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Abstract—We present an investigation of several machine
learning (ML) models developed to predict the copper (Cu)
and lead (Pb) ion concentrations in drinking water. The system
where this prediction is employed is based on a microwave
block loop gap resonator (BLGR), which surrounds a glass
tube with drinking water passing through it. The resonator is
coupled to a vector network analyzer (VNA), which collects
reflection coefficient (S11) measurements over a 100 MHz - 6 GHz
frequency range. It is these S11 measurements, in raw format or
compressed using various signal processing techniques, that are
used as input into the ML models. Our investigation looks at new
convolutional neural networks (CNN) and deep neural networks
(DNN) models because such models can easily be deployed on
IoT microcontroller devices using tinyML technologies. Extensive
simulations using real data demonstrate that DNN models that
use as input features essential spectral information created from
S11 traces provide performance comparable to that of CNN
models but at much shorter training times and significantly
smaller model sizes.

Index Terms—ppb-level metal ions; prediction; machine learn-
ing; CNN; DNN; spectrogram;

I. INTRODUCTION

Increased scarcity of water resources and increased pollu-

tion threaten water availability and quality worldwide. Global

climate change and human activities (farming and indus-

trial) are prime factors affecting significantly water resources.

These increasingly adverse factors only amplify the need for

continuous monitoring of water resources to make sure that

water quality meets minimum quality standards. Particularly,

monitoring drinking water to detect the presence of pollutants,

chemicals, or heavy metal ions is crucial in ensuring safety of

the population.

In this paper, we investigate deep machine learning (ML)

models, for the prediction of both Cu and Pb ion concen-

trations (measured as ppb) in drinking water. The primary

objective of this investigation is to identify the model that

provides the best performance (as estimation error) and yet

is as small as possible - in terms of: 1) model size on disk

(which impacts the ability to use it on embedded devices that

are memory constrained as well as the inference runtime), 2)

format and size of the input provided to the model, and 3)

training runtime. More specifically, we evaluate convolutional

neural networks (CNN) and deep neural networks (DNN)

models, which we train and test with real data. Our exper-

iments showed that DNN models that use essential spectral

information created from S11 traces as input features provide

performance comparable to that of CNN models but at much

shorter training times and significantly smaller model sizes.

II. PREVIOUS WORK

There has been significant work on various methods and

technologies to monitor drinking water. Generally, one can

classify these methods into two categories: those that require

direct contact with the water [1]–[3] and those that are contact-

less [4]. We are not interested in this work in the approaches

that require direct contact with the water and therefore we

do not discuss related literature on that type of approach here.

Our own approach is in the second category, that of contactless

approaches.

In our recent previous work [4], we introduced a new

sensor system (will be described later on, in the next section)

to estimate the Pb ion concentration as ppb - which does

not need any contact with the measured water. The sensing

component of that system uses a novel microwave block

loop gap resonator (BLGR) coupled with a vector network

analyzer (VNA), which collects reflection coefficient, S11,

measurements as raw data that then is used as input into

an SVR machine learning model, which was trained to do

regression for the Pb ion concentration. However, the SVR

model’s performance assessed as estimation error was 13%. In

this paper, we continue that work by looking at new additional

ML models and frame the problem statement as a classification

problem rather than a regression problem.

The idea of using a resonator is that the presence of

ions in the water can shift the resonant frequencies of the

resonator, which is captured by the reflection coefficient S11

measurements. The resonant frequencies shift depends on

several factors, including the concentrations of ions and the

background of the water sample. The study in [5] used an

microwave sensor array to investigate resonant frequencies

for water mixed with several contaminants including nitrate,

phosphate, ammonium, and Pb. The study is a characterization

of resonant frequencies and not a concentration measurement

system as in our case; in addition, their experimental setup

does actually involve contact between water and the sensor

array. The sensor array was expanded in [6] to employ machine

learning to predict the presence of phosphate, Pb, mercury, and

chromium. The study investigated several machine learning

classifiers (i.e., SVM, K-nearest neighbors, KNN, and random

forest, RF) and reported that RF provided the best overall
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Figure 1. System level diagram of the sensor system from [4] where the ML
models investigated in this paper are used. Note that there is no direct contact
with the tested water.

accuracy of 81.3% for classification. Their sensor system is

designed to use the classifier to discriminate between four

classes corresponding to the four different contaminants. In

contrast, in our work, we develop ML models that predict the

concentration level of a given contaminant. Other previous

studies that used microwave resonators include [7]–[9], but,

they focused on sensing glucose, phosphate and nitrate, or

ammonia and iron concentrations in water and did not employ

machine learning techniques.

