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Abstract—In this note, we establish a link between the
condition for a random walk to be transient on lattices and for
a continuous nonlinear system to exhibit chaotic behavior. The
link is the number three. A simple random walk is transient on
lattices with dimensionality of at least three. Nonlinear dynamical
systems can only have chaotic behavior if their dimension is at
least three.
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I. MINIMUM DIMENSIONALITY FOR EMERGENCE OF
CHAOTIC BEHAVIOR

What is chaos? While there is no universally accepted
mathematical definition of chaos (and despite that some
thought chaos was a fancy word for instability), a very well
argued definition is due to Strogatz (p. 323 in [1]): “Chaos
is aperiodic long-term behavior in a deterministic system
that exhibits sensitive dependence on initial conditions”. This
definition insists that three ingredients are required. First is the
“aperiodic long-term behavior”, which says that trajectories do
not settle to fixed points, periodic orbits, or quasiperiodic orbits
as x — oo. In other words, chaotic behavior excludes fixed
points and periodic behavior. Second, “deterministic” means
that there are no noisy or random inputs or parameters in the
system. And third, "sensitive dependence on initial conditions”
suggests exponentially fast separation or divergence of nearby
trajectories (i.e., system has positive Liapunov exponent).

While the above definition conveys well the idea of “ex-
tremely erratic behavior”, one interesting aspect about it is
that it does not say anything about the system dimensionality.
Discrete chaotic systems, such as the 1D logistic map, can
produce chaotic behavior whatever their dimensionality. Finite-
dimensional linear systems are never chaotic; for a dynamical
system to display chaotic behavior, it has to be either nonlinear
or infinite-dimensional whatever that means. In contrast, for
continuous dynamical systems, one finds that chaotic behavior
can only arise in systems with three or more dimensions.

For example, the following system of three differential
equations, known as the Lorenz equations [2], can manifest
chaotic behavior:

L =o(y—=x)
%’ =rr—y—xz (1)
g—f =y — bz

where o, r,b > 0 are the system parameters. x,y, z, make up
the system state and ¢ is time. There are two nonlinearities,
given by the quadratic terms xz and xy. Lorenz discovered
that this system, for certain range of parameters, has solutions
that oscillate irregularly and never exactly repeating, that is,
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Figure 1. The Lorenz attractor for parameter values o = 10,7 = 28,b = 8/3
and initial conditions x = 1,y =1,z = 1.

are chaotic. Also, these solutions remained in a bounded region
of the phase space. When the trajectories of this system are
plotted in three dimensions, they settled onto a complicated
set called a strange attractor. A strange attractor is defined
to be an attractor that exhibits sensitive dependence on initial
conditions and is often a fractal set with a fractional dimension
between 2 and 3 [1]. A fractal set, an “infinite complex of
surfaces”, is a set of points with zero volume but infinite
surface area; the motion of trajectories on it is aperiodic and
sensitive to minute changes in the initial conditions. A strange
attractor is not a point or curve or a surface, it is a more
complex structure. Fig. 1 shows the visualization of the Lorenz
attractor for a particular set of parameter values and initial
conditions.

Coming back to the aspect of system dimensionality, the
Poincaré-Bendixson theorem, a central result in nonlinear
dynamics, says that the dynamical possibilities in the phase
plane are very limited in that a trajectory restricted to a closed
bounded region with no fixed point will eventually approach a
closed orbit [1], [3]. The theorem states that a two-dimensional
differential equation has very regular behavior. It implies
that chaos can never occur in the phase plane. However,
in higher dimensional systems, n > 3, the theorem does
not apply anymore. In such cases, trajectories may wonder
around indefinitely within a bounded region and sometimes are
attracted to a complex geometric object, the strange attractor,
rather than settling down to a fixed point or closed orbit. The
Poincaré-Bendixson theorem shows that a strange attractor can
only arise in three or more dimensions. It is only in three or
higher dimensions where period-doubling bifurcations of limit
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Figure 2. Illustration of 1-, 2-, and 3-dimensional lattices.

cycles can occur to lead to chaos, because the limit cycle needs
room to avoid crossing itself [1]!

