
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Fig. 1. (a) Pareto frontier surface in traditional embedded systems
design. (b) Uncertain Pareto surface where a design point degenerates
into multiple solution points.
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when one considers uncertainties in the design process, the
traditional Pareto surface in the solution space becomes
uncertain as shown in Fig. 1.b.

In this paper, we propose a design method that is able to
identify robust design points on this uncertain Pareto fron-
tier. The proposed method models and handles uncertain-
ties directly. This method is implemented as a computer
program (i.e., a design tool) that integrates uncertainty
models and algorithms to solve the problem of mapping
for hardware/software (HW /SW) design of embedded sys-
tems. Our tool chooses as the best final solution the one
closest to the “origin” of the 3D objective space from Fig.
1.b. This represents a compromise among all three objec-
tives. However, the designer can pick a different solution.
For example, if performance is really the most important
for some application, then, a design point with the best
performance can be selected, but likely with worse reliabil-
ity and power consumption.

II. Related Work

The problem of HW /SW co-design for embedded sys-
tems has been studied extensively in the past. It was
formulated as multi-objective optimization in studies of
system-level synthesis [4], [5] as well as of platform con-
figuration [6]. Several previous solutions have been inte-
grated into computer aided design automation tools [7],
[8], [9]. These tools facilitate flexible system-level perfor-
mance evaluation by providing support for mapping a be-
havioral application specification to an architecture speci-
fication [10], [11]. Also, reliability has become a primary
design concern alongside traditional design objectives [12],
[13]. However, the majority of the previous work did not
consider uncertainty or reliability in the design process of
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Fig. 2. Illustration of the mapping problem. Tasks A, B, C, and

communications 1, 2, 3 are mapped to components of the architecture
platform.

embedded systems. The studies in [14], [15] are recent at-
tempts to capture uncertainty in the process of optimiza-
tion of embedded systems. In this paper, we integrate such
techniques in a comprehensive approach that considers also
performance and energy consumption, not only reliability.
The main contributions include: 1) We solve the mapping
problem for general purpose embedded systems while con-
sidering simultaneously reliability, execution time, and en-
ergy consumption. The proposed solution is implemented
as a design space exploration method that uses the Non-
dominated Sorting Genetic Algorithm (NSGA-II). 2) We
model and deal with uncertainty in design parameters. We
investigate different levels of injected uncertainty and pro-
vide simulation results. 3) We assume the architecture
platform to be comprised of both hardware and software
components. To the best of our knowledge, our work is the
first to address the problem of multi-objective (reliability,
performance, and energy) mapping for general purpose em-
bedded systems under uncertainties.

III. Proposed Design Methodology
A. Block Diagram

The proposed design method is an iterative process that
uses an enhanced evolutionary algorithm, to solve the prob-
lem of mapping. The problem of application mapping is
the problem of finding the best placement of application
tasks and communications between tasks to the architec-
ture platform as illustrated in Fig. 2.

Finding the best placement is done by exploring the de-
sign space formed by all possible solutions. This explo-
ration is implemented as an iterative optimization algo-
rithm. The outer loop of this iterative process is illustrated
in Fig. 3, which shows the block diagram of the proposed
design method. The inner loop represents the iterative pro-
cess of the Monte Carlo (MC) simulation technique that we
employ for the estimation of objective functions under un-
certainty. The primary objectives that we consider in this
paper include reliability, performance (measured as execu-
tion time), and energy consumption. Thus, the problem we
address is a multi-objective objective problem under spec-
ified levels of uncertainty. The output of the optimization
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Fig. 3. Block diagram of the proposed design methodology for em-
bedded systems mapping under uncertainties.

process illustrated in Fig. 3 is a set of robust solutions
that form the robust Pareto frontier in the three dimen-
sional objective space. In the next sections, we describe
the primary steps of the proposed design flow.

B. Uncertainty Modeling

The Uncertainties block on the top left-hand side from
the diagram in Fig. 3 represents the uncertainty injec-
tion process. There has been significant work studying
uncertainty in various fields including engineering, math-
ematics, and other sciences [16]. However, it is generally
agreed that there is no single model for handling any type
of imperfect information. Therefore, similarly to [14], we
propose to adopt the most general approach to capture
uncertainty: design parameters and their variation can be
specified as generalized, continuous or discrete, probability
distributions in any mixture. Aside from its generality and
ability to accommodate any probability distribution, this
approach has the advantage of being able to accommodate
complementary approaches as well. For instance, we can
use uniform distributions to convert interval estimates into
the proposed framework. On the limitations side, combin-
ing different probability distributions is usually analytically
intractable, and therefore we must resort to Monte Carlo
simulation based techniques in order to quantify figures of
merit (described later). This, in turn, may increase the
computational runtime.