III. PROBLEM STATEMENT AND DATASETS

A. Problem Statement

The problem that we are trying to solve in this work is

the lack of small-enough ML models for prediction of Cu

and Pb ion concentrations in drinking water. We want such

models to be small-enough in the sense that their size should

be small to allow them to be deployed on microcontrollers,

which have very limited memory capacities, yet with high

enough prediction performance to warrant their deployment

on such devices. We look at this problem in a specific context

- that of using such ML models in our own experimental sensor

system that we have introduced in our recent work [4].

To present a clear picture of our problem statement, we must

provide details about the sensor system where the investigated

models will be deployed in practice. A simplified block

diagram of the sensor system is shown in Fig. 1. The block

loop gap resonator (BLGR) has the glass tube go through

it as shown in the figure. The BLGR has attached to it the

inductive coupling loop, which is fabricated on a printed

circuit board, and connected to Port 1 of the VNA. The VNA

records the reflection coefficient, S11, over a 100 MHz - 6

GHz frequency range. S11 measures the ratio of the reflection

from Port 1 to the drive signal at that port (see Fig. 1).

Therefore raw S11 measurements are in the frequency domain,

and they include values of both the magnitude and phase over

the stated frequency range. In our sensor system however,

only S11 amplitude values are used as input into the ML

models. An example of such an S11 measurement is shown in

Fig. 2 - where the collected 20,000 S11 magnitude values

are downsampled to only show 2,500 values spanning the

frequency range of 100 MHz - 6 GHz.

As indicated in Fig. 1, the S11 measured data is passed as

raw input to the ML models, which mus predict metal ion

Figure 2. Example of input used for the CNN model: this S11 plot represents
a flattened sequence of 2,500 values of S11 sampled from the frequency range
100 MHz - 6 GHz.

concentrations. While the previous SVR model was executed

on a PC, we are interested in deploying it on embedded

devices, which are resource constrained - both in terms of

memory and computational power - and therefore we are

especially interested in arriving at new ML models that are

small yet high performance for our application so that they can

easily be deployed on resource-constrained microcontroller

units (MCUs). We also note that, in our previous work we used

SVR models to do regression, here we focus on developing

simpler models to do classification. We focus on a classifica-

tion problem framing because of the feedback from industrial

partners who are interested more in predicting several distinct

ppb ion levels, which represent the classes in the classification

problem formulation. Therefore, we cannot compare directly

our new models to SVR, but, we will compare against SVM

models. For a more detailed description of the entire sensor

system from Fig. 1 and the theory behind it, see our recent

previous work [4], which looked at Pb ions only and used

SVR models for prediction.

B. Datasets Description

All ML models investigated in this paper are supervised

models, whose training require datasests. Because currently

there are no publicly available datasets for our specific prob-

lem, we have collected our own datasets. In a laboratory set-

up, we used the sensor system from Fig. 1 to collect raw

S11 measurements (like those shown in Fig. 2) using water

samples with known levels of ion concentrations, specifically

0,1,5, and 10 ppb levels. We collected 12,000 measurements

for two datasets that we created - one for Cu and one for Pb.

These two datasets are collected separately for each of the two

metal ions. The datasets will be used for training and testing of

all models investigated. The train/test split ratio that we use is

0.7/0.3 for each of the two datasets because it is a commonly

used split ratio in the literature.
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Figure 3. CNN model studied in this paper. n = 2, 500 is the number of
S11 magnitude values that are fed as one input into the model; an instance
of such values is shown in Fig. 2.

IV. INVESTIGATED MODELS

A. SVM Method with S11 Values as Input

First, we investigate support vector machines (SVMs) as a

popular supervised model because of its popularity in previous

literature. While in our previous work [4] we used support

vector regression (SVR) for prediction of Pb ion concentration,

in this paper, we frame the problem as a classification problem.

