KEIL

Tools by ARM

Getting Started

Creating Applications with pVision®4

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

RN=A% K- N T W) /- L 2.0, 5.8 FY
B EO BEEG ol EEEEEEEY R =
Project v 2 X Disassembly SR Logic Analyzer vax
=& WorkSpace A o 0522;700 4‘225“1“9 L;RADC_C"“;”[‘“Z:;‘]“Q/' e 734: Min Time: Max Time: Range: Grid: Zoom:
) X 8 x0, [pc, # ;
B]Binky 0x02000702 2205 LDRH S, [r0,§0x00] Setp_|[Export| | 0.146806 ms | 2070134s | 2000000s | 0100000s | [in |[Out
= i3 Simulator 99: AD_scaled = AD value / 52: e R e
€3 Startup Code 0x08000704 2034 MOVS x0, $0x3¢ 0 P R :
0x08000706 FB9SF7FO SDIV x7,x5,x0
. 100: if (AD_scaled != AD_scaled ex) {
=13 Flash Options 0x0800070A 4287 cup x7,x6 3
2] STM32F10xOF 0x0800070C D0OS BEQ 0x08000714
=€ Retarget 101: AD_scaled ex = AD_scaled; . H Co H
¥ 0x0800070E 463E MOV r6,x7 A R A A
«\@Retarget.c o . S — S— [P A T e —
=3 Library 103: 3 @Ds 2.100000 s
™ =
>]KEIL - .
& L) 5 ¥ X Functions v ax
& Intalzaton Tools by ARM
- [#) STM32_Init.c j = [« Blinky.c A
&3 Source . . nitial displ ¢ adc_Init (void)
- [#) Blinky.c uv ®4 ¢ main (void)
=3 Documentation ~ ISIon er & SysTick_Handler (void)
[Abstract.txt Integrated Development Environment lue =[] Gpio.c
=-£3 Gpio caled to 0 . 9 main (void)
=23 Simulator value differ & S2Pressed (void) g
= &3 Startup Code Copyright ® 1997 - 2005 Keil Software, 2005 - 2009 ARM Ltd. Al rights reserved. & S3Pressed (void)
[#) STM32F10x.5 This product is protected by US and international laws. rgraph accor # [LCD_dbit.c
=-€3 Initialisation =[] Retarget.c
@ _sys_exit (int return_coc
=£3 Source // Print message with AD J ¢ _ttywrch (int ch) B |
i if (Clockls) { ¢ ferror (FILE* f)
< i 107 Clockls = 0; s & fgetc (FILE* f)
— = et O o futefint ch mnexn (M
[E project | & registers ‘] | > < | B
Command v x“ Call stack v X ‘Memoryl v 3 X
¥ A | Stack Frames |Va|ueIAddless | Address: [0x10000000
} = 9 main()
; @i <invisible > 0x10000000: MCBSTM32 DEMC
LCD_Displ.
Fetcympeanil % AD_valie | <invisible> 0%10000022: ...
Znalog (3.000000) entered. = @ AD_scaled.. | 0x00000036 gxiggggg::i .
LA “ADC_ConvertedValue o @ AD_scaled | <invisible > o;moooo"s: .
B i ‘ k| 0X10000084: .
> 0x100000CC: .
ASSIGN BreakDisable BreakEnable Breakkill | @ cCall Stack Locals Iwatch 1 IESymbolsl gﬁgggggfgf .
Simulation t1: 2.07013396 sec

For 8-bit, 16-bit, and 32-bit Microcontrollers

www.keil.com

@J Blinky - pVi

KEIL

Tools by ARM

D]

