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Abstract—In this paper, we develop new tiny machine learning
(tinyML) temporal convolutional network (TCN) models for
prediction of remaining useful life (RUL) and of cell temperature
for lithium-ion batteries. The proposed models are developed,
trained, optimized and verified in Python using TensorFlow. Ex-
tensive simulation experiments, using datasets from the Battery
Archive website and from Sandia National Lab (SNL), show that
the proposed models provide better results compared to previous
models. Furthermore, the proposed models are converted to Ten-
sorFlow lite for microcontroller models, which are deployed on
IoT hardware devices, specifically the popular Arduino Nano 33
BLE Sense board. We conduct hardware experiments that show
that the tinyML models are very efficient and provide satisfactory
prediction accuracy. Therefore, the proposed optimized tinyML
models could be easily deployed in real practical scenarios, such
as electric vehicles (EVs), to continuously monitor in real-time
the health and temperature of batteries.

Index Terms—battery pack, electric vehicle, remaining useful
life, thermal management, deep neural network, tinyML

I. INTRODUCTION

Recent advancements in artificial intelligence (AI), ma-
chine learning (ML), and internet of things (IoT) motivated
researchers to apply these technologies to the design and
optimization of a lot of electronic devices and systems,
including battery management systems in electric vehicles
(EVs), portable power drills, defibrillators, and portable x-ray
machines [1]. In the context of EVs, an important problem is
the health management of battery packs, and many solutions
to this problem involve or require prediction of attributes
like the remaining useful life (RUL) and temperature of
battery cells inside lithium-ion battery packs [2], [3]. In this
paper, we present AI/ML models to predict both RUL and
cell temperature of lithium-ion batteries and deploy them as
tinyML models on IoT microcontroller devices.

II. RELATED WORK

Several previous studies investigated the problem of pre-
diction of RUL. RUL prediction techniques can be generally
categorized into three classes: model-based [4], data-driven
[5], [6], and hybrid approaches [7], [7], [8]. A few recent
studies investigated quantized ML models for state of health
(SoH) and state of charge (SoC) estimation [9], [10], but, not
for RUL. Thermal management also plays an important role
in battery management systems. Without proper temperature

prediction and thermal management, batteries can overheat,
increasing internal resistance and leading to side chemical
reactions. Consequently, the overall cycle life of the battery
can be shortened. In the literature, one can also find several AI
approaches for battery cell temperature prediction, including
supervised, unsupervised, and reinforcement learning [11].

Previous work that focused on developing models for RUL
and/or battery cell temperature prediction without necessarily
verifying them on IoT microcontroller devices. Instead, they
stopped at simulation conducted on computers, where one can
afford models that are very large but, with better performance.
However, in many practical situations [12], we actually want
such models to be implemented on IoT devices, which are
typically built using microcontrollers, which are resource
constrained (i.e., memory capacities in the order of 250KB
only). Therefore, in this paper, we develop for the first time
several deep neural network (DNN) models for prediction
of RUL and of battery cell temperature and optimize them
specifically for IoT devices using tinyML technologies.

III. MODEL DEVELOPMENT AND TESTING WORKFLOW

Before describing the investigated models, in this section,
we first present the workflow that we follow in developing,
optimizing, and and then deploying ML models for RUL and
temperature cell prediction. This discussion will present a
better overall context for the proposed work. In studying all the
models, we follow the methodology described by the pipeline
from Fig. 1.

First, as indicated in the top-right quadrant of the figure,
datasets are obtained from Sandia National Lab, which makes
available a variety of datasets collected from experiments using
cycling tests for three commercial cells [13]. We selected two
types of battery cells: Nickel Manganese Cobalt (NMC) and
Nickel Cobalt Aluminum (NCA), because the cycling exper-
iments used different values for temperature range, depth of
discharge (DoD), and discharging current [14]. These datasets
are split into train, validation, and test portions. The train and
validation portions are used for model development. Model
parameter tuning is done via empirical grid search methods.
Once the models are developed and trained, they are evaluated
on the test portion of the datasets - as shown in the bottom-
right quadrant of the figure. Note that this step is done via
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Fig. 1: Overall workflow for ML model development, opti-
mization and testing on IoT device.

simulations in Python conducted on computers or servers in
the cloud because the models at this stage are still TensorFlow
models that have not been optimized (i.e., quantized) yet for
deployment to microcontrollers.

Finally, the best found model is deployed on an IoT mi-
crocontroller. In this work, we use the Arduino Nano BLE
33 Sense, which has a Nordic nRF52840 (ARM Cortex-M4)
processor running at 64MHz, with 1MB flash and 256KB
of RAM [15]. The deployment on such microcontroller, with
limited resources, is possible by using tiny machine learning
technologies. More specifically, we use Google’s TensorFlow
Lite (TFL) and TensorFlow Lite for Microcontrollers (TFLM)
[16] to convert the developed model into an optimized format
that can be easily integrated into C/C++ applications run on
the Arduino board. The primary optimization technique is
quantization (to 8-bit integer precision), which helps reduce
significantly the size of the model. The advantage of the
post-training quantization is that the model will be smaller
in storage size and memory usage and hence faster in terms
of inference time. However, the trade-off is performance
degradation.