Therefore, for classification, we investigate first a support

vector machine (SVM) model. SVM has the advantage of

shorter training times, but, its disadvantages include larger

model-size and slow prediction. The number of parameters of

an SVM increases linearly with the increase of input size. In

contrast, neural networks offer much higher prediction speed

and smaller model-size. Generally, neural networks have been

shown to offer better performance/accuracy, especially for

large datasets; hence, it is suggested to use neural networks

for high-dimensional large data sets and SVMs for low-

dimensional small data sets.

To investigate SVMs, we have created and trained a

multi-class nonlinear SVM classifier using the Python library

sklearn.svm [10], which by default uses kernel=’rbf’ (ra-

dial basis function, RBF). The SVM model achieves in our

Python simulations 100% accuracy. However, currently SVM

models and algorithms are not directly supported by tinyML

technologies such as TensorFlow Lite for Microcontrollers

[11], which we intend to use for deploying ML models on

microcontroller devices. Such tinyML technologies do support

CNN and DNN models and that will enable us to deploy them

to IoT microcontroler devices. Therefore, it is CNN and DNN

models that are really our main focus in this paper.

B. CNN Model with S11 Values as Input

IN this section, we propose to investigate is the convolu-

tional neural network (CNN) model. CNN models have been

used traditionally in computer vision applications, but, recently

they have been applied successfully in virtually all application

domains. One of the most challenging aspects of developing

ML models such as CNN models include: 1) how to define the

network architecture (i.e., number of layers, number of units

per layer, number of filters, batch size, number of epochs used

for training, etc.) and 2) how to frame the problem at hand to

make it amenable to solving it with the developed model.

Table I
CHARACTERISTICS OF THE INVESTIGATED MODELS.

Characteristic CNN DNN1 DNN2
Total params 153796 52164 10788

Model size 1850 KB 643 KB 158 KB

Figure 4. CNN model: true and predicted Cu ppb values for all datapoints
from the testing portion of the Cu dataset.

In our case, we developed the studied CNN model based

on: our previous experience with such models, inspiration

from recent literature dealing with CNN models, and on an

empirical trial-and-error process during which several different

values for model parameters have been investigated. The final

CNN model used in this paper is shown in Fig. 3. In addition

to the model architecture parameters illustrated in this figure,

we used during training: sparse_categorical_crossentropy
as loss function, Adam as an optimizer, and a batch size of

32. The model summary is shown in Table I, which shows the

total number of parameters and the model size (in KB) for all

models presented in this paper, for comparison purposes.

We frame the problem as follows: given the input as S11

measurements (20,000 values spanning the frequency range

of 100 MHz - 6 GHz), use the CNN model to perform
classification. Therefore the output layer has four units (i.e.,

neurons) corresponding to four different labels {0, 1, 2, 3}

which encode the four different ppb levels we work with

in this paper {0 ppb, 1 ppb, 5 ppb, 10 ppb}. These output

units use Softmax activation function. To keep the input size

to more reasonable, smaller values, but without impacting

negatively the quality of the prediction, we undersample (i.e.,

downsample) the S11 values of a given ppb concentration

measurement by 8. That is, we only use 2,500 samples (i.e.,

n = 2, 500 in Fig. 3) as input into the CNN model.

We train two versions of the CNN model: one for Cu and

one for Pb. The training process was done for a number of

25 epochs using the datasets described in the previous section.

Once models are trained, they are used to make inferences on

the testing portions of the datasets. The result of this testing



Figure 5. CNN model: true and predicted Pb ppb values for all datapoints
from the testing portion of the Pb dataset.

Table II
PERFORMANCE COMPARISON OF THE INVESTIGATED MODELS.

Performance CNN DNN1 DNN2
F1 Score Cu 0.9958 0.9277 0.9983

Accuracy Cu 0.9958 0.9292 0.9983

Precision Cu 0.9959 0.9447 0.9983

Recall Cu 0.9958 0.9292 0.9983

F1 Score Pb 0.9253 0.926 0.9126

Accuracy Pb 0.9275 0.9286 0.9158

Precision Pb 0.937 0.9381 0.9246

Recall Pb 0.9275 0.9285 0.9158

is shown in Fig. 4 and Fig. 5. The overall performance of the

trained models is assessed with the help of several common

metrics, which are obtained using classification_report() from

scikit-learn library. These metrics are listed in Table II.

C. DNN Model with Spectrogram of S11 Series as Input

Another model investigated in this paper is motivated by

the desire to decrease the size of both the CNN model and

the input fed into the CNN model presented in the previous

section. That is because even when we used undersampling

by 8 and reduced the number of S11 values to 2,500 fed as

input at any one time into the model, the model was too large,

especially for deployment on edge devices.