Getting Started

Creating Applications with pVision®4

; L IEX
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
HRE- 22N ST\ N, QW 2 008 2
(8 EO BP0
Project v R x} isassembly LA B4l Logic Analyzer v ax
= & WorkSpace ~ 98: AD_value = ADC_ConvertedValue; - Min Time: Max Time: Range: Grid: Zoom:
T — | Box08000700 480C LDR x0, [pc, $48] ; @0x08000734
; 0x02000702 2205 LDRH xS, [£0, $0x00] 0.146806ms | 2070134s | 2000000s | 0.100000s El Out
3 Smulator 99: AD_scaled = AD value / 52: —— — ——— —
=-£3 Startup Code 0x02000704 2034 MOVS r0,$0x34 d o
[# STM32F10x.5 Oxo‘sggovos 55?57750 sim; A;7, xsixg ; §
Loas 100: if (AD_scaled != AD_scaled ex) {
= 433 Flash Options 0x0800070A 4287 cup x7,r6 5
ox0800070C DOOS BEQ 0x0800071A A
= &3 Retarget 101: AD_scaled_ex = AD_scaled: 2
[Retarget.c 463E MOV r6,r7
j ... 1 (012D scalad ==
= 4j Library N : I 864702)0 S 2.100000 s
SIKEIL &
5.6 Initiabati 3 v X Functions v ax
Tk Tools by ARM ®
[§ STM32_Init.c = [Binky.c ~
= &3 Source 5 e ¢ adc_Init (void)
[Binky.c V ®4 ¢ main (void)
5 . 4 gvision _ .
=3 Documentation er @ SysTick_Handler (void)
[) Abstract.txt Integrated Development Environment Iue Gpio.c
= &3 Gpio cal 9 main (void)
=-#3 Simulator \Z ¢ S2Pressed (void)
= &5 Startup Code Copyright © 1997 - 2005 Ked Software, 2005 - 2009 ARM Ltd. All rights reserved. @ S3Pressed (void)
[¥ STM32F10x.5 This product is protected by US and international laws. rgraph accor #+ [3) LCD_dbit.c
= &3 Initialisation = [Retarget.c
& [# STM32_Init.c @ _sys_exit (int return_coc
=-&3 Source // Print message with AD —] ¢ _ttywrch (int ch)
[# Gpio.c v if (Clockls) { ¢ ferror (FILE* f)
< > 107 Clockls = 0; = ¢ fgetc (FILEX)
— — = b e g P TS WV S P & fruite fint ch £ EX A
[El project | = Registers ‘] | 2 <
Command v a xﬂcallsraek vax fMemioryl vax
’ A | || Stack Frames IVaIue/Address | Address: [0x10000000 by
} = @ main()
LcD_Display() @i <!nv!slble> Oxzooooooof MCBSTM32 DEMC ...ovens
Analog(3) @ AD_value <invisible > 0x10000022: ..
1 "
Znalog (3.000000) entered. = @ AD_scaled.. | 0x00000036 gﬁ:gggg;’::i :
LA “ADC_ConvertedValue v @ AD_scaled | <invisible > i 00050800,
& k| 0X100000RA: .
S 0x100000CC: .
ASSIGN Breakbisable BreakEnable Breakkill ||@Eical stack [[Locals [[@watch 1 [symbols | oR100000kR: 1@ 3
Simulation t1: 207013396 sec

For 8-bit, 16-bit, and 32-bit Microcontrollers

Preface

Information in this document is subject to changgneut notice and does not
represent a commitment on the part of the manufacturhe software described
in this document is furnished under license agre¢menondisclosure
agreement and may be used or copied only in aceoedaith the terms of the
agreement. It is against the law to copy the smi#won any medium except as
specifically allowed in the license or nondiscl@sagreement. The purchaser
may make one copy of the software for backup puwpodNo part of this manual
may be reproduced or transmitted in any form oafpy means, electronic or
mechanical, including photocopying, recording,rdoimation storage and
retrieval systems, for any purpose other thanHemturchaser's personal use,
without written permission.

Copyright © 1997-2009 Keil, Tools by ARM, and ARMd-
All rights reserved.

Keil Software and Desidh the Keil Software Logo, pVisidh RealView’,
C51™, C166™, MDK™, RL-ARM™, ULINK, Device DatabaSe and
ARTX™ are trademarks or registered trademarks dff Keols by ARM, and
ARM Ltd.

Microsoft® and Windows™ are trademarks or registered tradesvafrMicrosoft
Corporation.

PC® is a registered trademark of International Busindachines Corporation.

NOTE

This manual assumes that you are familiar with Msoft Windows and the
hardware and instruction set of the ARM7, ARM9,t&ciMx, C166, XE166,
XC2000, or 8051 microcontroller.

Every effort was made to ensure accuracy in thisuaband to give appropriate
credit to persons, companies, and trademarks refedeherein.

Getting Started: Creating Applications with pVision 3

Preface

This manual is an introduction to the Keil devel@mitools designed for
Cortex-Mx, ARM7, ARM9, C166, XE166, XC2000, and 80µcontrollers.
It introduces the pVision Integrated DevelopmentiEnment, Simulator, and
Debugger and presents a step-by-step guided tdabeafumerous features and
capabilities the Keil embedded development todisrof

Who should Read this Book

This book is useful for students, beginners, adedrand experienced developers
alike.

Developers are considered experienced or advahdeelyihave used pVision
extensively in the past and knowledge exists of Hww.Vision IDE works and
interacts with the debugger, simulator, and tangetiware. Preferably, these
developers already have a deep understanding obooictrollers. We
encourage this group of engineers to get familiéin the enhancements
introduced and to explore the latest features iisjo¥.

Developers are considered students or beginngreyifhave no working
experience with pVision. We encourage this grougeeeelopers to start by
reading the chapters related to the pVision IDEtandork through the
examples to get familiar with the interface andfiguration options described.
They should make use of the ample possibilitiestimelator offers. Later on,
they should continue with the chapters describiegRTOS and microcontroller
architectures.

However, it is assumed that you have a basic kndyel®f how to use
microcontrollers and that you are familiar witheavfinstructions or with the
instruction set of your preferred microcontroller.

The chapters of this book can be studied indivigualnce they do not strictly
depend on each other.

Preface

Chapter Overview

“Chapter 1. Introduction”, provides an overview of product installation and
licensing and shows how to get support for the Heitelopment tools.

“Chapter 2. Microcontroller Architectures”, discusses various microcontroller
architectures supported by the Keil developmeristand assists you in
choosing the microcontroller best suited for yopplacation.