Uncertainty can be injected into the application or/and
the architecture, depending on what design parameters are
assumed to be affected by uncertainties and to what degree.
This injection will be done in different amounts or degrees
during the design space exploration depicted in Fig. 3. The
injection process amounts to generating samples from pre-
specified probability distributions during the Monte Carlo
simulation technique used to evaluate reliability, execution
time, and energy. Because we allow working with any type
of probability distribution, we must define what is meant by
injecting a given percentage of uncertainty into the design
parameters of interest. We do that by pre-specifying the
mean and the variance of the probability distributions out
of which the sampling is done according to the rules listed
in Table I.

The rationale behind the rules presented in Table I can



RULES FOR DEFINING MEAN AND VARIANCE OF DISTRIBUTIONS FROM

WHICH SAMPLING MUST BE DONE TO ACHIEVE A CERTAIN DEGREE

TABLE I

OF UNCERTAINTY INJECTION.

Probability Uncertainty Uncertainty Uncertainty
Distribution 1% 5% 10%
Uniform(u,0) | 0 =0.01-pu/V/3 ] 0=005-p/vV3]0=01-u/V3
Gaussian(p,o) | 0 =0.01-p/3 c=0.05p/3 c=0.1 /3
Beta(p, 0) oc=0.01-p/3 o =0.05p/3 oc=0.1 u/3

be explained with the help of Fig. 4.

For example, let us assume that the uncertainty is mod-
eled for some design parameter with a uniform distribution.
Then, modeling 5% of uncertainty in this design parameter
during the design space exploration is achieved by having
the MC simulation (discussed later in a different section)
generate samples from an interval as shown in Fig. 4.a for
the case when for example the mean is u = 100.

That is because the variance (whose square root is the
standard deviation, o) is given by the expression Var =
(b—a)?/12. In the case of a Gaussian distribution, samples
are generated randomly from a distribution Gaussian(u, o)
but only samples falling inside the interval [p — 30, p + 30],
as shown in Fig. 4.b are accepted, which represent 99.7%
of all generated samples. The case of the beta distribution
is similar to that of the Gaussian case. The difference is
only in the actual confidence level, which can be different
from 99.7%. When no uncertainty is injected, the mean
value i becomes the deterministic fixed value for that de-
sign parameter. Note that similar rules can be derived for
any other type of distribution that we may be interested
in using to model parameter uncertainty. For simplicity,
in this paper, we restrict ourselves to using uniform and
Gaussian distributions for modeling the execution time and
the power consumption of architecture components and for
modeling the transition probabilities inside the reliability
model (discussed later). In addition, beta distribution is
used to model failure rates of components, similarly to the
study in [14]. However, our framework is flexible and can
easily accommodate other probability distributions if em-
bedded designers find their data to fit better such distribu-
tions.

C. Application and Architecture Modeling

To model the Application in Fig. 3, we use the nota-
tion from [17] and model applications using Kahn Pro-
cess Networks (KPNs), which are very popular models
of computation used in embedded systems design [5],
[17]. An KPN is represented as an application directed
graph Gap(Vap,Eap) (see Fig. 2). Each vertex v;,i €
{1,..,|Vap|} corresponds to a process or task of G4p. For
each vertex v;, we define B; = {e; € Eap} to be the
set of application channels connected to vertex v;. When
a vertex is mapped to a hardware component, ht; repre-
sents the hardware execution time. When the task can
be executed on multiple hardware cores, ht; becomes a
set ht; = {ht;1, ht;a,..,ht;u}, where U is the number of
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Fig. 4. (a) To inject 5% uncertainty for a parameter characterized by
a uniform distribution whose mean is 100 for example, we generate
samples from a uniform distribution defined on the interval [a = p —

0.05 - 1/v/3,b = 4 0.05 - u/+/3]. (b) The interval used for the case
of a Gaussian distribution whose mean is p.

hardware cores on which the task can be executed. When
a vertex is mapped to a software component, st; is the
software execution time. When the task can be exe-
cuted on multiple software components, st; becomes a set
st; = {sti1, sti2, .., st;y }, where V' is the number of software
components on which the task can be executed. Each edge
ej,j €{L,..,|Eap|} corresponds to link between two differ-
ent tasks of G p. If a communication link is mapped onto
a memory core, mt; represents the memory access time,
which will be added to the path delay. When the link can
be mapped to multiple memory components, mt; becomes
a set mt; = {mt;1, mt;o,..,mt;w }, where W is the number
of memory components to which the link can be mapped
to.