As such, in this model development, we started by reducing

the 2,500 number for the input feature size. We propose

to do that by constructing spectrograms from S11 raw data

measurements. The idea is to treat or interpret the S11 series

(like that shown in Fig. 2) as if it were an audio signal

and generate for it a spectrogram of a size that is much

smaller than 2,500. This can be done easily with existing

digital signal processing libraries available for Python. In this

paper, we use tfio.audio.spectrogram to generate spectrograms

that have 20x17 = 340 values. One can easily tune several

parameters provided by tfio.audio.spectrogram to change the

Figure 6. Spectrogram generated for the S11 series from Fig. 2.

Figure 7. The spectrogram from Fig. 6 flattened by reading the values of the
spectrogram entries row by row and column by column.

size of the spectrogram. In our case, the 20x17 was selected

based on the total number of 340 values that was small

enough, yet provided good model performance (discussed

later). This spectrogram size was obtained with the following

specific parameters tfio.audio.spectrogram: assumed sampling

frequency of 16 kHz, size of FTT (fast Fourier transform) of

32, size of window of 256, and size of hops between windows

of 128.

As an example, the spectrogram generated for the S11 series

(with 2,500 values) from Fig. 2 is shown in Fig. 6. Normally,

a spectrogram displays changes in the frequencies in an audio

signal over time. Spectrograms are generated by sweeping the

series signal with a moving window, with a stride that keeps

consecutive windows at a certain desired overlap. The length

of the stride determines the size of the step with which the

sliding window moves over the signal series. The total number

of strides gives the number of rows in Fig. 6. For each stride,
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Figure 8. DNN1 model studied in this paper. n = 340 represents the number
of values in a spectrogram that is fed as one input into the model; an instance
of such values is shown in Fig. 7.

the spectrogram algorithms uses FFT to find the frequency

content within the moving window. This information is shown

as the individual values in each row Fig. 6. The selected

number of such values gives the number of columns in Fig.

6. All values inside the spectrogram are indicated on a third

dimension with variable brightness or color - to show the

amplitude of frequency content. This spectrogram - which now

is reduced to only 340 numerical values - is precisely what

will be used as input into the second ML model, which is a

deep neural network (DNN) model.

To be able to easily feed the spectrogram as input to the

DNN model, we first flatten the 2D spectrogram and save it

as a simple 1D series of values; for example, the flattened 1D

version of the spectrogram from Fig. 6 is shown in Fig. 7.

This flattened 1D array of values is fed as input into the DNN

model (referred to as DNN1 model in this paper) shown in

Fig. 8. This model is also developed to perform classification,

just like the previous model. The training of the model from

Fig. 8 was done with: sparse_categorical_crossentropy as

loss function, Adam as an optimizer, and a batch size of 32.

The model is also summarized in Table I to compare it with

the other studied models. This model also was trained/tested

with a 0.7/0.3 split for both Cu and Pb datasets. The training

process was done for a number of 250 epochs, which takes a

much shorter training time than the 25 epochs of the previous

model. The results of the testing done afterward are shown

in Fig. 9 and Fig. 10. Performance measures are reported in

Table II as well for comparison.

V. DNN MODEL WITH ESSENTIAL SPECTRAL

INFORMATION OF S11 SERIES AS INPUT

To further reduce both the model and input sizes without

degrading model performance, we develop here our final

model. The objective was to reduce even more the input size

into the model; while the input size of the DNN1 model

presented in the previous section is significantly smaller than

that of the CNN model, we wanted to reduce it even further.

Figure 9. DNN1 model: true and predicted Cu ppb values for all datapoints
from the testing portion of the Cu dataset.

Figure 10. DNN1 model: true and predicted Pb ppb values for all datapoints
from the testing portion of the Pb dataset.

Working with smaller spectrograms turned out to degrade

performance. Therefore, we replace the spectrogram with a

completely different presentation of the input. Specifically,

we again treat the S11 series as if it were an audio signal,

but, this time we generate from it a number of what we call

essential information values or features, that capture in a sense

the ”essence" of the S11 trace. For that, we employ a digital

signal processing library - called processing blocks - that is

publicly available from Edgeimpulse [12]. The spectral anal-
ysis portion of this library can be used to generate a desired

number of features very efficiently (using a function called

generate_features()) based primarily on the power spectral

analysis of the given signal, which in our case is the S11

series.