“Chapter 3. Development Tool% discusses the major features of the pVision
IDE and Debugger, Assembler, Compiler, Linker, atiter development tools.

“Chapter 4. RTX RTOS Kernel”, discusses the benefits of using a Real-Time
Operating System (RTOS) and introduces the featuragable in Keil RTX
Kernels.

“Chapter 5. Using uVisiori, describes specific features of the pVision user
interface and how to interact with them.

“Chapter 6. Creating Embedded Programg, describes how to create projects,
edit source files, compile, fix syntax errors, @aherate executable code.

“Chapter 7. Debuggind, describes how to use the pVision Simulator andy€t
Debugger to test and validate your embedded pragram

“Chapter 8. Using Target Hardware’, describes how to configure and use
third-party Flash programming utilities and targevers.

“Chapter 9. Example Programs, describes four example programs and shows
the relevant features of pVision by means of tleesenples.

Cristinel.Ababei
Highlight

Cristinel.Ababei
Highlight

Getting Started: Creating Applications with pVision

Document Conventions

README.TXT! Bold capital text is used to highlight the names of executable programs,
data files, source files, environment variables, and commands that you
can enter at the command prompt. This text usually represents
commands that you must type in literally. For example:

ARMCC.EXE DIR LX51.EXE

Couri er Text in this typeface is used to represent information that is displayed on
the screen or is printed out on the printer

This typeface is also used within the text when discussing or describing
command line items.

Variables Text in italics represents required information that you must provide. For
example, projectfile in a syntax string means that you must supply the
actual project file name

Occasionally, italics are also used to emphasize words in the text.
Elements that repeat... Ellipses (...) are used to indicate an item that may be repeated

Omitted code Vertical ellipses are used in source code listings to indicate that a
fragment of the program has been omitted. For example:
void main (void) {

while (1);

«Optional ltems>» Double brackets indicate optional items in command lines and input
fields. For example:

C51 TEST.C PRINT «filename»

{optl | opt2 } Text contained within braces, separated by a vertical bar represents a
selection of items. The braces enclose all of the choices and the vertical
bars separate the choices. Exactly one item in the list must be selected.

Keys Text in this sans serif typeface represents actual keys on the keyboard.
For example, “Press Enter to continue

Yt is not required to enter commands using all tafetters.

6 Contents

Contents
PIEIACE ... e 3
DOCUMENT CONVENTIONS........uuiiiiiiiiieeeee sttt e e e e e et e e e e e e s eieeeeeas 5
(000101 1] o] £ TP TUPPPT PP 6
Chapter 1. INtrodUCtiON...........ccoooii i 9
Last-Minute Changes............uuuuiiiiiiiiieeeeem s e 11
[0 =T 13] o 11
10153 7= =1 o] o 11
Requesting ASSISTANCEooooiiii i 13
Chapter 2. Microcontroller ArchiteCtures........c...cooeeeeeiiiii, 14
Selecting an Architecture............cccc e, 15
Classic and Extended 8051 DEVICESceeeeeeeeeiiiiiiiiiiieeee e 17
Infineon C166, XEL66, XC2000cevueeesmmmmmneeiiiiirireeeeassennnineeeeeeeaeasans 20
ARM7 and ARM9 based MicroCONtrOllers. ... eeeeeeeiiieiieeieeeeeeeeeeeee. 21
Cortex-Mx based MICroCONtrollersS............oouevveeeiiieeiiiiiiiiiiiieeee e 23
(67aTo [@] 101 0= T [=To o [26
Generating OptimMUM COUEooiiiiiiii o 28.
Chapter 3. Development TOOIS..........cooviiiiiiieeeeee e 33
Software Development CYCIeoooiiiceeeeme e 33.
HVISION IDEciiiiiiiiiieeeeeeeeeeeeee e et e e aa e e e e e e e neeeeeaas 34
HViSion DeVICe DAtabasevvvwsmmmmmmeeeeeeeeeeaeiieeiieseeeeeeeeeeeeeeereees 35
[SRVAES o] o I L= o T8 o o = 35
ASSEMIDIET <. e 37
CICH+ COMPIIEE .. 38
(O] o T=Toi el o | =) Q0] o1V =T (=] 38
LINKEI/LOCALON ... e 39
T T =T Y2 Y= T g = T 1 39
Chapter 4. RTX RTOS Kernelcoooiiiiiiiiieeeeeeeeeee e 0.4
SOftWAre CONCEPLS ...t s sttt e e e e e e e 40
RTX INTrOAUCTIONceiiiiiiiiiiiiiieieee s sttt 43
Chapter 5. USING PVISIONuuiiiiiiiiiieiiieeee et 55
IMIBINUS .ttt 59
Toolbars and TOOoIDAr ICONSoiii et 63