IV. PROPOSED TEMPORAL CONVOLUTION NETWORK

We investigate three DNN models: 1-dimensional convo-
lution neural network (1D CNN), combination of 1D CNN
and gated recurrent unit (GRU) (1D CNN+GRU), and novel
temporal convolutional network (TCN). In this section, we
present a discussion of the proposed temporal convolution
network (TCN), which has never been used for RUL and
cell temperature prediction. A simplified model architecture
is shown in Fig. 2. The TCN block is an adapted version
of the one introduced in [17] as WaveNet for the purpose
of generating raw audio waveforms. It is constructed with so-
called dilated causal convolution networks, which are a special
type of convolution in which the filter is applied upon an
expended receptive field by skipping input data with a certain
step. It has been shown that TCN blocks can be very effective
in dealing with long time series data input sequences [18]. By
stacking multiple dilated causal convolution layers together, a

Feature
width = 8

Ti
m

e 
st

ep
 =

 2
0

x

2x8
Kernel

size

Layer1
Conv1D
64 filters

Residual block
with 4 conv layers
Dilation rates are

[1, 2, 4, 8]
kernel size is 2

no. of filters is 64

Flatten
layer

Output
layer

1 neuron

dilation=4

Architecture of temporal conv layers

Input

Hidden

Output

Hidden

Hidden

dilation=1

dilation=2

dilation=8

x

Fig. 2: Illustration of the TCN model developed in this paper
to predict URL and cell temperature
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deep neural network can be formed. Usually, associated with
the TCN block is a residual block, which helps address the
problem of gradient vanishing or exploding. Fig. 3 illustrates
the residual block. The input to the residual block goes
through a combination of dilated casual convolutions, layer
normalizations (LayerNorm), and rectified linear unit (ReLu)
activation functions.

As illustrated in Fig. 2, the input in the proposed TCN
model has three dimensions: the number of samples (batch
size), the time steps (20), and the feature width (8). The
actual 8 features include: test-time (s), current (A), voltage



TABLE I: Listing of final model architecture parameters.

Model Model Layer 1 kernels Layer 2 kernels GRU
output (kernel size) (kernel size) units

1D CNN RUL 32 (4x8) 64 (2x8) -
Cell Temp. 8 (2x8) 16 (4x8) -

1D CNN+GRU RUL 32 (4x8) - 64
Cell Temp. 64 (4x8) - 16

TCN RUL 16 (4x8) - -
Cell Temp. 32 (2x8) - -

TABLE II: RUL prediction errors (NMC dataset).

Models Time steps MAE MSE RMSE R2

1D CNN

1 5.33 ± 0.42 48.41 ± 7.47 6.94 ± 0.54 1 ± 0
3 5.62 ± 0.63 57.88 ± 15.55 7.53 ± 1.11 1 ± 0
6 5.18 ± 0.83 46.31 ± 16.32 6.69 ± 1.25 1 ± 0
12 5.74 ± 1.25 63.94 ± 27.08 7.82 ± 1.66 1 ± 0
18 5.83 ± 0.77 59.26 ± 17.86 7.59 ± 1.27 1 ± 0

1D CNN+GRU

1 1.40 ± 0.14 3.95 ± 0.98 1.97 ± 0.25 1 ± 0
3 1.37 ± 0.12 4.15 ± 1.54 2.00 ± 0.36 1 ± 0
6 1.49 ± 0.09 4.46 ± 0.78 2.10 ± 0.18 1 ± 0
12 1.57 ± 0.15 5.47 ± 0.92 2.33 ± 0.20 1 ± 0
18 1.23 ± 0.10 3.58 ± 1.32 1.86 ± 0.34 1 ± 0

TCN

1 0.93 ± 0.27 1.61 ± 1.14 1.2 ± 0.4 1 ± 0
3 0.90 ± 0.22 1.37 ± 0.67 1.14 ± 0.27 1 ± 0
6 0.88 ± 0.2 1.34 ± 0.61 1.13 ± 0.26 1 ± 0
12 0.74 ± 0.04 0.87 ± 0.09 0.93 ± 0.05 1 ± 0
18 0.82 ± 0.23 1.17 ± 0.76 1.04 ± 0.30 1 ± 0

