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Abstract—Energy efficiency is among the most important challenges for computing. There has been an increasing gap between the
rate at which the performance of processors has been improving and the lower rate of improvement in energy efficiency. This paper
answers the question of how to reduce energy usage in heterogeneous datacenters. It proposes a unified hierarchical scheduling using
a D-Choices technique, which considers interference and heterogeneity. Heterogeneity comes from servers’ continuous upgrades and
the integrated high-performance “big” and energy-efficient “little” cores. This results in datacenters becoming more heterogeneous and
traditional job scheduling algorithms become suboptimal. To this end, we present a two-level hierarchical scheduler for datacenters that
exploits increased server heterogeneity. It combines in a unified approach cluster and node level scheduling algorithms, and it can
consider specific optimization objectives including job completion time, energy usage, and energy-delay-product (EDP). Its novelty lies
in the unified approach and in modeling interference and heterogeneity. Experiments on a research cluster found that the proposed
approach outperforms state-of-the-art schedulers by around 10% in job completion time, 39% in energy usage, and 42% in EDP. This
paper demonstrated a unified approach as a promising direction in optimizing energy and performance for heterogeneous datacenters.
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1 INTRODUCTION

“Our challenge is to figure out over the next decade what we
think about computer efficiency as the No. 1 priority.” [1].
Datacenters use an estimated 200 terawatt hours (TWh) per
year, representing around 1% of global electricity demand
and contributing around 3% of all global carbon emissions,
thereby exceeding emissions from commercial flights (about
2.4%) and other existential activities that fuel our global
economy [2], [3]. According to the U.S. Energy Information
Administration, datacenters represent more than 7% of to-
tal commercial electric energy usage, and we project that
this number will increase [4]. Therefore, reducing energy
usage and improving efficiency in datacenters has never
been more critical; it is important not only for the cost
to companies but for the environmental footprint of these
datacenters as this computing domain rapidly expands [5].

Previous work focused on optimizations at multicore
processor/server and datacenter levels [6]. Among such
solutions, job scheduling, workload placement, power bud-
geting, and server farm management policies are popular
means to save energy and improve performance. Both per-
formance - as the execution time of jobs from arrival time
to completion time - and power consumption are directly
affected by the scheduling algorithms of jobs arriving at
the datacenter and then delegated to individual servers.
Another recent optimization avenue is the exploitation of
hardware heterogeneity.

However, the state-of-the-art work in the literature
seemed to focus primarily on optimizations at individual
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cluster or node levels and typically addressed either per-
formance or energy. A question that remains is how we
do scheduling in a unified cluster-node approach to reduce
energy without degrading performance. In this paper, we
answer this question by presenting Qin - a hierarchical ap-
proach for scheduling in heterogeneous datacenters. At the
cluster level, we propose a cluster manager that has a global
view of the scheduling (application-to-server) by consider-
ing different server configurations on servers, whose global
view would be used for server level scheduling (thread-to-
core scheduling). At the server level, we proposed a server
manager that combines task scheduling and migration with
dynamic voltage and frequency scaling (DVFS). Finally, we
combined server and cluster levels scheduling algorithms,
providing a unified two-level hierarchical approach. We
reported the preliminary results of the proposed scheduler
in a recent conference paper [7]. In this paper, we extend
that work. Our main contributions are as follows:

• Problem definitions. We present a multi-objective
optimization formulation for the unified cluster-
node scheduling in heterogeneous datacenters. More
specifically, we focus on application-to-server (clus-
ter level) and thread-to-core (node level) problems
to optimize the objective of energy-delay-product
(EDP).

• Unified hierarchical approach. We propose a uni-
fied hierarchical cluster-node scheduling solution
that directly considers interference and heterogene-
ity. The proposed scheduling outperforms state-of-
the-art scheduling approaches.

• D-choices greedy technique. We propose the D-
choices greedy technique, which is at the heart of
the scheduling algorithms, to help select servers and
cores.
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• Dynamic admission control. We introduce a dynamic
admission control protocol to shorten applications’
waiting time, improve job completion time, and re-
duce energy usage.

• Experiments on a research cluster. We conduct ex-
tensive experiments of the proposed Qin scheduler
on a research cluster and a simulated platform with
real-world and synthetic workloads.

The remainder of this paper is organized as follows.
Section 2 reviews related work on scheduling. Section 3
introduces basics about techniques used later to develop
the proposed scheduling approach. Section 4 presents the
collaborative filtering based energy usage, interference, and
heterogeneity estimations. Section 5 presents the D-choices
greedy scheduling method. Section 6 presents the dynamic
admission control protocol. Section 7 presents results from
the evaluation of the Qin scheduler. Finally, Section 8 con-
cludes the paper.

2 RELATED WORK

In this section, we review the literature on optimization
techniques at the node (server or multicore) and cluster
(datacenter) levels. Table 1 summarizes the most relevant
previous works.

In the category of node level approaches, the study in [8]
proposed an imitation learning based node level scheduling
for heterogeneous chip-multiprocessors systems. This work
is important to this paper because it inspires our node level
scheduling. The study in [9] presented dynamic energy
management under performance constraints in chip mul-
tiprocessors using dynamic voltage and frequency scaling
(DVFS). This work relied on the default scheduler inside
the Sniper simulator [68]. This work was further improved
on by the study in [10], which proposed a node-level deep
neural network (DNN) based energy optimization method
under performance constraints but based on using the
Sniper’s scheduler. The work in [11]–[14] optimized power
for latency-critical workloads: the study in [11] proposed
Rubik, which used a statistical performance model for a fine-
grain DVFS scheme; the work in [12] presented Adrenaline
that leveraged finer granularity voltage boosting for tail
latency control; the study in [13] proposed Gemini for
DVFS based power management; the work in [14] presented
ReTail, which learned simplicity for request-level power
management. The work in [15] enhanced the default Linux
scheduler for node-level scheduling. The study in [16] in-
troduced the adaptive slow-to-fast scheduling framework
that matches the workload’s heterogeneity to the hardware’s
heterogeneity. The work in [17] demonstrated the potential
of reconfigurable cores for servers running latency-critical
applications. The work in [18] used hardware and soft-
ware resource partitioning mechanisms for QoS-aware co-
scheduled workloads. The study in [19], [20] laid the foun-
dation for large-scale collaborative filtering recommender
systems on multi-GPUs and significantly outperformed the
state-of-the-art approaches on shared memory platforms.
The work in [21] proposed a two-stage hybrid energy al-
location method for parallel application scheduling.

In the category of cluster level approaches, the work in
[22] proposed Paragon, an online and scalable datacenter

TABLE 1: Review of cluster and node level scheduling.

Methods Level Interference Heterogeneity Energy Performance Platform
[8], [16] node yes yes yes both
[9], [10], [12] node yes yes simulated
[11] node yes yes yes both
[14], [18] node yes yes yes real
[13], [15] node yes yes real
[17] node yes yes yes yes simulated
[22] cluster yes yes yes both
[23] cluster yes yes yes real
[24], [29] cluster yes yes both
[26], [27], [31] cluster yes yes real
[28] cluster yes yes yes real
[30] cluster yes yes simulated
[41] hierarchical yes yes yes both
[42], [43] hierarchical yes yes real
Qin hierarchical yes yes yes yes both

scheduler that is heterogeneity and interference aware. The
work in [23] exploited the characteristics of deep learning
workloads and proposed an introspective cluster schedul-
ing framework to improve the latency and efficiency of
deep learning jobs. The study in [24] proposed Gavel, a
heterogeneity-aware scheduler that systematically general-
izes scheduling policies for heterogeneous datacenters. The
work in [25] leveraged d choices technique to develop al-
gorithms for better load balancing in MapReduce deployed
on heterogeneous servers. None of the above cluster-level
scheduling approaches considered energy usage in their
optimization. The work in [26], [27] co-located multiple
latency-critical jobs while meeting the QoS requirements
and improving utilization and performance. The work in
[28], [29] hybridized GPU and FPGA to improve the overall
throughput scalability and energy proportionality while
guaranteeing the QoS. The work in [30] used deep rein-
forcement learning for cooling optimization and compute-
intensive job allocation in datacenters. The research in [31]
leveraged approximate computing to boost the utilization
of shared servers. The researchers in [32]–[34] managed
resources for machine learning inference serving from the
scheduler’s perspective [33], system’s perspective [34], and
combined [32]. The researchers in [35] dealt with fluctuating
workloads for machine learning inference serving. The work
in [36], [37] laid the foundation for minimizing energy
costs for heterogeneous datacenters by considering geo-
graphical workload distribution, renewable energy, cooling
subsystem, etc., and significantly reduced the energy cost of
datacenters compared with state-of-the-art work. The study
in [38]–[40] also optimized energy in datacenters.

In the category of hierarchical approaches, the work in
[41] improved the Paragon scheduler by considering hetero-
geneity at both cluster and server levels and developed the
Mage scheduler as a centralized scheduling approach that
maps application-to-core directly using stochastic gradient
descent (SGD) techniques. Despite the significant contri-
bution to the hierarchical level approaches, [41] did not
consider EDP and energy consumption and instead focused
on optimizing server utilization. The study in [42] proposed
Mesos, a distributed two-level scheduling mechanism for re-
source sharing in the datacenter. The work in [43] proposed
a distributed scheduling approach for hierarchical schedul-
ing. Similarly, [42], [43] improved significantly the resource
utilization but again did not consider energy consumption.