Project WINAOWScoooiiiiii e e 69

Getting Started: Creating Applications with pVision 7

EdItOr WINOOWSeeiiiiiiiiiiie et ee s 71
OULPUL WINAOWS ... et e e e 73
Other WIindows and DialogScoooiiieii e 4.
ON-IINE HEIP oo e 74
Chapter 6. Creating Embedded Programs........ccccooeooeeeiiinniiiiiieeeeeeeeeeeee 75
Creating @ ProjeCt Fileooov i 75
Using the Project WINAOWScooooiiiieeeeeieeeeeeeeeveeev s 17
Creating SOUICE FlES........ccoiiiiiiiiit sttt 78
Adding Source Files to the Projectceeeeeieiieeiieiiieeeeieeeeeee e L9,
Using Targets, Groups, and FileS........cceeeeeeiiiiie, 79.
Setting Target OPtioNSuuvvviviiiiiiiieerreee e e e eeeeeeee e 81
Setting Group and File OPtioNSceemeemeeeee e 82
Configuring the Startup Codeeuvvieeeeeeiiei e 83
=T UT] Lo [T aTo TR =T o (0] =T o A 84
Creating a HEX File ... 85
Working with Multiple Projectsoo oo 86.
(O gF=T o] (= g 7= o 18 o o [T 89
I 11010 F= Ao o P 91
Starting a Debug SESSIONcovviiiiiiiieeeeeeee e 91
DebUG MOUE ... —— 93
Using the Command WINAOW.............uuiieee e 94
Using the Disassembly WINAOWcooooroiiiiiiiieeeeeeeeeeeeee 94
EXECULING COUC....uuiiiiiiiiiiiiiiiii s s e e e e e e e e e eeeeeeaans 95
Examining and Modifying MemOTIYouiiceeeeriiiieeeeeeee 96
Breakpoints and BOOKMAIKSooiiccmmmmm e 98.
Watchpoints and Watch Window ..o 100
Serial I/O and UARTS.coiiiiiiiiiiiiiiee st e e e e e e e nnnee 102
EXE@CULION Profiler e 103
(070To [l 101 =T = To [PR 104
Performance ANAIYZENccooooiiiii it 105
LOGIC ANAIYZEN ... e 106
SYSIEM VIBWET ...t mmmme et e e 107
SYMDOIS WINUOW........covveiiiiiiiieiiieeeees s e veesssassssssssnsnsssnnennnssnnnsnnsnn. 108
BroOWSE WINUOWveiiiiiiiiiiiiiiitie e immmmme s e 109
TOOIDOX . 110
INStruction Trace WINAOWeeeviiiiiiimmmiiiieiieee e e 111

Defining Debug RESLOre VIEWScevvviiieieieiiiieiiiineiieiiirierennneennnnnnn. 111

Contents

Chapter 8. Using Target Hardware.............ooooeuiiiiiiiieeee e 112
Configuring the Debugger ..o 113
Programming FIash DEVICESuuvuiiiieeeeeeiiieiieeeeeeeeeeeeeeeeveevveeevaeenaees 14
Configuring EXternal TOOISuuuuuiiiiimmeeeei e 115
USING ULINK AGAPLEIS ... mmmmm e 116
UsiNg an INIEFIlE ..ooooeeeee e 121

Chapter 9. Example Programscccoooooieeeeeeieeeeeeiieeieeeeieeeeeeeneennneennnennnes 22
“Hello” Example Program ... 123
“Measure” EXample Programccccciccccccee 127
“Traffic” EXampPle Program.............uueeuemmmmmnseeeieeeeeeeesaeesieeeaeeeaaaeaaaaaeaens 138
“Blinky” Example Programooooiii i a2

L] (0L oYU 146

Getting Started: Creating Applications with pVision 9

Chapter 1. Introduction

Thank you for allowing Keil to provide you with safare development tools for
your embedded microcontroller applications.

This book,Getting Started, describes the pVision IDE, puVision Debugger and
Analysis Tools, the simulation, and debugging aadihg capabilities. In

addition to describing the basic behavior and bssieens of pVision, this book
provides a comprehensive overview of the suppartiedocontroller architecture
types, their advantages and highlights, and suppgot in selecting the
appropriate target device. This book incorporatets to help you to write better
code. As with anysetting Started book, it does not cover every aspect and the
many available configuration options in detail. Wheourage you to work
through the examples to get familiar with pVisionddhe components delivered.

The Keil Development Tools are designed for thdgasional software
developer, however programmers of all levels cantiiem to get the most out of
the embedded microcontroller architectures thasapported.

Tools developed by Keil endorse the most popularasontrollers and are
distributed in several packages and configuratidapendent on the architecture.

= MDK-ARM : Microcontroller Development Kit, for several ARMARMY,
and Cortex-Mx based devices

= PK166: Keil Professional Developer’s Kit, for C166, XH,Gand XC2000
devices

= DK251: Keil 251 Development Tools, for 251 devices
= PK51: Keil 8051 Development Tools, for Classic & ExteddB051 devices

In addition to the software packages, Keil offeksaety of evaluation boards,
USB-JTAG adapters, emulators, and third-party toglich completes the range
of products.

The following illustrations show the generic compohblocks of pVision in
conjunction with tools provided by Keil, or tool®i other vendors, and the
way the components relate.