The Architecture model is also represented by a graph
Gar(Var,Eagr), where the sets Var and Eup denote
the architecture components and the connections between
them. The set of architecture components consists of two
disjoint subsets: the set of processing cores (P) that include
hardware and software elements and the set of memories
(M), Var = PU M. The delay of a communication link
between two different architecture components is denoted
as lt,q, with p,q € {1,..,|Ear|}. The power dissipations
are denoted as wy, for the core p during execution, as Wy,
for the memory core m, and as w;, for the communication
links. In this paper, we assume that the architecture plat-
form is given because we do not address the problem of
architecture synthesis.

D. Design Space Exploration Using Genetic Algo-
rithms

The Design Space Ezploration block from Fig. 3 is where
new mapping solutions are generated and the optimization
process takes place. This is a challenging step not only
because of the complexity of the problem but also because
it must model uncertainties. The mapping problem is a
multi-objective optimization problem whose objective func-
tions or quality attributes often conflict. In this paper, we
consider the following objectives.



D.1 Objective 1: Reliability

The first objective function is the reliability of the sys-
tem, which needs to be maximized. To estimate reliability,
we use the approach described in [18], [19] due to its sim-
plicity. Note that other reliability models can be used here
as well. Our framework is generic enough and can employ
any reliability model of interest such as that presented in
[15] for example.

The reliability model is based on absorbing discrete time
Markov chain (DTMC) models, which are graphical models
consisting of finite state machine like state graphs [18]. For
a given mapping solution, the DTMC model is constructed
from the architecture platform of the system. The expres-
sion to estimate the architecture based reliability of the
system is:

R=S(1,n)R, (1)

Where S is called the fundamental matrix of the DTMC,
S(%,7) is the expected number of visits to state j starting
from state i before it is absorbed, and n is the number
of states in the model. The objective of maximizing the
reliability of the system can be written as a minimization
objective as follows:

min {1 — R} (2)

D.2 Objective 2: Execution Time

The second objective function is the one that minimizes
the maximum execution or processing time of the critical
path from the set of all paths (set denoted as Path) inside
the application task graph. This minimum value is used as
a direct measure of performance, and, using the notations
introduced earlier, can be expressed as follows.

min E

i€Vap,i€Path

>

1€Vap,i€Path

max { htinTiw +

Path

StivTiv + (3)

[ lth + (Mt + lmn )T |25 }
JEEAp,jEPath

The first term in the above equation represents the con-
tribution of the hardware cores to the execution time of
the critical path. Similarly, the second term captures the
contribution from the tasks executed as software modules.
Finally, the third term is the contribution to the processing
time of the delay due to direct links between different ar-
chitecture cores and possibly of the memory access time if
the application communication channel j is mapped onto
a memory core. Here, mt;, is the memory access time
with w € {1,.., M}, lty; is the link delay between architec-
ture cores k and ! with k,1 € {1,..,|Var|} and lt,,, is the
link delay between architecture cores m and n also with
m,n € {]-7 ) |VAR|}

The variables x;y,, Tiy, Tjw, and x; are decision variables
that capture whether a task 7 is mapped to a hardware core
u or a software core v, whether a communication channel
7 is mapped to a memory core w, and whether a commu-
nication channel is contained within a core (i.e., two com-
municating tasks are mapped to the same core, in which
case z; = 0) or not. The values of these decision vari-
ables are different for different mapping solutions, which
are generated during the genetic algorithm based design
space exploration from Fig. 3.

D.3 Objective 3: Energy Consumption

The third objective function minimizes the energy con-
sumption.

Z t;wpe + Z (tfwie + tmWme)

i€VaR JEEAR

min

(4)

In the above equation, ¢} is the time spent by the processing
cores for execution, tf is the time spent on communication,
and t,, is the total processing time of the memory cores.