(V), charge and discharge capacity (Ah), charge and discharge
energy (Wh), and environment temperature (C). The first layer
is a 1D CNN layer with 64 filters or kernels of size 2x8. The
output of this layer feeds into the TCN block, which internally
has four instances of the residual block; and each such instance
uses different dilation values, namely 1,2,4,8 (found based
on our empirical investigations). Finally, the TCN block is
followed by a flatten layer and the output layer with only one
neuron because this proposed TCN network model is used for
regression or prediction of either RUL or cell temperature.
Two separate such models will be trained, one for each of
the two target variables, RUL and cell temperature. Table I
lists the parameters used for the two TCN models. This table
also lists the parameters used for the other two investigated
models (1D CNN and 1D CNN+GRU), which represent the
state-of-the-art that we use for comparison purposes in this
paper.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of all three
models. In the first phase of our experiments, we first conduct
simulations using the NMC dataset. At this stage, all simula-
tions are conducted in Python and all models are developed
using TensorFlow. To help improve the performance of the
models, we used a data smoothing technique described in [19],
which essentially replaces feature values in a certain number
of time steps with the mean of those values. In order to identify
the best smoothing, we investigated five different numbers of
steps for the smoothing technique. The performance of all the
three models investigated in this paper to predict RUL and cell
temperature - developed and tuned using five different versions
of the datasets (corresponding to the five different variations
of the smoothing technique) - are reported in Tables II and III.
For robustness and reliability of the reported results, the same
experiment is conducted five different times and the mean and

TABLE III: Cell temperature prediction errors when using the
NMC dataset.

Models Time steps MAE MSE RMSE R2

1D-CNN

1 0.38 ± 0.01 0.46 ± 0.05 0.68 ± 0.04 0.87 ± 0.01
3 0.37 ± 0.03 0.41 ± 0.08 0.64 ± 0.06 0.89 ± 0.02
6 0.36 ± 0.02 0.39 ± 0.04 0.63 ± 0.04 0.89 ± 0.02
12 0.31 ± 0.02 0.30 ± 0.05 0.55 ± 0.05 0.91 ± 0.02
18 0.30 ± 0.01 0.30 ± 0.05 0.55 ± 0.05 0.88 ± 0.02
1 0.50 ± 0.44 1.03 ± 1.38 0.86 ± 0.55 0.72 ± 0.37
3 0.28 ± 0.01 0.33 ± 0.03 0.58 ± 0.03 0.91 ± 0.01
6 0.48 ± 0.43 0.95 ± 1.32 0.81 ± 0.55 0.73 ± 0.37
12 0.45 ± 0.41 0.81 ± 1.15 0.74 ± 0.51 0.74 ± 0.38

1D CNN+GRU

18 0.44 ± 0.40 0.72 ± 0.98 0.71 ± 0.47 0.73 ± 0.37

TCN

1 0.25 ± 0.02 0.31 ± 0.07 0.55 ± 0.06 0.92 ± 0.02
3 0.25 ± 0.01 0.27 ± 0.04 0.52 ± 0.04 0.92 ± 0.01
6 0.23 ± 0.02 0.24 ± 0.05 0.49 ± 0.04 0.93 ± 0.01
12 0.22 ± 0.01 0.23 ± 0.02 0.48 ± 0.02 0.93 ± 0.01
18 0.21 ± 0.02 0.2 ± 0.03 0.45 ± 0.04 0.92 ± 0.01

the standard deviation (std) values of all five experiments are
reported in these tables. The best result for each model is
highlighted in bold font. We observe that the proposed TCN
model performs better than the other two models.

In addition to the results reported in the table, we present
the plots from Fig. 4. Fig. 4.a plots the relationship between
the normalized discharge capacity and RUL. The discharge
capacity in this plot is captured for time steps at the end of
each batter cycle. Therefore, the number of data points plotted
on this figure does not equal the number of data points in the
test dataset. This is an important plot that captures the relation
between RUL and state of health (SoH) indicated by battery
capacity. We observe that all models follow closely the trace of
capacity degradation when the battery cycle number increases.
However, TCN performs the best among all models. Fig. 4.b
and Fig. 4.c show the true and predicted test values (RUL and
cell temperature) for all three models. We observe that cell
temperature prediction quality is not very good when the true
temperature values vary a lot - particularly in the range 30,000
to 48,000 time steps. For better clarity, the prediction errors
from Fig. 4.b and Fig. 4.c are shown in Fig. 5. We observe that
the proposed TCN model has the smallest prediction errors.

In the second phase of our experiments, all three models
that were developed and tuned before, are again trained and
tested on the NCA dataset. In this way, we wanted to verify
how the models perform when they are retrained with a new
dataset. The results of testing are shown in Table IV. We
observe the most noticeable degradation for RUL prediction is
for the 1D CNN model, while the performance of the other two
models remained more or less the same. The 1D CNN+GRU
model experienced the most observable degradation for cell
temperature prediction. The TCN model has actually slightly
improved in terms of prediction of cell temperature. The
reason is that the cell temperature variation is smoother in
the NCA dataset than in the NMC dataset.