10

Chapter 1. Introduction

Software Development Tools

Like all software based on Keil's puVision IDE,
the toolsets provide a powerful, easy to use and
easy to learn environment for developing
embedded applications.

They include the components you need to creat
debug, and assemble your C/C++ source files,
and incorporate simulation for microcontrollers
and related peripherals.

Software Development Tools

C/C++ Compiler

) RTX RTOS Kernel Library

uVision
IDE & Device Database

uVision
Debugger & Analysis Tools

The RTX RTOS Kernel helps you to implement

Complete Device Simulation

complex and time-critical software.

Examples and Templates

RTOS and Middleware Components

These components are designed to solve
communication and real-time challenges of

RTOS and Middleware
Components

embedded systems. While it is possible to
implement embedded applications without usin

RTX RTOS Source Code

a real-time kernel, a proven kernel saves time and

shortens the development cycle.

1a
TCPnet Networking Suite

This component also includes the source code

Flash File System

files for the operating system.

USB Device Interface

CAN Interface

Examples and Templates

Hardware Debug Adapters

The pVision Debugger fully supports several
emulators provided by Keil, and other vendors.
The Keil ULINK USB-JTAG family of adapters
con nect the USB port of a PC to the target
hardware. They enable you to download, test,
and debug your embedded application on real
hardware.

DIKEIL

ULINK 720

Getting Started: Creating Applications with pVision 11

Last-Minute Changes

As with any high-tech product, last minute changéght not be included into
the printed manuals. These last-minute changeg@imahcements to the
software and manuals are listed in Redease Noteshipped with the product.

Licensing

Each Keil product requires activation through artise code. This code is
obtained via e-mail during the registration proceBlere are two types of
product licenses:

= Single-User Licensas available for all Keil products. A Single-User
License grants the right to use a product on amaxi of two computers to
one user. Each installation requires a license tioat is personalized for the
computer on which the product is installed. A $&rdser license may be
uninstalled and moved to another computer.

= Floating-User Licenseis available for many Keil products. The Floating
User license grants the right to use that prodneveral computers by
several different developers at the same time.h Eestallation of the
product requires an individual license code fotheammputer on which the
product is installed.

Installation

Please check the minimum hardware and softwaréreegents that must be
satisfied to ensure that your Keil developmentda@ok installed and will
function properly. Before attempting installatiomeyify that you have:

= A standard PC running Microsoft Windows XP, or Womg Vista

= 1GB RAM and 500 MB of available hard-disk spaceeisommended

= 1024x768 or higher screen resolution; a mouselmrgiointing device

= A CD-ROM drive

Keil products are available on CD-ROM and via davaal fromwww.keil.com.
Updates to the related products are regularly abislatwww.keil.com/update

12

Chapter 1. Introduction

Installation using the web download

1. Download the product fromvww.keil.com/demo

2. Run the downloaded executable
3. Follow the instructions displayed by therup program

Installation from CD-ROM

1. Insert the CD-ROM into your CD-ROM drive. The COBRI browser
should start automatically. If it does not, yom cansetup.exe from the
CD-ROM.

2. Selectinstall Products & Updates from the CD Browser menu

3. Follow the instructions displayed by therup program

Product Folder Structure

ThesETUP program copies the development tools into subfsld@he base
folder defaults ta:\KEIL\ . The following table lists the default folders fach
microcontroller architecture installation. Adjuke examples used in this
manual to your preferred installation directoryadingly.

Microcontroller Architecture Folder
MDK-ARM Toolset C:\KEIL\ARM\
C166/XE166/XC2000 Toolset C:\KEIL\C166\
8051 Toolset C:\KEIL\C51\
C251 Toolset C:\KEIL\C251\
uVision Common Files C:\KEIL\UVA\

Each toolset contains several subfolders:

Contents Subfolder
Executable Program Files \BIN\

C Include/Header Files \INC\

On-line Help Files and Release Notes \HLP\
Common/Generic Example Programs \EXAMPLES\

Example Programs for Evaluation Boards \BOARDS\

Getting Started: Creating Applications with pVision 13

Requesting Assistance

At Keil, we are committed to providing you with thest embedded development
tools, documentation, and support. If you havegestions and comments
regarding any of our products, or you have disoed@ problem with the
software, please report them to us, and wherecgipé make sure to:

1. Read the section in this manual that pertainsdddbk you are attempting

3.

. Check the update section of the Keil web site tkersure you have the latest

software and utility version

Isolate software problems by reducing your codastéew lines as possible

If you are still having difficulties, please reptinem to our technical support
group. Make sure to include your license code@nduct version number. See
theHelp — About Menu. In addition, we offer the following suppartd
information channels, all accessibleatw.keil.com/support'.

1.

The Support Knowledgebasds updated daily and includes the latest
questions and answers from the support department

. TheApplication Notescan help you in mastering complex issues, like

interrupts and memory utilization

3. Check the on-lin®iscussion Forum

4. Request assistance througbntact Technical Support(web-based E-Mail)

5. Finally, you can reach the support department threc

support.inti@keil.com or support.us@keil.com

1 You can always get technical support, product tgslaapplication notes, and sample programs
at www.keil.com/support.

14

Chapter 2. Microcontroller Architectures

Chapter 2. Microcontroller Architectures

The Keil pVision Integrated Development Environm@ri¥ision IDE) supports
three major microcontroller architectures and sostdne development of a wide
range of applications.