Difference and Motivation. Table 1 indicates that (i) we
have outstanding work at the node and cluster levels for
optimizing energy consumption without degrading perfor-
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mance; (ii) we probably need more work at the hierarchical
level, especially for optimizing energy usage and perfor-
mance while considering interference and heterogeneity.
Therefore, the novelty of the proposed work is the unified
hierarchical approach for scheduling that combines cluster
and node levels scheduling while modeling interference and
heterogeneity and considering performance and energy us-
age as objectives. We take the application profiling idea from
[22], [41] and combine it with our own ideas of D-Choices
technique and the collaborative filtering based energy us-
age prediction and build a unified hierarchical datacenter
scheduler based on the previous work. The application area
of the statistical methods in datacenter energy consumption
optimization should have a significant impact. We see this
unified approach as a promising direction in optimization
for energy and performance of heterogeneous servers and
datacenters.

3 BACKGROUND

In this section, we describe several concepts that will later
be used in developing the proposed scheduling approach.

3.1 Collaborative Filtering
Collaborative filtering uses similarities between users and
items simultaneously to provide recommendations. One
popular application using collaborative filtering is recom-
mendation systems (e.g., movie recommendation). In the
recommendation systems, the input to collaborative filtering
is a sparse matrix A - the utility matrix - with one row per
user and one column per item. The elements of A are the
movie ratings from users. Users rated a subset of the movies,
and the collaborative filtering makes movie recommenda-
tions based on these ratings. Collaborative filtering uses
singular value decomposition (SVD) and PQ-Reconstruction
for movie recommendations. SVD is a matrix factorization
method used for reducing dimensionality and identifying
similarity. Matrix A is decomposed into matrices U , V , and
Σ.

Am,n = U · Σr×r · V T (1)

where r is the rank of matrix A, and it represents the
similarities identified by SVD. The matrix U represents the
correlations between the row and similar concepts, such as
to what degree users like fiction movies. Matrix V represents
the correlations between the column and similar concepts,
such as to what degree the movies fall in the fiction category.
Matrix Σ represents similarity concepts.

Then, PQ-reconstruction is used to build matrix R (as
an approximation of matrix A), where R ≈ Q · PT . The
decomposition of A is used to derive matrices P and Q as
PT
r×n = Σ · V T , and Qm×r = U . Once matrix R is built,

stochastic gradient descent (SGD) [44], [45] is employed to
progressively improve the per-element estimations of matrix
R via the following equations:

εui = rui − qi · pTu (2)
qi ← qi + η(2 · εuipu − λqi) (3)
pu ← pu + η(2 · εuiqi − λpu) (4)

This is done until |ε|L2 =
√

Σu,i|εui|2 becomes marginal. rui
is an element of the reconstructed matrix R, η is the learning

rate, and λ is the regularization parameter. The final output
matrix R from SGD represents the improved recovered
elements that reflect strong similarities for accurate movie
recommendations with high confidence.

3.2 Kalman Filtering
Kalman filtering uses recursive equations and a feedback
control mechanism to minimize the estimation error vari-
ance. We use the following state and output equations [46]
to describe Kalman filtering:

xn = Axn−1 +Bun−1 + wn−1 (5)
zn = Hxn + vn (6)

where A is the state transition model, B is the optimal
control input model, and H relates the state x to the mea-
surement z. wn−1 and vn are the random variables that have
a Gaussian distributions.

Kalman filtering includes two phases: the predict phase
and the update phase. We use the following equations to
describe the predict phase, where the filter uses the previous
state x̂n−1 and the input un−1 to project the state. It also
uses the error covariance of the posterior error Pn−1 and the
process noise covariance Q to project the error covariance
P−
n for the prior error.

x̂−n = Ax̂n−1 +Bun−1 (7)

P−
n = APn−1A

T +Q (8)

We use the following equations to describe the update
phase, where it first computes the Kalman gain Kn to
minimize Pn and then updates the current state matrix x̂n
and Pn. R is the measurement noise covariance.

Kn = P−
n H

T (HP−
n H

T +R)−1 (9)

x̂n = x̂−n +Kn(zn −Hx̂−n ) (10)

Pn = (1−KnH)P−
n (11)

4 PREDICTION METHODS

In this section, we present prediction methods that will be
employed by the proposed scheduling algorithms at cluster
and node levels.

4.1 Collaborative Filtering for Energy Usage Estima-
tion at Cluster Level
To develop energy oriented scheduling algorithms, we use
collaborative filtering to predict the energy usage of an
incoming application, which will run on different server
configurations (SC) with selected Voltage/Frequency (V/F)
levels that are set by the Dynamic Voltage and Frequency
Scaling (DVFS). We assume that a given server (from a het-
erogeneous set) can support several different V/F levels. For
example, a single server configuration in [22] corresponding
to a given server hardware platform is replaced with four
different server configurations as the processor can support
four different V/F levels. In this way, we bring into the
optimization process the DVFS (uses V/F levels) control
knob that will help save energy.
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Fig. 1: Illustration of how collaborative filtering is employed to predict energy usage of applications executed on server
configurations with different V/F settings.

The input to collaborative filtering is a sparse matrix A
with one row per application and one column per server
configuration with a selected V/F level. The matrix en-
tries represent normalized application energy usage scores.
Collaborative filtering requires offline training and online
testing. In offline training, we select a small number of
applications (around 10%) and profile them on all different
server configurations for all V/F levels. We normalize the
performance scores and fully populate the corresponding
rows of matrix A. The energy usage model that we use is
similar to the one in [48]. If a new server configuration is
added to the heterogeneous cluster, we need to add columns
in matrix A to represent the newly added server for its V/F
level configurations and to profile the selected applications
in the offline training mode on the newly added server
configuration with selected V/F levels.

In the online testing mode, when a new application
arrives, we first profile it for a period of 0.05 seconds
(fast profiling to avoid memory bursts) on any two server
configurations with selected V/F levels. Please note that the
0.05s time is a user defined parameter, which is passed to the
perf tool for fast profiling. Therefore, the user can change
the profiling time (e.g., set it in milliseconds but guaran-
tee collecting enough profiled data) according to different
types of workloads. Modern datacenter workloads mainly
contain throughput-bound and latency-critical applications.
We can set the user-defined application profile time at the
millisecond level for the latency-critical applications and
at the second level for the throughput-bound applications.
We perform new application profiling application-per-core
to minimize the intrusion. Then, we insert this application
as a new row in matrix A. Lastly, we apply SVD and
PQ-reconstruction [47] that are used by the collaborative
filtering technique to predict the missing scores of this appli-
cation for all other server configurations. Because SVD and
PQ-Reconstruction are robust methods, missing entries and
assumed relaxed sparsity constraints do not significantly
affect SVD’s accuracy [22].

When new applications come, instead of learning each
new application, collaborative filtering leverages profiling
data from history and combines a minimal profiling of the
new application to identify similarities between new and
known applications. Two applications can be similar in
one characteristic (e.g., both benefit from a higher level of
V/F) but different in others (e.g., one application benefits
more from larger memory while the other does not). SVD

uncovers the hidden similarities between applications and
filters out the ones less likely to have an influence on
the application’s scores. Fig. 1 illustrates how collaborative
filtering is applied to predicting energy usage for an applica-
tion. In this example, the workload includes 10 applications
and 2 server configurations. SC1 has two V/F levels and
SC2 has 4 selected V/F levels. In the offline training, we
profile App1 to App3 on SC1 and SC2 with the selected
V/F levels; the profiling data is then used as training data
for the collaborative filter. In the online testing mode, we
first profile the testing applications (App4 to App10) on
any two server configurations with selected V/F levels (to
satisfy SVD’s sparsity constraints). Then, we use SVD and
PQ-reconstruction to predict the missing entries of energy
consumption of applications App4-App10, shown in red
color in Fig. 1. In this figure, App8 has the minimum
predicted energy usage if scheduled to run on SC2 with V/F
level 1.

Energy Usage Calculation: The elements of matrix A
represent the estimated energy usage of the applications
that run on different server configurations. We consider
only the computational energy usage in this paper because
it dominates the total energy usage in servers [48]. The
following equations are used to calculate power, P , and
energy usage, E, for one application that runs on a specific
server configuration with a selected V/F level.

P = 1/2× C × V 2 × F (12)
E = P × Truntime (13)

where C is the total capacitive load, V and F represent the
voltage and frequency at which the server is configured, and
Truntime denotes the execution time of the application has
on the specific server configuration.

4.2 Collaborative Filtering for Interference Estimation
at Cluster Level
The work in [22], [49] found that interference in shared re-
sources leads to higher performance loss. Therefore, in order
to minimize the performance loss, one needs to minimize
the interference in shared resources. Here, we propose to
use the collaborative filtering technique from the previous
section but to predict interference instead of energy usage
scores.

Sources of interference (SoI): In this case, the rows of
matrix A represent applications and the columns represent
SoI, which include memory capacity, memory bandwidth,
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storage capacity, storage bandwidth, network bandwidth,
last level cache (LLC) capacity, LLC bandwidth, L1 i-cache,
L1 d-cache, translation lookhead buffer, integer processing
units, floating point processing units, prefetchers, intercon-
nection network, and vector processing units.