D.4 Solving the Multi-objective Problem

Once all three objective functions are defined as dis-
cussed in the previous sections, the overall optimization
problem — which in our case is the mapping problem —
can be written in a generalized form as follows [20]:

z = f(x) = (f1(x), f2(X),f3(X))T
s.t. xeX

()
(6)

In the above equation, x represents a particular solution,
and X is a set of feasible solutions. In our case, a mapping
solution is captured by the individual decision variables
discussed earlier that completely describe how application
tasks are assigned to the cores of the architecture platform.
The three individual objective functions f1, fa, and f3 ef-
fectively evaluate the expressions from equations (2), (3),
and (4) for a given mapping solution. The overall objective
function z = f(x) translates a solution x from the decision
space defined by the decision variables to a point in the
objective space defined by the three objective or cost func-
tions. In our case, the objective space is three dimensional
and the overall objective function is defined as the equally
weighted summation of the three individual objective func-
tions from equations (2), (3), and (4).

Because multi-objective optimization problems usually
do not have a single best solution which optimizes all ob-
jectives at the same time, we are interested in finding a set
of solutions that form the so called Pareto frontier. The so-
lution points that form the Pareto frontier are points that
are non-dominated by any other solution point among all
solutions from the feasible set. To solve the multi-objective
mapping problem and to generate the Pareto frontier, we
use evolutionary algorithms due to their ability to handle
multiple objectives at the same time. More specifically, we

min
X



Algorithm 1 Design space exploration based on NSGA-II

Input: N population size, M max number of generations
Output: Pareto frontier, non-dominated solutions in Pjys

Py = GeneratelnitialPopulation(); // size N
Qo = 0; // start with children set empty
EvaluateObjectiveFunction(Py); // calculate fitness
RankPopulation(Fp); // done according to fitness values
for (i=0to M —1) do
// Create children population:
Q; = SelectionCrossoverMutation(F;);
// Uncertainty aware, Monte Carlo based:
EvaluateObjectiveFunction(Q;);
P11 = CombineParentsAndChildren(P;, Q;);
RankPopulation(P;11);
// Elitism: keep non-dominated:
P, 1 = SelectNIndividuals(P;1);
end for

use the NSGA-IT [21] because it was shown to offer ben-
efits over other types of evolutionary algorithms includ-
ing ease of implementation and lower computational com-
plexity [20]. The pseudocode description of this algorithm
is shown in Algorithm 1. This algorithm implements the
outer loop of the method described in Fig. 3.

The genetic algorithm iteratively generates new children
solution populations from previous parent solution popu-
lations using crossover and mutation. This generation is
usually realized using different forms of crossover and mu-
tation. In the beginning, the genetic algorithm requires
an initial set of solutions, the initial population, which in
our implementation we generate randomly for simplicity.
The way mapping solutions are encoded is similar to the
approach discussed in [20]. Each genotype (or representa-
tion of the possible mapping) consists of task nodes that
can mapped to SW components, task nodes that can be
mapped to HW components, and communication arcs that
can be mapped to memory components. Each gene in the
chromosome (or genotype) has its own feasible set. For ex-
ample, for genes representing nodes that must be mapped
to SW components, only the set of CPUs in the archi-
tecture model form the feasible set. During the iterative
process of the outer loop in Fig. 3, new solutions are eval-
uated by FuvaluateObjective Function(), which uses equa-
tion (5). Tt is also this evaluation step that distinguishes
our approach from previous work. Here, we assume uncer-
tainties to affect design parameters. The evaluation step
employs a Monte Carlo simulation technique to deal with
uncertain quantities and is discussed in the next section.
For more details about the NSGA-IT algorithm, please see
[21].

E. Estimation Under Uncertainty

During the NSGA-IT genetic algorithm based DSE de-
picted in Fig. 3, each new solution candidate must be
evaluated in order to estimate: reliability, execution time,
and energy. Their deterministic calculation, in a tradi-
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tional design flow, can be done using the main expressions
from equations (2), (3), and (4). However, when design
parameters are affected by uncertainties, any of the design
attributes that is affected by uncertainties cannot be esti-
mated anymore using deterministic equations. Analytic so-
lutions are extremely difficult or impossible to derive when
dealing with a wide variety of distributions. Instead, esti-
mation techniques that model and can handle uncertainty
must be employed. In such situations, a Monte Carlo sim-
ulation based technique represents the only effective tech-
nique that is capable of accommodating multiple types of
probability distributions [13], [14]. This technique is repre-
sented by the Monte Carlo Simulation block in Fig. 3 and
is described in more details in Fig. 5.