8-bit (classic and extended 805X evices include an efficient interrupt
system designed for real-time performance andaned in more than 65%
of all 8-bit applications. Over 1000 variants awilable, with peripherals
that include analog I/O, timer/counters, PWM, déniterfaces like UART,
I?C, LIN, SPI, USB, CAN, and on-chip RF transmittepporting low-power
wireless applications. Some architecture extessgsavide up to 16MB
memory with an enriched 16/32-bit instruction set.

The pVision IDE supports the latest trends, liketom chip designs based
on IP cores, which integrate application-speciécipherals on a single chip.

16-bit (Infineon C166, XE166, XC2000)devices are tuned for optimum
real-time and interrupt performance and providela set of on-chip
peripherals closely coupled with the microcontrotiere. They include a
Peripheral Event Controller (similar to memory-tesmory DMA) for high-
speed data collection with little or no microcotignoverhead.

These devices are the best choice for applicatiemgiring extremely fast
responses to external events.

32-bit (ARM7 and ARM9 based)devices support complex applications,
which require greater processing power. Thesesqu@vide high-speed 32-
bit arithmetic within a 4GB address space. The(RiIgtruction set has
been extended with a Thumb mode for high code tlensi

ARM7 and ARM9 devices provide separate stack spaedsgh-speed
context switching enabling efficient multi-taskingerating systems. Bit-
addressing and dedicated peripheral address sa@cast supported. Only
two interrupt priority levels, - Interrupt Requé¢BRQ) and Fast Interrupt
Request (FIQ), are available.

Getting Started: Creating Applications with pVision 15

= 32-bit (Cortex-Mx based)devices combine the cost benefits of 8-bit and
16-bit devices with the flexibility and performancg32-bit devices at
extremely low power consumption. The architectekvers state of the art
implementations for FPGAs and SoCs. With the immpdoThumb2
instruction set, Cortex-Mxbased microcontrollers support a 4GB address
space, provide bit-addressing (bit-banding), ane s interrupts with at
least 8 interrupt priority levels.

Selecting an Architecture

Choosing the optimal device for an embedded apjiicds a complex task. The
Keil Device DatabaseMww.keil.com/dd) supports you in selecting the
appropriate architecture and provides three diffiengethods for searching. You
can find your device by architecture, by specifytegtain characteristics of the
microcontroller, or by vendor.

The following sections explain the advantages efdifferent architectures and
provide guidelines for finding the microcontroll&at best fits your embedded
application.

8051 Architecture Advantages

= Fast I/O operations and fast access to on-chip RAdata space

= Efficient and flexible interrupt system

= Low-power operation

8051-based devices are typically used in smallnaedium sized applications

that require high 1/0 throughput. Many devicedwiexible peripherals are
available, even in the smallest chip packages.

! Cortex-MO0 devices implement the Thumb instrucsiem

16

Chapter 2. Microcontroller Architectures

C166, XE166 and XC2000 Architecture Advantages

= Extremely fast I/O operations via the PeripherativController

= High-speed interrupt system with very well-tunedpeerals

= Efficient arithmetic and fast memory access

These devices are used in medium to large sizditatipns that require high

I/0 throughput. This architecture is well suitedtie needs of embedded
systems that involve a mixture of traditional coiier code and DSP algorithms.

ARM7 and ARM9 Architecture Advantages

= Huge linear address space
= The 16-bit Thumb instruction set provides high cddasity
= Efficient support for all C integer data types umtihg pointer addressing

ARM7 and ARM9-based microcontrollers are used fiplizations with large
memory demands and for applications that use P€dbalgorithms.

Cortex-Mx Architecture Advantages

= One instruction set, Thumb2, reduces the complefithe program code
and eliminates the overhead needed for switchingden ARM and Thumb
instruction mode

= The Nested Vector Interrupt Controller (NVIC) renagvinterrupt prolog and
epilog code, and provides several, configurablerjyilevels

= Extremely low power consumption with a variety t#fep modes

The Cortex-Mx microcontroller architecture is desd for hard real-time
systems, but can be used for complex System-on-&ppcations as well.

Cristinel.Ababei
Highlight

Cristinel.Ababei
Highlight

Getting Started: Creating Applications with pVision

17

Classic and Extended 8051 Devices

8051 devices combine cost-efficient hardware widinaple but efficient
programming model that uses various memory regiomsaximize code
efficiency and speed-up memory access. The fotigdigure shows the

memory layout of a classic 8051 device.

T—HFS

0x100 SPACE

o >
vy

0x80

0x80

T 2F
DATA 8051

DATA 128 Bitspace

128 Bytes BTS 20

4 Register
Banks 0

0x0

98
SFR ¥ 051 Bit

90 €«—— addressable

o
i

OXFFFF

0x0000

OXFFFF

The 8051 architecture provides three different p@alsnemory regions:

= DATA/IDATA memory includes a 256 Bytes on-chip RAM with résis
banks and bit-addressable space that is usedsiovdaable accessing.
Some devices provide an extended dBRATA) space with up to 64KB.