The elements of matrix A represent the normalized in-
terference scores of applications against corresponding SoI.
There are two types of interference we are interested in:
interference that an application can tolerate from the pre-
existing load on a server and interference the application
will cause on that load. We detect interference due to
contention on shared resources and assign a score to the
sensitivity of an application to each type of interference. To
derive sensitivity scores of applications run on contentious
kernels, we use the iBench tool [50].

Interference Calculation: We define Interf1 as the
amount of interference that a new workload can tolerate
from the interference caused by the pre-existing server load
[22]:

Interf1 = tnewapp − cserver (14)

where tnewapp denotes the pressure (sensitivity score) the
new application can tolerate from the pre-existing server
load for a specific SoI; it can be estimated with the iBench
tool, which runs a microbenchmark simultaneously with
an application and progressively tunes up the microbench-
mark’s intensity until the application violates its quality-
of-service (e.g., 95% of the performance achieved when
running alone). cserver represents the caused pressure (sen-
sitivity score) by the pre-existing server load; it can be
calculated as a cumulative sensitivity score for a server as
the sum of the sensitivity scores of individual applications
running on the server. We define Interf2 as the amount of
interference that the new workload will cause on the pre-
existing server load [22]:

Interf2 = tserver − cnewapp (15)

where tserver denotes the pressure the pre-existing server
can tolerate; it can be calculated as the minimum sensi-
tivity score among the sensitivities of individual applica-
tions running on the server. cnewapp represents the caused
pressure by the new application for a specific SoI and can
be estimated with the iBench tool, which runs the applica-
tion concurrently with a microbenchmark and increases the
application’s intensity and records when the microbench-
mark’s performance degrades by 5% (compared to when
running alone). Thus, we calculate the interference I of a
new application when it runs on a server as the sum of the
absolute values (L1 norm) of Interf1 and Interf2 for all
SoIs:

I = |Interf1|+ |Interf2| (16)

The optimal server candidate is one whose interference is
the smallest; ideally zero - which would indicate that there
is no negative effect due to interference between the new
application and the pre-existing applications running on
servers.

Fig. 2 illustrates how collaborative filtering predicts the
application’s interference score. In the matrix from Fig. 2,
each row represents an application, each column represents

1 

SoI 1 SoI 2 … SoI M 

… 

Profiled 

Inferred 

Sources of 

Interference 

7  92 40 

14 96 80 

50 40 100 

Apps’ Interference 

Score 

App 1 

App 2 

App N 

Fig. 2: Illustration of how collaborative filtering is employed
to predict interference.

one source of interference (e.g., CPU, cache, network band-
width, storage bandwidth, etc.), and each element in the
matrix represents the application’s interference score that is
calculated as the sensitivity score estimated with the iBench
tool. Collaborative filtering uses profiled applications’ inter-
ference scores (in yellow) to predict the missing scores (in
red). We use the collaborative filtering technique twice to
predict the interference that an application can tolerate and
the interference an application will cause.

4.3 Collaborative Filtering for Heterogeneity Estima-
tion at Cluster Level
To model heterogeneity, we again use collaborative filtering
to identify how well an application runs on different server
configurations. Similarly to [22], the input to the collabora-
tive filtering technique is a matrix A whose rows represent
applications while columns represent different server con-
figurations. The matrix entries represent normalized appli-
cation performance scores measured in millions instructions
per second (MIPS). In the offline training, we first profile a
few tens of selected applications on all the different server
configurations to generate the sparse matrix A. In the online
testing mode, when a new application arrives, we quickly
profile it on any two server configurations, and add it as a
new row in the matrix A. Lastly, we apply SVD and PQ-
reconstruction to predict the missing performance scores
for all other server configurations. In this way, we directly
model the heterogeneity of the server configurations at the
cluster level.

Heterogeneity Calculation: We define the heterogeneity
score as a measure of performance of all possible different
types of servers as well as of different configurations (e.g.,
V/F levels) of a given server. The numerical values to
express heterogeneity scores are calculated based on MIPS.
We measure MIPS of one application when it runs on one
core using the expression:

H =
IC

Truntime
× 106 (17)

where IC defines the instruction count of the application
during its runtime Truntime.

Fig. 3 illustrates how collaborative filtering predicts the
application’s performance score. In the matrix from Fig. 3,
each row represents an application, each column represents
a server configuration (different V/F levels), and each ele-
ment in the matrix represents the application’s performance
score that is calculated based on MIPS. The collaborative
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Fig. 3: Illustration of how collaborative filtering is employed
to predict heterogeneity.

filtering uses existing profiled applications’ performance
scores to predict scores of the missing entries.

4.4 Kalman Filtering for Workload Prediction at Node
Level
In this work, we combine node-level scheduling with thread
migration with DVFS based energy reduction under per-
formance constraints. The goal of the node-level schedul-
ing is to map dynamically thread-to-core together with
thread migration and DVFS for energy reduction without
performance loss beyond a user set threshold. The actual
scheduling algorithm will be described in a later section;
threads migration is implemented through rescheduling.
The DVFS based energy reduction technique - that is inte-
grated with the scheduling approach - uses Kalman filtering
to predict the workload. Similarly to previous literature [9],
the workload is measured as average cycles per instruction
and instruction count in the next control period for which
V/F pairs should be selected and set to reduce energy con-
sumption. This is under the assumption that the execution of
a given application is split into consecutive control periods
and that the DVFS algorithm is applied at the end of each
such period.

Performance Loss Calculation: To estimate performance
loss, we adopt the technique proposed in [9]:

pl =
N∑

p=1

TPdelay

T
(18)

where pl denotes the performance loss of one node-level
thread-to-core scheduling, p denotes the control period, N
denotes the total number of control periods, T stands for
the duration of the total length of the control periods, and
TPdelay

represents the extra time caused by the delayed
instruction count (the instructions that should but not be
executed due to core frequency degradation for energy
reduction) during control period p. We calculate TPdelay

with
the following expression from [9]:

TPdelay
= IPDone

× (
CPIP ( fH

fP
− 1)

fH
) (19)

where fH stands for the highest available CPU frequency
while fP represents the CPU clock frequency in period p,
IPDone

defines the number of instructions done in period
index p, CPIP represents the average CPU cycles per in-
struction in period p. fH

fP
− 1 can be considered as slowness

in frequency (or extra time in the execution) compared to

the execution which would have been done at maximum
possible frequency. Eq. 19 provides essentially an estimate
of the extra delay in execution that is incurred due to
frequency throttling, i.e., lowering the frequency to save
energy. The logic behind Eq. 19 is that we are expecting
delay based on changing the average CPU frequency while
the average system frequency (which contains the stall time,
cache misses, pipelining delay, etc.) won’t be affected. A
detailed explanation of its derivation can be found in [9].

4.5 Putting It All Together

Energy Usage: To calculate the total energy usage of all
applications, Etotal, the following equations are used:

Etotal =
M∑

m=1

N∑
i=1

E(m, i) · xm,i (20)

E(m, i) =
Si∑
j=1

Em,j · ym,j (21)

where M represents the total number of applications and N
represents the total number of servers. E(m, i) (calculated
with eq. 21) defines the total energy usage of application
m when it runs on server i. xm,i defines the indicator,
which is 1 if application m runs on server i and 0 otherwise
(we assume no cross-server migration in this paper). In eq.
21, Si denotes the total number of server configurations
(e.g., V/F levels) for server i. Em,j (calculated with eq.
13) defines energy usage of application m when it runs on
server configuration j. ym,j represents the percentage of the
execution time (value between [0, 1]) when application m
runs on server configuration j (we allow thread migration
on one server in node-level, which will be discussed later).

Interference: To calculate the total interference of all
applications running on all servers, Itotal, the following
equations are used:

Itotal =
M∑

m=1

N∑
i=1

I(m, i) · xm,i (22)

I(m, i) =
Si∑
j=1

Im,j · ym,j (23)

where M , N , xm,i, and ym,j have the same definitions as
before. I(m, i) (calculated with eq. 23) defines the total inter-
ference of application m when it runs on the corresponding
server i. In eq. 23, Im,j (calculated with eq. 16) defines the
interference of a new application m when it runs on server
configuration j.

Heterogeneity: Lastly, we derive the total heterogeneity
score of all applications running on all server configurations,
Htotal, as follows:

Htotal =
M∑

m=1

N∑
i=1

H(m, i) · xm,i (24)

H(m, i) =
Si∑
j=1

Hm,j · ym,j (25)
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where H(m, i) (calculated with eq. 25) defines the total het-
erogeneity score of applicationmwhen it runs on server i. In
eq. 25,Hm,j (calculated via eq. 17) denotes the heterogeneity
score of application m when it runs on server configuration
j.

Formulation of Scheduling Problem: The two-level hier-
archical cluster-node scheduling problem is formulated as
follows:

Given the input applications M and the server configu-
rations SN

Find the cluster and node levels scheduling functions S()
that map application-to-server at the cluster-level and thread-
to-core at the node-level, which:

Step1 : min Itotal (26)

Step2 : max Htotal (27)

Step3 : min Etotal (28)

Such that:
∀s ∈ S() pl(s) ≤ PL (29)

where pl(s) defines the performance loss of hierarchical
cluster-node scheduling s, which is calculated with eq. 18.
PL represents the performance loss threshold set by the
user. Itotal is calculated with eq. 22, Htotal is calculated with
eq. 24, and Etotal is calculated with eq. 20.