More specifically, to estimate reliability we employ the
enhanced Monte Carlo estimation technique proposed in
[14]. In this case, the input to the Monte Carlo Simulation
block from Fig. 5 is the probabilistic DTMC reliability
model, which includes parameters affected by uncertainty
and specified as probability distributions. During the MC
iterations, these distributions are sampled to generate in-
stances that are then used as numerical values to compute
the attribute of interest. In this way, the impact of uncer-
tainties on the estimation process is captured. The esti-
mated reliability metric becomes a variable quantity itself
whose distribution is unknown. The variation of this quan-
tity will represent an important measure that summarizes
the impact of uncertainties.

To estimate the performance and energy consumption
attributes, the Monte Carlo simulation technique is sim-
pler because here we do not need to build the probabilistic
DTMC model. During multiple MC runs, parameters af-
fected by uncertainties are also sampled from their respec-
tive probability distributions and used as numerical values
inside equations (3) and (4).

F. Robustness of the Design Solution Points

The output of the MC simulation technique to estimate
a certain attribute of interest for a given mapping solu-
tion is a number of samples out of the probability distri-
bution that characterizes the unknown attribute. We use
the 95 percentile estimate as the actual value used to gen-
erate and plot the robust Pareto frontier in the objective
space. Working with percentile estimates provides a means
to quantify or specify the robustness of the solution. The
higher the percentile, the more robust the given solution
is against uncertainties. Aside from generating the robust



Pareto frontier in the three dimensional objective space,
during each of the genetic algorithm iterations (see Fig. 3),
solution points that are found to be better than previously
found solutions are selected and added to the list of best
robust solutions. This is a short list of potential design so-
lution points from which embedded systems designers can
select a final solution.

IV. Simulation Results

The proposed design method was implemented as a C++
computer program, which also integrates the publicly avail-
able implementation of NSGA-IT [22]. For simulations, we
use four testcases. The first two testcases are from the
automotive application domain, ABS (anti-lock break sys-
tem) and ACC (adaptive cruise control). We adopted these
two testcases from the study in [14]. The last two testcases
are from the multimedia application domain and include
H.264 (video decoder) [23] and JPEG (picture compres-
sion) [24]. However, due to lack of space we report results
for the first testcase only. The other testcases have similar
plots and the conclusions that that we arrived at are the
same for each of these testcases. The only difference be-
tween these testcases is the computational runtime, which
increases linearly with the testcase size.

A. Architecture Platform

Because reliability, performance, and energy consump-
tion represent objective functions, the only constraints that
we used in our problem formulation consist of the architec-
ture platform being given and the HW/SW partitioning of
the given application. Specifically, in our case we assume
that the architecture platform has twelve components in or-
der to be able to accommodate the largest application task
graph that we investigated. That includes five software
components, five hardware components, and two memory
components. The communication arcs in the graph are as-
sumed to be implemented via memory mapping; that is,
the source task writes into a memory component and the
destination tasks read from the memory component. In our
assumed architecture platform (see Fig. 2), we assume two
types of CPUs similar to the recent multicore proposals
that integrate high-performance “big” and energy efficient
“little” cores [25], [26], [27]. As HW components, we assume
also two different types of FPGAs; one type that is slower
but consumes less power and the other type that is faster
but consumes more power. The FPGAs are assumed to be
faster than the CPUs because they can offer increased par-
allelism; they may not be as fast as ASIC cores, but, have
the flexibility of reconfiguration. We adopt execution times
and failure rates similarly to the study in [14] and power
consumption values similar to those reported in [28].

B. Pareto Frontiers

In the first set of simulations, we use our tool to identify
the robust Pareto frontier in the (1-reliability) vs. perfor-
mance vs. energy objective space. All attributes are as-
sumed to be affected by uncertainties and therefore, they
are estimated using the Monte Carlo technique described in
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uncertainty.

section 3.E. In order to generate Pareto frontiers that are
scale independent, we normalize the performance and en-
ergy cost functions such that all values are inside the range
[0,1]. The normalization of a given cost function is done ac-
cording to: fnorm = (f - fmzn)/(fmam - fmzn)a where fr.in
and f,,4; are the minimum and maximum or worst case
scenario values of the respective objective cost function f.
The cost function (1-reliability) is already with values in
the [0, 1] range, hence, it does not require normalization.

The simplified Pareto frontier for the ABS testcase is
shown in Fig. 6, for a level of 5% injected uncertainty. It is
simplified in the sense that it does not show all the actual
solution points that were found to be on the frontier during
the execution of the tool. During this simplification, we
basically select nine solution points: three solution points
that are as close as possible to the center of coordinates,
and three pairs of two solution points that are very good in
terms of only one of the three costs. We do this in order to
keep this figure simple, yet to give the user enough solutions
to choose from (the number of nine can be changed to a
different number if the user desired).