= CODE memory consists of 64KB ROM space used for prograde and
constants. The Keil linker supports code bankirag allows you to expand
the physical memory space. In extended variaptsp A6MB ROM space is

available.

= XDATA memory has a 64KB RAM space for off-chip periphearad
memory addressing. Today, most devices provideesamchip RAM that is

mapped intoKDATA .

18

Chapter 2. Microcontroller Architectures

SFRandIDATA memory are located in the same address spaceebut a
accessed through different assembler instructions

For extended devices, the memory layout providesigersal memory map
that includes all 8051-memory types in a single B§ké address region

8051 Highlights

Fast interrupt service routines with two or fouiopty levels and up to 32-
vectored interrupts

Four register banks for minimum interrupt prologiep
Bit-addressable space for efficient logical operagi

128 Bytes of Special Function Register (SFR) sppaccgght integration of
on-chip peripherals. Some devices extend the $EBesusing paging.

Low-power, high-speed devices up to 100 MIPS aedlaivle

8051 Development Tool Support

The Keil C51 Compiler and the Keil Linker/Locataogide optimum 8051
architecture support with the following features &hlanguage extensions.

Interrupt functions with register bank supportaréten directly in C
Bit and bit-addressable variables for optimal Baalélata type support

Compile-time stack with data overlaying uses direemory access and
gives high-speed code with little overhead comp@wexssembly
programming

Reentrant functions for usage by multiple interroiptask threats
Generic and memory-specific pointers provide fleximemory access

Linker Code Packing gives utmost code density lgirey identical program
sequences

Code and Variable Banking expand the physical mgraddress space

Absolute Variable Locating enables peripheral aseesl memory sharing

Getting Started: Creating Applications with pVision 19

8051 Memory Types

A memory type prefix is used to assign a memorg tigpan expression with a
constant. This is necessary, for example, whesxaression is used as an
address for the output command. Normally, symbwdimes have an assigned
memory type, so that the specification of the mgnigpe can be omitted. The
following memory types are defined:

Prefix Memory Space

Code Memory (CODE)

Internal, direct-addressable RAM memory (DATA)
Internal, indirect-addressable RAM memory (IDATA)
External RAM memory (XDATA)

Bit-addressable RAM memory

Peripheral memory (VTREGD — 80x51 pins)

W Xx =00

The prefixP: is a special case, since it always must be follolsed name. The
name in turn is searched for in a special symhtaétthat contains the register’s
pin names.

Example:

C:0x100 Address 0x100 in CODE memory

ACC Address 0XEO in DATA memory, D:

1:100 Address 0x64 in internal RAM

X:0FFFFH Address OXFFFF in external data memory
B:0Ox7F Bit address 127 or 2FH.7

(¢ Address 0xD7 (PSW.7), memory type B:

20

Chapter 2. Microcontroller Architectures

Infineon C166, XE166, XC2000

The 16-bit architecture of these devices is desidaehigh-speed real-time
applications. It provides up to 16MB memory spaith fast memory areas
mapped into parts of the address space. High4peaiace applications benefit
from locating frequently used variables into thet fmemory areas. The below
listed memory types address the following memogyaes:

Memory Type Description

bdata Bit-addressable part of the idata memory.

huge Complete 16MB memory with fast 16-bit address calculation. Object size
limited to 64KB.

idata High speed RAM providing maximum access speed (part of sdata).

near Efficient variable and constant addressing (max. 64KB) with 16-bit pointer and
16-bit address calculation.

sdata System area includes Peripheral Registers and additional on-chip RAM
space.

xhuge Complete 16MB memory with full address calculation for unlimited object size.

C166, XE166, XC2000 Highlights

= Highest-speed interrupt handling with 16 priorgyéls and up to 128
vectored interrupts

= Unlimited register banks for minimum interrupt prglepilog
= Bitinstructions and bit-addressable space focieiffit logical operations

= ATOMIC instruction sequences are protected frorarinipts without
interrupt enable/disable sequences

= Peripheral Event Controller (PEC) for automatic roeyrtransfers triggered
by peripheral interrupts. Requires no procesderaction and further
improves interrupt response time.

= Multiply-Accumulate Unit (MAC) provided for high-ged DSP algorithms

Getting Started: Creating Applications with pVision 21

C166, XE166, XC2000 Development Tool Support

The Keil C166 Compiler supports all C166, XE166,2000 specific features
and provides additional extensions such as:

= Memory type support and flexible digital patterogessing for extremely
fast variable access

= Function inlining eliminating call/return overhead
= Inline assembly for accessing all microcontrolled MAC instructions

ARM7 and ARM9 based Microcontrollers

The ARM7 and ARM9 based microcontrollers run oonadtstore RISC
architecture with 32-bit registers and fixed op-etehgth. The architecture
provides a linear 4GB memory address space. Itrasirto the previously
mentioned 8/16-bit devices, no specific memory $ypee provided, since
memory addressing is performed via 32-bit pointersicrocontroller registers.
Peripheral registers are mapped directly intoitieal address space. The
Thumb instruction set improves code density by jgliog a compressed 16-bit
instruction subset.