We minimize interference first because it was observed
that interference could lead to higher performance loss than
suboptimal server configurations [22]. From among the se-
lected scheduling solutions that have minimum interference
scores, we then find those that maximize heterogeneity
scores. Lastly, we minimize energy usage scores among
those selected in the previous step because our ultimate goal
is to reduce energy usage under performance constraints.
We discuss application requirements, scalability, profiling
overhead, and other aspects in Section 7.4. We assume no
cross-server migration (parallel jobs will not be scheduled
on multiple classes of servers), but we allow thread migra-
tion (implemented through re-scheduling in Sniper) on one
server at the node-level (Section 5).

5 PROPOSED SCHEDULING APPROACH

5.1 Overview
To solve the scheduling problem formulated in Section
4.5, we propose Qin: a unified hierarchical cluster-node
scheduling approach described in Fig. 4. At the cluster-
level, the inputs to the Cluster Manager are the incom-
ing jobs/applications while the output is the application-
to-server scheduling. The Cluster Manager has a global
view of the scheduling in that it considers different
server configurations on the servers, which will be used
for node-level scheduling (thread-to-core scheduling based
on core V/F levels). Algorithm 1 describes the cluster-
level scheduling algorithm. We first fast profile the in-
coming applications, both offline (around 10% of appli-
cations) and online (application-per-core profiling for 0.05
s to minimize the intrusion and avoid memory bursts);
this is done by the function BenchmarkProfiling(m). Then,
functions EnergyPrediction(m), InterferencePrediction(m), and
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Fig. 4: Illustration of the proposed scheduling approach.

Algorithm 1: Cluster-level scheduling algorithm.

1 Inputs: Incoming jobs/applications M to cluster.
2 Outputs: Application-to-server scheduling at

cluster-level.
3 Function CLUSTER-LEVEL-SCHEDULING()
4 for m in M do
5 BenchmarkProfiling(m); // Fast online

profiling
6 E = EnergyPrediction(m); // Collaborative

filtering based
7 I = InterferencePrediction(m); //

Collaborative filtering based
8 H = HeterogeneityPrediction(m); //

Collaborative filtering based
9 D-ChoicesGreedyScheduling(E, I,H);

10 end
11 end

HeterogeneityPrediction(m) use the collaborative filtering pre-
diction technique to estimate the energy usage (Section
4.1), interference (Section 4.2), and heterogeneity (Section
4.3) of new incoming applications. Lastly, energy usage,
interference, and heterogeneity estimations are used by D-
Choices Greedy Scheduling Algorithm (described later) im-
plemented as D-ChoicesGreedyScheduling(E, I,H) function,
where E stands for the estimated energy usage from the
collaborative filtering technique (Section 4.1), I denotes
the estimated interference from the collaborative filtering
technique (Section 4.2), and H represents the estimated
heterogeneity (Section 4.3) from the collaborative filtering
technique.

At the node-level, the inputs to the Server Manager are
the incoming tasks/threads while the output is thread-to-
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Algorithm 2: Node-level scheduling algorithm.

1 Inputs: Incoming remain unfinished tasks/threads
T to nodes.

2 Outputs: Thread-to-core scheduling and DVFS at
node-level.

3 Function NODE-LEVEL-SCHEDULING()
4 for Every time_interval do
5 // For every default power update time

interval 1ms
6 for t in T do
7 // For every remain unfinished thread t,

do nothing if no thread remains
8 CollectCoreV/FStatus(); // Fast core V/F

collection
9 E = EnergyPrediction(t); // Same as

cluster-level
10 I = InterferencePrediction(t); //

Calculated as extra delay
11 H = HeterogeneityPrediction(t); //

Calculated as instruction count
12 D-ChoicesGreedyScheduling(E, I,H);
13 end
14 PerCoreWorkloadPrediction(); // Kalman

filtering based
15 DVFS(); // Set V/F levels for each core
16 end
17 end

core scheduling with task migration and DVFS control. The
Server Manager combines node-level scheduling and thread
migration with DVFS to achieve dynamic energy reduc-
tion under performance constraints. Algorithm 2 describes
the node-level scheduling algorithm. The function Collect-
CoreV/FStatus() collects core V/F levels information. Simi-
larly to the cluster-level case, functions EnergyPrediction(t),
InterferencePrediction(t), and HeterogeneityPrediction(t) lever-
age the collaborative filtering based prediction to esti-
mate energy usage, interference (calculated as extra de-
lay the thread causes to the mapped core), and het-
erogeneity (calculated as instruction count) of new in-
coming threads. Lastly, these estimations are fed into D-
ChoicesGreedyScheduling(E, I,H). The DVFS() function is
implemented by the DVFS Controller from Fig. 4. It im-
plements the DVFS scheme reported in [9], but, adapted to
support thread migration; it is responsible for finding opti-
mal V/F pairs for all cores inside the multicore processor on
the server node. It uses as input Instruction Count and CPI
values as predicted by the Kalman filter for the next control
period implemented by PerCoreWorkloadPrediction() func-
tion.

Again, the main novelty of the proposed scheduling
approach is the unified hierarchical cluster-node schedul-
ing considering interference and heterogeneity for multi-
objective optimizations in heterogeneous datacenters. By
saying “unified”, we mean that (i) the cluster-level and
node-level scheduling use the same D-choices greedy
scheduling method, and (ii) the cluster-level scheduling has
a holistic view and interacts with the node-level schedul-
ing. For example, the DVFS during node-level scheduling

can affect (through fast profiling results) the cluster-level
scheduling while the cluster-level scheduling can enhance
(through allocating applications to servers that have avail-
able lower levels of V/F) the energy optimization of the
node-level scheduling.

5.2 D-Choices Greedy Scheduling

The D-Choices concept applied to the problem of hierar-
chical scheduling is one of the main novel contributions in
this paper. The key idea is that a small number of choices
in greedy scheduling can lead to significantly better load
balancing. This is in contrast with previous work where the
single choice greedy scheduling approach allocates many
more jobs to high-performance servers than regular servers,
which results in load imbalance among servers that un-
dermines the overall jobs completion time. On the other
hand, we found that trading-off load balancing and local-
optimal greedy scheduling (resulting in load imbalance) can
improve overall job completion time and energy usage.

We define and frame the application-to-server problem
and the thread-to-core problem through the so-called ball-
to-bin model: allocating m balls into n heterogeneous bins
(assuming m ≥ n lnn) [52]. In this model, when we use
a single choice approach, the upper bound of the maximum
load of bins ism/n+O(

√
(m lnn)/n) with high probability.

However, when we use a multiple choices paradigm, the
maximum load of bins is m/n + O(ln lnn) + O(1) with
high probability. When applying this model of “balls into
heterogeneous bins” [52] to the problem of scheduling on
heterogeneous servers, we must consider the following dif-
ferences: (i) “Balls” represent various applications at cluster-
level and various threads at node-level. (ii) The objective is
to minimize imbalance, which translates into minimization
of applications/threads queuing time, thereby improving
performance.

To address these differences, we first define the load at
both cluster and node levels. At the cluster-level, at time t,
the load of a server i is the total size (total instructions count)
of the unprocessed applications assigned to the server up
to t is denoted as Li(t). At the node-level, at time t, the
load of a core j is the total size (total instructions count)
of the unfinished threads assigned to the core up to t is
denoted as Lj(t). We then define the imbalance at both
cluster-level and node-level. At time t, the imbalance is the
difference between the maximum and the average load of the
servers (calculated with eq. 30) at the cluster-level (denoted
as Imc(t)), and of the cores (calculated with eq. 31) at the
node-level (denoted as Imn(t)).

Imc(t) = max{Li(t)|i ∈ 1, 2, ..., N} −
N∑
i=1

Li(t)/N (30)

Imn(t) = max{Lj(t)|j ∈ 1, 2, ..., SN} −
SN∑
j=1

Lj(t)/SN

(31)

where i and j are the indices for servers and server config-
urations (core V/F levels), while N and SN represent the
numbers of servers and server configurations.
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To this end, the application-to-server scheduling prob-
lem is defined as: Allocate M applications to N hetero-
geneous servers, where each application m has the size
of αm, to minimize cluster-level imbalance Imc(t). Also,
the thread-to-core problem is defined as: Allocate SM var-
ious threads to SN heterogeneous server configurations
(core V/F levels), where each thread k has the size of βk,
to minimize node-level imbalance Imn(t). To solve these
problems, the D-Choices Greedy Scheduling method is pro-
posed. Compared to traditional approaches where only one
optimal candidate server or server configuration is selected,
here, we select the top D (D ≥ 2) candidates and then
randomly pick one from among these D candidates.

Approximate Upper Bound: At the cluster-level, assum-
ing M ≥ N lnN , when allocating M applications to N
heterogeneous servers using D-Choices Greedy Scheduling
method, we approximate the upper bound of the D-Choices
Greedy Scheduling as follows. More details of the approxi-
mation is shown in APPENDIX A.