VI. TINYML MODELS EVALUATION

In this section, we further optimize the models and then de-
ploy them as tinyML models on the IoT microcontroller device
(Arduino Nano 33 BLE Sense board). We report results for the
1D CNN and TCN models only because the 1D CNN+GRU
models could not be converted to TFLITE due to the GRU
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Fig. 4: Prediction results obtained with 1D CNN, 1D
CNN+GRU, and TCN models (NMC dataset).

TABLE IV: RUL and cell temperature (CT) prediction -
performance comparison using NCA dataset.

Models Time MAE MSE RMSE R2
steps

1D CNN (RUL) 6 9.57 ± 1.32 168 ± 60 12.79 ± 2.28 0.99 ± 0
1D CNN (CT) 18 0.35 ± 0.02 0.28 ± 0.02 0.53 ± 0.02 0.97 ± 0

1D CNN+GRU (RUL) 18 1.49 ± 0.12 4.23 ± 0.85 2.05 ± 0.21 1 ± 0
1D CNN+GRU (CT) 3 0.74 ± 0.73 4.1 ± 7.05 1.45 ± 1.41 0.75 ± 0.43

TCN (RUL) 12 0.89 ± 0.07 1.27 ± 0.2 1.12 ± 0.09 1 ± 0
TCN (CT) 18 0.12 ± 0.01 0.04 ± 0.01 0.19 ± 0.02 1 ± 0

(a)

(b)

Fig. 5: Prediction errors (as difference between predicted and
true values).

TABLE V: Model size reduction via quantization.

Models TF model TFLITE model Reduction
size (KB) size (KB)

1D CNN (RUL) 656 26.91 24x
1D CNN (Cell Temp.) 508 13.07 39x

TCN (RUL) 1208 40.59 30x
TCN (Cell Temp.) 1239 57.84 21x

units. The optimization consists of the conversion of the 32-
bit float TensorFlow (TF) models from the previous section
into 8-bit integer TF Lite (TFLITE) models. This optimization
reduced the model sizes as reported in Table V. This reduction
is what makes possible for the TFLITE models to be deployed
on microcontrollers next. The TFLITE models are further
converted to what is called TFLITE MICRO models using the
xxd tool. Finally the TFLITE MICRO models are integrated
in specific Arduino applications (developed in C/C++) and
deployed on the Arduino Nano 33 BLE Sense board.

We compare the performance of TF, TFLITE, and
TFLITE MICRO models in Table VI. Note that the results
for the TF and TFLITE models are obtained in Python using
TensorFlow simulations. The results for the TFLITE MICRO
models are obtained with the models being executed on the
hardware Arduino Nano 33 BLE Sense board. We observe
that the performance degrades as we move from using TF to



TABLE VI: Performance comparison of TF, TFLITE, and
TFLITE MICRO models.

Models TF TFLITE TFLITE MICRO
MAE MAE MAE

1D CNN (RUL) 5.91 6.16 6.173
1D CNN (Cell Temp.) 0.35 0.35 0.363

TCN (RUL) 0.64 1.88 4.213
TCN (Cell Temp.) 0.24 0.25 0.256

(a)

(b)

Fig. 6: Performance measured on the Arduino board for the
TFLITE MICRO models.

TFLITE to TFLITE MICRO models. This is expected because
the optimized TFLITE and TFLITE MICRO models have all
their inputs and weights represented on 8 bits. Fig. 6 shows the
prediction result obtained with the TFLITE MICRO models.
We can see a noticeable difference in performance when com-
pared to Fig. 4. This degradation in performance is reported in
Table VI. We note that two TCN models for predicting RUL
and cell temperature, whose performance is reported in Table
VI, are similar (same structure and hyperparameters) except
that the TCN model for predicting the cell temperature has
the dilation feature in the convolutional layers removed. We
removed the dilation because it resulted in better results. In
terms of actual inference time, all TFLITE MICRO models
perform one inference in about 5 milliseconds measured on
the Arduino Nano 33 BLE Sense board.

VII. CONCLUSION

We investigated 1D CNN, 1D CNN+GRU, and novel tem-
poral convolutional network (TCN) models for prediction of
the remaining useful life and of cell temperature of lithium-

ion batteries. The proposed TCN models were optimized
and deployed on IoT device microcontrollers using tinyML
technologies. Extensive simulation and hardware experiments
using Arduino Nano 33 BLE Sense board demonstrated that
the proposed TCN models offer the best performance. In our
future work, we plan to develop similar deep machine learning
models to predict multiple variables of interest (such as RUL,
state of health, state of charge, and temperature) to further
reduce the memory capacity required to store and use for
inference such models.
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