II. RANDOM WALKS ON INFINITE NETWORKS

One of the first chance processes studied in probability was
the random walk or drunkard’s walk . An example of a random
walk may be described as follows [4]: A man walks along a
5-block stretch on Madison Avenue. He starts at corner x and,
with probability 1/2, walks one block to the right and, with
probability 1/2, walks one block to the left; when he comes
to the next corner he again randomly chooses his direction
along Madison Avenue. He continues until he reaches corner
5, which is home, or corner 0, which is a bar. If he reaches
either home or the bar, he stays there. The problem to pose is
to find the probability p(z) that the man, starting at corner z,
will reach home before reaching the bar.

This problem can be generalized to other types of street
networks. In 1921 George Polya investigated random walks
on certain infinite graphs, which are commonly referred to
as lattices [5]. To construct a d-dimensional lattice, we take
as vertices those points (z1,...,z4) of R® all of whose
coordinates are integers, and we join each vertex by an
undirected line segment to each of its 2d nearest neighbors.
These connecting segments, which represent the edges of our
graph, each have unit length and run parallel to one of the
coordinate axes of R? . We denote this d-dimensional lattice
by Z? and its origin (0,0, ...,0) by 0.

A simple random walk in d dimensions can be defined as
the walk of a point that starts from some vertex and walks
at random by choosing any of the 2d edges leading out of
that vertex with probability 2—1d. Obviously, when d = 1, our
lattice is just an infinite line divided into segments of length
one. The random walk, then, is the example discussed at the
beginning of this section. When d = 2, our lattice looks like a
two dimensional infinite regular mesh. When d = 3, the lattice
can be visualized in space as an infinite 3D regular mesh as
shown in Fig. 2.

The question that Polya posed amounts to this: “Is the
wandering point certain to return to its starting point during
the course of its wanderings?" If so, then, the walk is called
recurrent and if not, that is, there is a positive probability
that the point will never return to its starting point, case in
which the walk is called transient. The problem of determining
recurrence or transience of a random walk is called the type
problem. A graphical illustration of the transient random walk
in a 3-dimensional lattice is shown in Fig. 3. In [5], Polya
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Figure 3. Random walk on 3-dimensional lattice is transient, i.e., the
probability that the point never returns to its starting point is greater than
Zero, Pesc > 0.

proved the following theorem: Simple random walk on a d-
dimensional lattice is recurrent for d = 1,2 and transient for
d>3.

An alternative proof of this theorem was presented by
Doyle and Snell in their wonderfully written book [4]. Doyle
and Snell presented an interpretation of Polya’s theorem in
terms of electric networks; they cleverly exploited the connec-
tions between questions about a random walk on a graph and
questions about electric currents in a corresponding network of
resistors. They constructed their proof of Polya’s theorem by
showing the resistance of the corresponding electric network
is infinite in 1 and 2 dimensions - in contrast with the 3
dimensional case, where the resistance is finite, which allows
current to flow to infinity.

III. DISCUSSION

By now, the reader probably noticed our fascination with
the number three. We summarize our discussion observing the
commonality between the two topics discussed in the previous
two sections. On one hand, a simple random walk is transient
on lattices with dimensionality of at least three. On the other
hand, chaotic behavior can emerge in continuous nonlinear
dynamical systems whose dimensionality is at least three. Is
there any relation between the two?

Can the proof of the transient property of random walks on
3D lattices aid in explaining the need for three dimensions in
chaotic behaviors? Can 3D nonlinear systems serve “as true as
practically possible” random number generators in computers?
Can we talk about a relationship between electric networks and
chaos? Is there a connection between the current that can flow
to infinity in 3D electric networks and the need for a system
to be dissipative to be able to have chaotic behavior?
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