Thus, at the cluster-level, when allocating M applica-
tions to N heterogeneous servers using D-Choices Greedy
Scheduling method, the approximate upper bound of the
imbalance Imc(t) satisfies, with high probability:

Imc(t) =

{
O(

√
(
∑M

m=1 αm lnN)/N), if D = 1

O(ln lnN) +O(1), if D ≥ 2
(32)

Similarly, at the node-level, when allocating SM threads
to SN heterogeneous server configurations using D-Choices
Greedy Scheduling method, the approximated upper bound
is as follows. More details of the approximation is shown in
APPENDIX A.

Imn(t) =

{
O(

√
(
∑SM

k=1 βk lnSN )/SN ), if D = 1

O(ln lnSN ) +O(1), if D ≥ 2
(33)

At the cluster level, if we assume each incoming applica-
tion has the same application size, where αm is a constant.
Under this assumption, the approximate upper bound of the

single choice (D = 1) O(
√

(
∑M

m=1 αm lnN)/N) is at the
same order as O(

√
(M lnN)/N). Where the approximate

upper bound of the D-Choices (D ≥ 2) remains O(ln lnN).
Similar approximation can also happen at the node level. We
also plot the relationship between the approximate upper
bound of the imbalance Imc(t) at the cluster-level and the
number of heterogeneous servers N in APPENDIX A. Thus,
we conclude that: At the cluster-level, when the number
of applications M is large (which is realistic in todays
datacenters such as those of Google that process millions
of applications per day) and the size of each application αm

is large (which is also realistic, especially for deep learning
jobs), the proposed D-Choices Greedy Scheduling method
leads to significant improvement over traditional cluster-
level best choice scheduling methods - which is the case of
previous schedulers Paragon [22], Mage [41], and Kuber-
netes [67] schedulers - in load balancing. At the node-level,
when the number of threads SM and the size of each thread
βk are large, the proposed D-Choices Greedy Scheduling
method achieves significant improvement over traditional

Algorithm 3: D-choice greedy scheduling algo-
rithm, cluster level, focus: performance.

1 Inputs: Estimated energy, interference, heterogeneity
scores E, I, H.

2 Outputs: Selected server for the new incoming
application.

3 Function
D-CHOICES-GREEDY-SCHEDULING(E,I,H)

4 Sorted_I = Sort_Interference(I);
5 P =

SelectTop_D_InterferenceCandidates(Sorted_I);
6 Flist.AddCandidates(P);
7 Subset_I = SelectSubsetServers(Sorted_I); //

Select top subset server candidates in
interference scores

8 Sorted_H = Sort_Heterogeneity(H[Subset_I]);
9 Q = Select-

Top_D_HeterogeneousCandidates(Sorted_H);
// Select top D server candidates in
heterogeneity scores from the subset

10 Flist.AddCandidates(Q);
11 RandomlySelectOne(Flist);
12 end

Algorithm 4: D-choice greedy scheduling algo-
rithm, node level, focus: energy usage.

1 Inputs: Estimated Energy, interference,
heterogeneity scores E, I, H.

2 Outputs: Selected core for the incoming thread.
3 Function

D-CHOICES-GREEDY-SCHEDULING(E,I,H)
4 CollectCoreV/FStatus();
5 Sorted_I = Sort_Interference(I);
6 P =

SelectTop_D_InterferenceCandidates(Sorted_I);
7 Flist.AddCandidates(P);
8 Subset_I = SelectSubsetCores(Sorted_I); //Select

top subset core candidates in interference scores
9 Sorted_E = Sort_Energy(E[Subset_I]);

10 Q = SelectTop_D_EnergyCandidates(Sorted_E);
//Select top D core candidates in energy scores
from the subset

11 Flist.AddCandidates(Q);
12 RandomlySelectOne(Flist);
13 end

node-level best choice scheduling methods - which is the
case of Sniper [68] scheduler - in load balancing.

As described earlier in Algorithms 1 and 2, we use
the proposed D-Choices Greedy Scheduling method into
the cluster-node scheduling approach described in Fig. 4.
More specific details of how this method is implemented
are presented in Algorithms 3 and 4. Algorithm 3 shows
the pseudocode description for the specific implementa-
tion where the focus of the optimization is performance
(i.e., completion time). In this case, the inputs to D-
CHOICES-GREEDY-SCHEDULING(E,I,H) include estimated
energy usage, interference, and heterogeneity scores. We
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do not use energy scores E when scheduling focuses on
performance. The algorithm sorts and selects first the top
D1 server configurations - for any given server - in terms
of interference and adds them to the finalist server can-
didates. This way, interference is minimized first because
interference usually results in higher performance loss than
suboptimal server configurations. Then, we select the top
P percent of server configurations according to interference
scores as a subset. It is from among this subset of server
configurations, that finally the top D2 server configurations
with the best heterogeneity scores are selected and added to
the overall finalist candidates list; and finally, one of them
then is randomly picked from the list as the server to which
the incoming application is to be scheduled. Algorithm 4
shows the pseudocode description for the D-Choices Greedy
Scheduling method at node-level where the objective focus
is energy usage minimization. Its idea is similar that of
the cluster-level case. The difference is that in this case we
work with voltage and core frequency scores instead. The
specific versions of this algorithm when the objective focus
is performance or EDP are similar - not included here in the
interest of space; the difference is in the types of scores that
are employed: interference and frequency for performance;
interference, frequency and voltage for EDP.

5.3 Setting d for D-Choices

How many choices are needed for the D-Choices Greedy
Scheduling described in Algorithms 3, 4? Are two choices
(d = 2) enough? One could heuristically set d by starting
from d = 2 and increase it until the best load balancing
is achieved. But this method is time-consuming and not
practical. Instead, we select d for D-Choices based on the
analysis presented earlier, when the balls-into-bins model
was discussed - where we allocated m balls into n het-
erogeneous bins under the assumption that m ≥ n lnn.
According to that model, one can achieve a constant load
balance as long as d = Ω(log n) [53], [54], where n is the
number of bins. Therefore, we set d = [logN ], where N
is the number of heterogeneous servers, as the trade-off
between the setting complexity, the load balancing, and the
memory overhead (aggregation cost). For example, in our
case where N = 6 (we have six heterogeneous computers in
the cluster, as it will be discussed later on), we set d = 2 (two
choices) for the D-Choices greedy scheduling algorithms.

6 DYNAMIC ADMISSION CONTROL
Major cloud service companies deploy admission control
protocols to shorten applications queue time, prevent ma-
chine overload, enhance resiliency, and enable authentica-
tion and authorization [60]–[63]. A traditional fixed admis-
sion control protocol ignores that often humans are the
users who submit jobs to the datacenter. For example, Raj
high-performance computer cluster (at Marquette Univer-
sity) [64] has many submitted jobs during the school year
(job arrival rate increases even more at the end of each
semester), but sparsely arriving jobs during the summer
period. Similarly, one can see an increase in online shopping
behavior before holidays. This type of job arrival behavior
motivates the proposal of dynamic admission control (DAC)
protocol that considers “user behavior” (jobs arrival rates)
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Fig. 6: Dynamic admission control is integrated in the
cluster-level scheduling; this figure is a changed version of
Fig. 4.

in a way that shortens applications execution time or energy
consumption.

The key novelty of DAC is to achieve the best trade-
off between applications queue length (applications’ wait-
ing time) and their scheduling results (scheduled to a
preferred/suitable server) based on the observation that
different incoming application orderings result in different
application queue times, jobs completion times, and energy
usages. For example, Fig. 5 illustrates that when application
arrives extensively (e.g., such as the jobs submitted to Raj
high-performance computer cluster during the academic
year), DAC uses shorter queue lengths and waiting times
- at the cost that not all the applications in the queue can
be scheduled to their best corresponding suitable servers.
On the other hand, when the applications arrive sparsely
(e.g., jobs submitted during summer time), DAC uses longer
queue lengths and waiting times - in this way ensuring that
applications in the queue have a higher chance of being
scheduled to a preferred/suitable server.

The proposed dynamic admission control is integrated
inside the cluster-level scheduling approach as shown in
Fig. 6. Effectively, it is implemented after the profiling and
prediction steps (described in Section 4), but, before the D-
Choices Greedy Scheduling process (described in Section
5.2). In our experiments, we observed that given the same
workloads scheduled by the same scheduler to run on the
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same cluster, different incoming application orderings result
in different application queue times, which impact the total
jobs completion time. We use this observation to design a
DAC strategy. However, in a practical deployment, we need
to consider the following challenges: (i) We have infinite
continuous incoming applications to the datacenter; in other
words, we know the index of the first application but do not
the last one, and (ii) We want to benefit more from DAC than
pay its overheads; in other words, we want DAC’s overhead
to be constrained.