The arguments passed to the generate_features() function

directly determine how many features are generated. We tuned

these parameters to the values that turned out to provide the

best results with the smallest number of features, which in

our case is 133. The two most important parameters are:
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Figure 11. DNN1 model studied in this paper; n = 133.

Figure 12. DNN2 model: true and predicted Cu ppb values for all datapoints
from the testing portion of the Cu dataset.

sampling_freq = 62.5 (i.e., the sampling frequency of the data)

and analysis_type = ’FFT’ (i.e., analysis type fast Fourier

transform). The 133 features generated include: {RMS (root
mean square), Skewness, Kurtosis, Spectral Skewness, Spectral
Kurtosis, Spectral Power 0.12-0.37 Hz, Spectral Power 0.37-
0.61 Hz, Spectral Power 0.61-0.85 Hz, ..., Spectral Power
30.4-30.64 Hz, Spectral Power 30.64-30.88 Hz, Spectral Power
30.88-31.13 Hz, Spectral Power 31.13-31.37 Hz}.

This array of values is fed as input into the DNN model

(referred to as DNN2 model in this paper) shown in Fig.

11. Similarly to previous models, this model is also devel-

oped to perform classification. Its training was done with:

sparse_categorical_crossentropy as loss function, Adam
as optimizer, and a batch size of 32. The model is also sum-

marized in Table I to compare it with the other studied models.

Like the other models, this model also was trained/tested with

a 0.7/0.3 split for each dataset. The training process was done

for a number of 300 epochs. The result of the testing is shown

in Fig. 12 and Fig. 13. Performance metrics are also reported

in Table II too.

Figure 13. DNN2 model: true and predicted Pb ppb values for all datapoints
from the testing portion of the Pb dataset.

VI. DISCUSSION

Based on the characteristics of the developed models (listed

in Table I) and on their performance (summarized in Table

II) reported in the previous sections, we note that DNN

model used with essential spectral information of S11 series

as input - provides the best desirable model characteristics

(i.e., small size and hence memory footprint) and comparable

performance. Its size at around 157 KB is small enough to

easily fit even on tightly memory-constrained microcontrollers,

such as STM32L073RZ [13], which are intended particularly

for edge/IoT applications.

In this paper, we focused on models for problems formu-

lated or framed as classification problems - where the four

classes represent the four different ppb levels. That is because

the real application where these models will be deployed

is a water sensor system (for residential homes), where for

simplicity we would only be interested in whether the ppb

level is less than a safe threshold or not - which best fits a

simpler binary classification problem. Here, we investigated a

four classes problem to get better insights into the capability

of such models.

While we were successful at arriving at DNN models that

are sufficiently small and with good performance, one can

see some limitations/disadvantages of the proposed models.

Specifically, we need additional processing capability to be

done on the microcontroller device - that includes computa-

tions such as FFT and extraction of the essential information.

This additional processing will incur increased inference de-

lays.

VII. CONCLUSION AND FUTURE WORK

We investigated the use of ML to predict the concentration

of Cu and Pb ions (as ppb) in drinking water based on

S11 measurements collected with a vector network analyzer

connected to a microwave block loop gap resonator that has a

glass tube with drinking water passing through it. Specifically,

we developed CNN and DNN models and used as input either



the S11 values directly or various transformations of these

values to reduce the number of inputs into the model and

therefore model size. The problem of ppb level prediction was

formulated as a classification problem. Simulation experiments

indicated that DNN models that use as input features essential

spectral information created from S11 traces provide perfor-

mance comparable to that of CNN models but at much shorter

training times and significantly smaller model sizes.

In our future work, we plan to investigate whether and to

what extent only S11 measurements from certain frequency

sub-bands impact primarily the model outcome as predictions.

If that were the case, then, we would only need to concentrate

the S11 measurements (to store into our datasets or to use

at inference time) in those frequency sub-bands only rather

than on the entire frequency range of 100 MHz - 6 GHz.

In that way, we could reduce again the input size into our

models while, reducing needed storage, speeding up real-time

measurements, and focusing on only the data that matters most

importantly. We plan to use layer-wise relevance propagation

(LRP) techniques to identify such frequency sub-bands.
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