The solution points that are the closest to the system of
coordinates represent solutions that the tool reports as be-
ing the best compromise among all three objectives. The
other solution points can be selected if any of the three
objectives is very important, depending on the application
at hand. For example, if execution time or performance
is highly critical, one of the two solution points that were
found to offer very good performance (but with worse en-
ergy consumption and worse reliability) can be selected.
The ability to generate these 3D Pareto frontiers comprised
of robust solution points (robust in the sense described in
section 3.F) represents one of the main contributions of this

paper.
C. Different Levels of Uncertainty

Second, we investigate how the Pareto frontiers change
for different levels of injected uncertainty. Being able to
study different levels of uncertainty can help in scenarios
where we want to conduct what if type of investigations.
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For example, let us say that for a given technology node the
uncertainty level is assumed to be 5%, but, that this value
in not completely certain. In this case, we could investigate
how the selected best solution found by the tool for uncer-
tainty 5% would change if the assumed uncertainty level
itself is varied. Such an investigation can help to see how
the solution point moves in the 3D space and whether it
still satisfies the desired figures of merit for the application
at hand. This scenario is what we focus in this section.
The different levels of uncertainty that we simulated are:
0% (no uncertainty, this is the deterministic case), 1%, 5%,
and 10%. The Pareto frontier for these levels of uncertainty
is shown in Fig. 7.

Having the deterministic case as a reference, when un-
certainty is injected, the previously deterministic and fixed
parameter values are replaced with samples generated out
of various probability distributions, each characterized by
a certain mean and standard deviation pair. The stan-
dard deviation value that is used is directly related to the
amount of desired uncertainty to be injected as discussed
earlier in the paper. Thus, a previously deterministic de-
sign solution point degenerates into a probability distribu-
tion, whose 95 percentile estimate represents the robust so-
lution point that we use for constructing the robust Pareto
frontier. The location of this point is most likely differ-
ent than the location of the previously deterministic de-
sign solution point. The amount of this change is within a
vicinity whose size is dictated by the amount of uncertainty
injected.

For example, this can be seen in the zoom-in picture
from Fig. 8, which shows the four solution points for each
of the four levels of injected uncertainty for a given map-
ping solution. The zero injected uncertainty represents the
deterministic approach. This figure illustrates how a so-
lution point found by traditional deterministic approaches
can be off from the robust design solution point identified
by our tool for a given level of injected uncertainty. How-
ever, by using our tool, we can identify this shift and quan-
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tify each of the found solution points in terms of reliability,
performance, and energy per assumed amount of uncer-
tainty. Therefore, such a tool can aid embedded designers
in finding the appropriate solution points to be selected for
a given application domain. Our tool provides the means
to investigate these changes.

D. Computational Complexity and Convergence

The computational complexity of the proposed tool is
primarily affected by two factors, for a given testcase size.
These factors are the number of iterations of the outer and
inner loops from Fig. 3. To study the scalability of the
computational runtime with the number of iterations of
the outer loop, which corresponds to different number of
solution populations explored by the genetic algorithm, we
plot in Fig. 9 the computational runtime of our tool versus
the number of iterations of the outer loop. Each itera-
tion of the outer loop includes 2000 iterations of the Monte
Carlo algorithm; this number was found to provide satis-
factory convergence. The plot in Fig. 9 shows that the
computational runtime scales linearly.

In addition, we are interested in finding out what is the
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minimum number of MC runs after which convergence in
the process of estimation is achieved. To answer this ques-
tion, we looked at how the number of MC runs impacted
the convergence of the estimation of the objective cost func-
tions. This is illustrated by the plot in Fig. 10, where
we can see that after about 2000 iterations of the MC al-
gorithm, the estimated value of reliability converges to a
stable value. Similar results were obtained during the esti-
mation of performance and energy consumption.

V. Conclusion

We presented a design methodology for the design of
embedded systems under uncertainties. The proposed
methodology integrates uncertainty models and optimiza-
tion algorithms constructed with Monte Carlo and evolu-
tionary algorithms and is capable of finding the robust
Pareto frontiers in the objective space for a given test-
case application, architecture platform, and given levels
of injected uncertainties. Simulation results demonstrated
the effectiveness of the proposed design method. In future
work, we plan to also include scheduling into our problem
formulation and to investigate architecture models that use
networks-on-chip for communication. Architecture plat-
form synthesis with direct consideration of all three objec-
tives is also an interesting problem to investigate.
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