To address the challenge of the infinite workload, we use
the power of the “double” concept. After completing the
fast online profiling and prediction steps, we get the pre-
dicted energy usage, interference, and heterogeneity scores
for each application running on all server configurations.
DAC ranks applications according to their interference,
heterogeneity, and energy usage scores. For example, inter-
server data movement is projected to double every 12-15
months and thus increases its interference to the servers and
applications that running on the servers. The interference
scores predicted and profiled by the iBench [50] considered
compute (e.g., CPU), memory (e.g., cache), and network
(e.g., network bandwidth) in a holistic way. Thus, ranking
applications according to their interference scores poten-
tially mitigates the interference caused by data movement
across servers. Similarly, future datacenter become hetero-
geneous due to server upgrading, and thus ranking ap-
plications according to their heterogeneity scores mitigates
the performance loss caused by datacenter heterogeneity.
Ranking applications according to their energy usage scores
can also reduce the application’s total energy usage. For
example, when ranking using applications’ average hetero-
geneity scores, we rank the applications from index low to
index high (initially low = high = 1) in descending order
according to their average heterogeneity scores (the higher
the heterogeneity score, the lower the application queue
time it brings). After completing each ranking, we set index
high = high∗2 and re-rank all the applications between low
and high. We repeat this “double-and-rank” process until
the overhead threshold is reached. After that, we feed these
ranked applications into the D-Choices Greedy Scheduling
process described in Section 5.2 and repeat the “double-
and-rank” process for the continuously arriving new ap-
plications. The “double-and-rank” process takes logarithmic
iterations to find the maximum length of the ranked applica-
tions queue to feed the D-Choices Greedy Scheduling while
guaranteeing that DAC’s overhead is constrained.

To address DAC’s overhead challenge - the trade-off
between applications queue length (applications’ waiting
time) and their scheduling results, we set the threshold of
the DAC’s overhead σDAC to be associated with the jobs
arrival rate υjobs. If the users submit jobs to the datacenter
extensively (υjobs is large), we set a tight threshold (a
small σDAC translates into spending less time in ranking
applications). Otherwise, we set a relaxed threshold.

Discussion: What is the overhead of implementing DAC
inside the Qin Scheduler? DAC’s overhead comes mainly
from the “double-and-rank” process, which needs logarith-
mic iterations to find the right applications queue length
to rank the applications while guaranteeing applications’
ranking times are within the threshold (set by the user).

In other words, when we have infinite incoming applica-
tions, the threshold constrains DAC’s overhead. How much
optimization does the DAC bring to the Qin Scheduler?
We propose DAC based on the observation that different
incoming application orderings result in different applica-
tion queue times, job completion times, and energy usage.
Our experimental results from 7.1 demonstrate that DAC
improves Qin Scheduler in performance and energy usage.
How to adjust application queue length and waiting time
based on workload arrival rate? We need to consider the
applications’ types in the workload and the free-server prob-
ability distributions in the datacenter. First, inspired by the
work in [65], we assume the job arrival follows the Poisson
distribution with parameter λ. If the incoming workload
is interactive applications (which are the cases in [11]–
[14], [18]), then the threshold of the DAC’s overhead σDAC

should be within 99th percentile (µsec) of the tail latency
of the interactive application; if the incoming workload is
throughput-bound applications (e.g., Parsec 3.0 benchmarks
[71]), then we can set the threshold of the DAC’s overhead
σDAC to be 1/λ. Second, we also need to consider the
free-server probability distributions in the datacenter. For
example, the work in [66] statistically analyzed the free-
server probability distributions in a 1000 server experiment
on Amazon EC2, and they found that within 56 sec when the
application arrived at the queue, there was a 60% probability
that there would be at least one free server for this arrived
application.

7 EXPERIMENTS AND SIMULATIONS

Please recall that this paper focuses on how we can reduce
energy usage without degrading performance in heteroge-
neous datacenters via scheduling. Section 5 aims to answer
this question by proposing unified hierarchical scheduling
using a D-Choices technique. In this section, we imple-
mented the proposed scheduling method on a real cluster
to demonstrate the proposed unified approach as a promis-
ing direction in optimizing the energy and performance of
heterogeneous servers and datacenters.

Real Cluster for Experiments: We implemented the
cluster-level scheduling algorithm as a “plug-in” custom
scheduler managed by the Kubernetes platform on a real in-
house cluster built with six heterogeneous computers. Our
complete implementation will be made publicly available
on a GitHub repository, which will also include a video
demonstration. The specific characteristics of the six com-
puters are listed in Table 2. We implemented the cluster with
Kubernetes v1.14.0 and virtual networking layer flannel.
We used the Linux perf tool v5.4.148 for fast profiling of
instructions count and CPU and memory energy usage.

TABLE 2: Characteristics of nodes in the Kubernetes cluster.
Server Type Role GHz Cores L1(KB) Mem(GB)
Xeon E5-1620 master 3.60 8 32 16
Intel i5-6600 worker 3.30 4 32 16
Intel i7-4790 worker 3.60 8 32 16
Intel i5-7600 worker 3.50 4 32 8
Intel i5-4690 worker 3.50 4 32 8
Intel i5-4670 worker 3.40 4 32 8

Schedulers: At the cluster-level, we compare the pro-
posed Qin scheduler against the Kubernetes scheduler [67]
(widely deployed on Amazon AWS, Google Cloud Platform,



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 1, NO. 1, MAY 2023 12

Microsoft Azure and IBM Cloud) and against Paragon [22]
and Mage [41] schedulers (tested on major cloud computing
services). At node-level, we compare the proposed Qin
scheduler with the Sniper scheduler inside Sniper simulator
v7.2 [68]. At the combined cluster-server levels, we compare
the proposed unified hierarchical Qin scheduler versus the
combination of Kubernetes scheduler at the cluster-level
and Sniper scheduler at the node-level. Table 3 summarizes
the compared schedulers in this paper.

TABLE 3: Summary of the compared schedulers.

Scheduler Method Metrics
Kubernetes Best Node Multiple (resource, constraints, ...)
Paragon Greedy and Statistical Server utilization and Interference
Mage Stochastic Gradient Descent Server utilization and Performance
Sniper Least Loaded Performance, Energy, EDP
Qin D-choices Greedy Performance, Energy, EDP

Workloads: We conduct evaluations using both real-
world and synthetic application workloads. Similarly to the
study in [22], we use Splash-2 benchmarks [69] as real-world
applications, randomly replicated with equal likelihood and
randomized interleaving to generate up to 100 real-world
application workloads. Similarly to the study in [41], we
use the mutilate load generator [70] to generate synthetic
latency-critical workloads, and again up to 100 synthetic
application workloads with uniform, normal, and exponen-
tial distributions. In addition, to study modern datacenter
workloads, which contain throughput-bound and latency-
critical applications, we use Parsec 3.0 benchmarks as well
[71]. In our future work, we will test the fast indirect
profiling on abstract parameters for energy usage with more
computation-heavy applications.

7.1 Experiments at Cluster Level
7.1.1 Qin Scheduler Outperforms State-of-the-art When
Optimizing Solely on Performance, Energy, and EDP
Comparison: To avoid scheduling overheads, we implement
each scheduler with a different objective as an independent
custom scheduler managed by the Kubernetes platform.
Then, these schedulers could be switched between as nec-
essary. If workloads submitted to the cluster are mainly
latency-critical, the performance aware Qin scheduler can
be used to focus on jobs completion time. If workloads
are energy-hungry, the energy aware Qin scheduler can
be used; otherwise, the EDP aware Qin scheduler is used.
For all cluster-level versions of the Qin scheduler, we use
d = 2 inside the D-choice greedy scheduling algorithm - as
it was explained earlier. A summary of the comparison of
the Qin scheduler against the other schedulers is presented
in Table 4 for three types of applications: 100 real-world
workloads, 100 latency-critical synthetic workloads, and 100
throughput-bound workloads.

Performance: To compare the performance aware Qin
scheduler with Kubernetes, Paragon, Mage schedulers re-
garding performance, we measure the normalized jobs com-
pletion time of these schedulers with the increased number
of 100 real-world application workloads on 6-server hetero-
geneous cluster (Fig. 7.a). In Fig. 7.a, the x-axis represents the
number of workloads for which scheduling is done and the
y-axis shows the performance measured as normalized jobs
completion time. Each line corresponds to the performance
gained by different schedulers. We found that the proposed

performance aware Qin scheduler outperforms all other
schedulers on average by around 9% (Kubernetes), 26%
(Mage), and 32% (Paragon) respectively. Furthermore, the
improvement in jobs completion time gets even better as
the number of workloads increases, which demonstrates a
good scalability of the proposed scheduler. Thus, we con-
clude that the performance aware Qin scheduler - integrated
with D-Choices Greedy scheduling - results in better load
balancing and reduces the normalized jobs completion time.

Energy usage: Similarly, to compare the proposed en-
ergy aware Qin scheduler with Kubernetes, Paragon, Mage
schedulers regarding energy, we measure the normalized
energy usage (of both CPU + memory combined) with the
increased number of 100 real-world application workloads
on 6-server heterogeneous cluster (Fig. 7.b). We found that,
again, when optimizing solely on energy usage, the pro-
posed scheduler outperforms the state-of-the-art schedulers,
because it directly considers the energy usage through the
collaborative filtering based energy usage estimation.

Performance-energy tradeoff: Lastly, to compare the pro-
posed EDP aware Qin scheduler outperforms the other
schedulers regarding energy efficiency, we measure nor-
malized energy delay product (EDP) with the increased
number of 100 real-world application workloads on 6-server
heterogeneous cluster (Fig. 7.c). We found that, again, the
proposed EDP aware Qin scheduler outperforms the other
schedulers on this dimension too.

7.1.2 Qin Scheduler Increases Server Utilization But Re-
mains Unvaried For Memory Utilization
Server Utilization: To test if the Qin scheduler increases
server utilization, we generated the heat maps of the server
utilization - calculated as average CPU utilization and col-
lected by Metrics API) - with time for Qin and Kubernetes
schedulers for 100 synthetic application workloads on 5-
worker + 1-master cluster (Fig. 8). Fig. 8.a indicates that Qin
scheduler achieves high and balanced servers utilization
during the jobs completion time, while Fig. 8.b indicates
that Kubernetes scheduler achieves good servers utilization
in the middle period but shows long tail imbalanced servers
utilization during the ending period (Paragon and Mage
schedulers have similar long tail phenomenon). The long
tail phenomenon increases the delay in jobs completion
time and is caused by the best choice scheduling methods
(used by Kubernetes, Paragon, and Mage) that lead to load
imbalance among servers. Thus, we conclude that the D-
Choice Greedy scheduling method - used by Qin - results
in better load balancing among servers, avoids this long tail
phenomenon, and thus increases server utilization.

Memory Utilization: To determine if the Qin scheduler
increases memory utilization, we generate the heat maps
of the average memory utilization vs. time for Qin and
Kubernetes schedulers for 100 synthetic application work-
loads on 5-worker + 1-master cluster (Fig. 9). We observed
(i) unvaried memory utilization during scheduling and (ii)
imbalanced memory distribution among servers for both
schedulers. The memory utilization is unvaried because
both Qin and Kubernetes schedulers leave the memory the
way it is during scheduling. The surprising imbalanced
memory distribution happens because of different memory
sizes and allocated jobs in each server. Thus, we found that
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TABLE 4: Improvement achieved by Qin scheduler over three state-of-the-art schedulers at cluster-level.

Real-world apps Latency-critical apps Throughput-bound apps
Cluster-level Scheduler Performance Energy EDP Performance Energy EDP Performance Energy EDP
Kubernetes 9.43% 21.23% 43.53% 33.52% 4.01% 26.36% 18.31% 4.70% 22.16%
Paragon 32.39% 25.69% 60.23% 37.57% 11.8% 36.46% 30.95% 4.71% 34.20%
Mage 26.15% 16.85% 51.39% 22.29% 3.51% 21.24% 19.44% 3.98% 22.65%
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Fig. 7: Comparison of the proposed Qin scheduler against state-of-the-art schedulers at cluster level: a) jobs completion
time, b) energy usage, and c) EDP.

(a)

(b)

Fig. 8: Server utilization vs. time: (a) Qin scheduler and (b)
Kubernetes schedulers for 100 synthetic application work-
loads at the cluster level.

the Qin scheduler does not improve memory utilization, and
there is room for improvement in scheduling by exploiting
factors that affect the memory system.

7.1.3 Qin Scheduler Has Low Scheduling Overheads,
Good Scalability, and Good Parameter Setting For D-
Choices

Scheduling Overheads: Fig. 10.a shows the execution time
breakdown of the Qin scheduler for 100 synthetic applica-
tion workloads on the 6-server heterogeneous cluster. We
find that the fast profiling and classifying step and the D-
Choices Greedy scheduling step are around 2% and 1%,
respectively. We conclude that the Qin scheduler provides
a good trade-off in performance, energy usage, and energy-
delay-product despite acceptable overheads. When compar-
ing the Qin scheduler with the state-of-the-art schedulers,
as shown in Table 3, Qin, Mage, and Paragon may have
similar scheduling overheads because of the used profiling-
based prediction methods. Kubernetes’ default schedule has
the pros of supporting response time in milliseconds for
production usage, but it has the cons of mainly optimiz-
ing performance and resources without considering energy
usage, interference, and heterogeneity.

Scalability: We test scalability in scale-out and scale-
up categories with six heterogeneous computers. Scale-
out (horizontal) test focuses on the performance of Qin
Scheduler when the number of application workloads in-
creases; scale-up (vertical) test explores Qin Scheduler’s
performance when the size (execution time) of applications
increases. Fig. 11.a shows the normalized jobs completion
time of Qin Scheduler when the number of synthetic ap-
plication workloads scale-out to 200. Fig. 11.b shows Qin
Scheduler’s performance when the execution time of each
synthetic application doubled. We conclude from Fig. 11 that
Qin Scheduler scales well in both cases. Cluster scale-out
dominated performance gains by improving around 300x in
computing recently [72]. In our future work, we will (i) use
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(a)

(b)

Fig. 9: Memory utilization vs. time: (a) Qin scheduler and (b)
Kubernetes schedulers for 100 synthetic application work-
loads at the cluster level.
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Fig. 10: (a) Execution time breakdown for Qin scheduler for
100 synthetic application workloads at the cluster level. (b)
Comparison of d values for D-Choices Greedy scheduling
method on real-world application workloads.

the simulator to simulate the situation when the number
of servers increases and (ii) deploy the Qin scheduler on a
concrete large-scale data center when everything is all set.

Setting d for D-Choices: Fig. 10.b evaluates d for D-
Choices Greedy scheduling method using 100 real-world
application workloads. We observe that (i) increasing d does
not improve the load balancing and the jobs completion time
because applications differ in size and execution time and
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Fig. 11: Scalability tests: (a) scale-out (horizontal) test (b)
scale-up (vertical) test at the cluster-level.

(ii) setting d as the minimum optimal value (i.e., 2 in our
case) results in good load balancing and jobs completion
time.

7.1.4 Dynamic Admission Control Reduces Total Jobs
Completion Time And Energy Usage
Dynamic Admission Control: We investigate the impact
of implementing the proposed dynamic admission control
(DAC). Fig. 12.a (ranks applications according to descending
average heterogeneity scores) and Fig. 12.b (ranks applica-
tions according to ascending average energy usage scores)
show the comparison of normalized jobs completion time
and energy usage for Qin scheduler with and without the
DAC protocol for 100 real-world application workloads on
the 6-server heterogeneous cluster. We set the application
queue length to 100 and the application waiting time to 0.
We do not set the Poisson distribution with parameter λ
because 100 applications are relatively small, and we pass
all the input applications at once to the Qin Scheduler on
the Kubernetes platform. We do not set a threshold σDAC

in this experiment because DAC’s overhead is small when
ranking all applications. We observe that the Qin scheduler
with DAC improves jobs completion time and energy usage
over the one without on average by around 21% and 6%.

Such improvement is expected because the DAC proto-
col shortens application queue time, thereby reducing the
total jobs completion time and energy usage. DAC aims
to achieve the best trade-off between applications’ wait-
ing time and their scheduling results (scheduled to a pre-
ferred/suitable server). For example, DAC ranks application
that has a higher heterogeneity score (higher MIPS) with a
lower index (to be scheduled earlier). Because scheduling
takes time, the lower index application may have been
executed already before the next application is scheduled,
and thus, DAC shortens the application waiting time. DAC
reduces energy usage because it ranks energy-efficient ap-
plication with a lower index, and thus reduce the waiting
time of the energy-hungry applications, which turns into
extra saved energy usage.

7.1.5 Visualizing Qin Scheduler in Realtime
One More Thing: Visualizing Schedulers. We use
Prometheus tool [73] to generate the data plotted in Fig.
13. This tool allows us to visualize and compare Kubernetes
and Qin Schedulers in realtime when running 100 synthetic
application workloads separately on 5-worker + 1-master



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 1, NO. 1, MAY 2023 15

10 20 30 40 50 60 70 80 90 100
Num. of workloads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 J
ob

s 
C

om
pl

et
io

n 
T

im
e

Qin
Qin + DAC

(a)

20 40 60 80 100
Num. of workloads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 E
ne

rg
y 

U
sa

ge

Qin
Qin + DAC

(b)

Fig. 12: (a) Comparison of proposed Qin scheduler with
and without dynamic admission control for jobs completion
time. (b) Comparison of proposed Qin scheduler with and
without dynamic admission control for energy usage.

cluster. The x-axis denotes the system local time, the y-axis
represents the node load (collected Prometheus), and each
plot-line represents a realtime worker load monitored by
Kubernetes and Qin schedulers. From local time ∼ 18 : 23
to ∼ 18 : 41 Kubernetes Scheduler monitors the 5-worker
while from ∼ 18 : 42 to ∼ 18 : 55 we plug and play Qin
scheduler. We observe imbalanced peak loads among work-
ers during the Kubernetes period, but improved balanced
peak loads during the Qin period. Fig. 13 demonstrates that
the “plug and play” Qin Scheduler is useful in the realtime
on a practical cluster.

7.1.6 Discussion

Why does the proposed Qin scheduler outperform state-of-
the-art schedulers? From a mathematical perspective, eq. 32
and Fig. 1 in APPENDIX A show that the imbalance Imc(t)
at the cluster-level increases when the number of applica-
tions M and the size of each application αm increase for
the best choice scheduling methods. On the other hand, the
imbalance Imc(t) is independent of the M and the αm for
the D-Choices Greedy scheduling method. The best choice
scheduling method “lost memory” requires more steps to
compensate for the imbalance compared to the D-Choice
Greedy scheduling method; therefore, it deviates signifi-
cantly from the optimal scheduling with increased M and
αm. In contrast, the D-Choices Greedy scheduling method
“recalls memory” requires fewer steps to compensate for
the imbalance and achieves stochastically undistinguishable
imbalance after fewer iterations of applications allocation;
thus, it is independent of the number of applications M and
the size of each application αm [51]. From a system perspec-
tive, the proposed Qin scheduler incorporates the D-Choices
Greedy scheduling method and considers energy usage,
interference, and heterogeneity directly, while the state-of-
the-art schedulers (Kubernetes, Paragon, and Mage) use the
best choice method and do not consider the energy usage of
the CPU and memory. This indicates that the proposed Qin
scheduler outperforms state-of-the-art schedulers: (i) in per-
formance (focus solely on jobs completion time) because the
incorporated D-Choices Greedy scheduling method leads to
better load balancing among servers and thus reduces the
applications queuing time in servers; (ii) in energy usage
(focus solely on energy usage of CPU and memory) be-

cause of the integrated collaborative filtering based energy
usage estimation (Kubernetes, Paragon, and Mage do not
consider energy usage); and (iii) in EDP (focus solely on
EDP) because of the combination of the D-Choices Greedy
scheduling method and the collaborative filtering based
energy usage, interference, and heterogeneity estimations.

7.2 Simulations at Node Level

7.2.1 Qin Scheduler Outperforms Sniper Scheduler When
Optimizing Solely on Performance, Energy, and EDP

Comparison: At node level, we implement the proposed
performance, energy usage, and EDP aware Qin sched-
ulers as independent alternative schedulers inside Sniper
simulator v7.2 [68] to avoid switching scheduling over-
head (runtime configuring). We perform simulations using
Splash-2 benchmarks [69]. For the energy aware Qin sched-
uler (optimizing solely on energy usage reduction), we set
the maximum acceptable performance loss threshold from
DVFS control in Fig. 1 to be 50%, and for the EDP aware
Qin scheduler (optimizing EDP solely) we set the maximum
acceptable performance loss threshold to be 10% (user can
change the performance loss threshold). We select d = 2 for
the node level D-Choices Greedy scheduling algorithm.

Fig. 14 shows the comparison of the obtained results
with the proposed scheduling algorithm and the Sniper
default scheduler in each of the three different focus op-
timizations. Fig. 14.a shows the comparison in terms of
performance (normalized application runtime). The x-axis
denotes the applications in the Splash-2 benchmarks, and
the y-axis represents normalized application rumtime mea-
sured as cycles generated by the Sniper simulator. We
normalize the application runtime, energy usage, and EDP
according to fnorm = (f − fmin)/(fmax − fmin), where
fmin and fmax are the minimum and the maximum values
of the respective objective cost function f (e.g., applica-
tion runtime, energy usage, or EDP). We observe that the
proposed performance aware Qin scheduler outperforms
Sniper scheduler for most Splash-2 benchmark applications.
Fig. 14.b and Fig. 14.c show similar improvement of the pro-
posed Qin scheduler over Sniper scheduler in energy usage
and EDP. These results indicate that the proposed node-level
Qin scheduler can generate thread-to-core scheduling better
than the Sniper scheduler in terms of application runtime
(performance), energy usage, and EDP.

7.2.2 Discussion

Why does the proposed Qin scheduler outperform Sniper
scheduler at the node-level? From a mathematical perspec-
tive, eq. 33 reveals that the proposed D-Choices Greedy
scheduling method (used by Qin scheduler) achieves better
load balancing over best choice scheduling methods (used
by Sniper scheduler). Thus, it reduces the threads CPU
queuing time and improves the application runtime on
the node. From a system perspective, the proposed Qin
scheduler combines the node-level scheduling and threads
migration with DVFS based energy reduction, and thus im-
proves the energy usage and the EDP over Sniper scheduler.
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Fig. 13: Visualizing Kubernetes and Qin Schedulers in real time by the Prometheus tool [73].
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Fig. 14: Comparison of results at node level.

7.3 Hierarchical Cluster-Node Scheduling

7.3.1 Unified Hierarchical Scheduling Approach Outper-
forms State-of-the-art and Benefits The Literature

Comparison: In this section, we present the combined
cluster-node levels hierarchical scheduling results - as the
combination of the results obtained with the scheduling
algorithms from the previous two sections. The workloads
are first scheduled at the cluster level to generate the
application-to-server scheduling. On each of the real cluster
servers, we installed the Sniper simulator inside the docker
container. Applications that were scheduled to these servers

will arrive as inputs to the Sniper simulator instances, where
the node level scheduling inside Sniper processes them. We
use the longest jobs completion time (of all jobs scheduled to
a given server) of all servers to represent the jobs completion
time of the entire cluster. The sum of energy usage of all the
servers gives the total energy usage of the entire cluster. The
improvements of the proposed two-level hierarchical Qin
scheduler over the combination of Kubernetes scheduler at
cluster level + Sniper default scheduler at node level for 100
real-world application workloads are listed in Table 5. These
results indicate that conducting a hierarchical integrated
scheduling may provide benefits over the cluster and node
level scheduling conducted in isolation separately. In our
future work, we plan to deploy the node level Qin sched-
uler on the real servers (as opposed to inside the Sniper
simulator) and thus achieve a better hierarchical integration
of the proposed scheduling algorithms.

Discussion: How does the proposed unified hierarchical
scheduling approach benefit the literature? This work looks
at scheduling as the combination of cluster and node levels
in a unified approach - which outperforms state-of-the-
art scheduling methods that focus separately on cluster or
node levels. The proposed Qin scheduler has a global view
of the cluster-node scheduling and provides a new angle
(through the hierarchical approach) for design objectives
optimization in heterogeneous datacenters.

TABLE 5: Improvement achieved by the proposed hierarchi-
cal Qin scheduler vs. Kubernetes + Sniper default scheduler
for 100 real-world application workloads.

Cluster-Node levels Schedulers Performance Energy EDP
Kubernetes + Sniper 10.2% 38.65% 41.98%

7.4 Discussion

New Applications: Qin scheduler performs online schedul-
ing without prior knowledge of the new incoming applica-
tions. When a new application arrives, the Qin scheduler
uses the profiling data it already has (previously profiled
applications) and conducts a minimal fast profiling (0.05
seconds profiling on 2 random server configurations) of the
new application to identify similarities between the new and
known applications.

Profiling Overhead: We mitigate profiling overhead by
(i) profiling application workloads periodically (when ap-
plication workloads differ significantly from the previously
profiled workloads) during the offline training stage and (ii)
shortening the user-defined online profiling time.
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Application Requirements: Qin scheduler can be con-
figured to focus on performance, energy, or EDP for dif-
ferent application requirements (minimize execution time,
minimize energy usage, performance-energy trade-off). Our
future work will incorporate industry-level application re-
quirements, such as priority, latency sensitivity, and affinity
to specific cores.

Switching Scheduling Overhead: The proposed Qin
scheduler can dynamically switch its focus between per-
formance, energy, and EDP. To minimize the switching
overhead, we implement each scheduler with a different
focus as an independent custom scheduler managed by the
Kubernetes platform to avoid configuring the Qin scheduler
at runtime. In other words, we have produced a set of three
Qin schedulers implemented on the Kubernetes platform.

Scalability: Fig. 1 in APPENDIX A indicates that when
the number of servers increases, although the imbalance of
the traditional best choice scheduling methods decreases,
their imbalance remains in order of factor more significant
than the proposed D-Choices Greedy Scheduling method.
Practically, Fig. 11 reveals that Qin Scheduler scales well
when the number and size of application workloads in-
crease. Therefore, Qin Scheduler scales well in larger sys-
tems theoretically and practically.

Open Source: “If you want to go fast, go alone. If you
want to go far, go together.” - African Proverb [55]. Thanks
to the open-source Kubernetes project, Qin scheduler has the
potential to be integrated into Kubernetes (as an alternative
scheduler), which has been widely deployed on Amazon
AWS - Amazon Elastic Kubernetes Service [56], Google
Cloud Platform - Google Kubernetes Engine [57], Microsoft
Azure - Azure Kubernetes Service [58], and IBM Cloud -
IBM Cloud Kubernetes Service [59]. We will make the entire
implementation of the Qin scheduler publicly available so
that it can be integrated into the Kubernetes project. This
will enable further research and ease of results duplication
and comparison.

8 CONCLUSION

This paper proposed a solution to the problem of reducing
energy usage without degrading performance in heteroge-
neous datacenters. The proposed solution does that through
a novel hierarchical scheduling approach that models inter-
ference and heterogeneity while being able to focus the opti-
mization on jobs completion time, energy usage, or EDP sep-
arately. The unified cluster-node scheduling was formulated
as a multi-objective optimization problem. Specifically, we
focused on application-to-server (cluster-level) and thread-
to-core (node-level) problems. We developed a novel D-
choices based greedy scheduling algorithms to solve these
problems. To further improve the scheduling performance
and energy usage, we developed a dynamic admission
control protocol to shorten application queue time, thereby
improving jobs completion time and energy usage. Experi-
ments using both real-world and synthetic workloads on a
real six-node in-house cluster demonstrated the superiority
of the proposed scheduling approach, which outperformed
state-of-the-art schedulers from industry and academia by
around 10% in completion time, 39% in energy usage, and
42% in EDP. This paper demonstrated a unified approach

as a promising direction in optimization for energy and
performance of heterogeneous servers and datacenters.
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