The ARM7 and ARM9 cores are easy to use, cost#ffacand support modern
object-oriented programming techniques. They idela 2-level interrupt system
with a normal interrupt (IRQ) and a fast interr{iplQ) vector. To minimize
interrupt overhead, typical ARM7/ARM9 microcontei$ provide a vectored
interrupt controller. The microcontroller operatimodes, separate stack spaces,
and Software Interrupt (SVC) features produce iefficuse of Real-Time
Operating Systems.

The ARM7 and ARM9 core provides thirteen generappse registers (RO-
R12), the stack pointer (SP) R13, the link regiéit&) R14, which holds return
addresses on function calls, the program countgy L5, and a program status
register (PSR). Shadow registers, available ifouaroperating modes, are
similar to register banks and reduce interrupniaye

Chapter 2. Microcontroller Architectures

R1
ARM7 and ARM9 Operation Modes
R2
R3 User Normal execution state
FIQ Fast Interrupt mode
B IRQ Interrupt mode
R5 SVC Supervisor mode (software interrupt)
R6 UND Undefined instruction execution
ABT Memory access failure
R7
RS R8
R9 R9
R10 R10
R11 R11
R12 R12
R13 = SP R13 = SP R13 = SP R13 = SP R13=SP R13 = SP
R14 = LR R14 =LR R14 = LR R14 = LR R14=LR R14=LR
R15 = PC
‘ CPSR ‘ ’ SPSR ‘ ‘ SPSR ‘ ‘ SPSR ‘ ‘ SPSR ‘ ‘ SPSR
User FIQ IRQ SvC ABT UND

ARM7 and ARM9 Highlights

= Linear 4 GB memory spacethat includes peripherals and eliminates the
need for specific memory types

= Load-store architecture with efficient pointer addressing Fast task
context switch times are achieved with multipleisesy load/store.

= Standard (IRQ) and Fast (FIQ) interrupt. Banked microcontroller
registers on FIQ reduce register save/restore eaerh

= Vectored Interrupt Controller (available in most microcontrollers)
optimizes multiple interrupt handling

= Processor modesvith separate interrupt stacks for predictablelsta
requirements

= Compact 16-bit Instruction Set (Thumb) Compared to ARM mode,
Thumb mode code is about 65% of the code size @@%hXaster when
executing from a 16-bit memory system.

Getting Started: Creating Applications with pVision

23

ARM7 and ARM9 Development Tool Support
The ARM compilation tools support all ARM-specifiatures and provide:

= Function Inlining eliminates call/return overhead and optimizes matar
passing

= Inline assemblysupports special ARM/Thumb instructions in C/C++
programs

= RAM functions enable high-speed interrupt code and In-SystenhFlas
programming

= ARM/Thumb interworking provides outstanding code density and
microcontroller performance

= Task function and RTOS supportare built into the C/C++ compiler

Cortex-Mx based Microcontrollers

Designed for the 32-bit microcontroller market, @@rtex-Mx microcontrollers
combine excellent performance at low gate courtt ¥@atures only previously
found in high-end processors.

With 4GB of linear, unified memory space, the Cofidx processors provide
bit-banding features and supports big and littldi@m configuration. Predefined
memory types are available, while some memory regiave additional
attributes. Code can be located in the SRAM, ealdRAM, but preferably in
the Code region. Peripheral registers are mapgedhe memory space. Code
density is improved by the Thumb or Thumb2 insinrcset, depending on the
processor version.

General-purpose registers rank from RO to R12. (8F3 is banked, with only
one copy of the R13 (MSP, PSP) being visible &na.t Special registers are
available, but are not used for normal data pracgssSome of the 16-bit
Thumb instructions can access RO-R7 (low) regisiehg. There is no FIQ;
however, nested interrupts and interrupt priorapdiing is implemented via the
Nested Vector Interrupt Controller (NVIC), greatgducing interrupt latency.

Cristinel.Ababei
Highlight

Cristinel.Ababei
Highlight

Cristinel.Ababei
Highlight

24

Chapter 2. Microcontroller Architectures

Cortex Core Register Set

-~ ~

RO
R1
R2
R3
> Low Registers
R4
R5
R6 > General-Purpose Registers
R7
=
R8
R9
R10 High Registers
R11
R12
-
R13 = PSP R13 = MSP Process Stack Pointer (PSP), Main Stack Pointer (MSP): (banked)
R14 = LR Link Register
R15 = PC Program Counter
XPSR Program Status Register
PRIMASK
FAULTMASK Exception Mask Registers Special Registers
BASEPRI
CONTROL Control Registers

Cortex-Mx Highlights

Nested Vectored Interrupt Controller optimizes multiple external
interrupts (up to 240 + 1 NMI, with at least eigihiority levels)

RO-R3, R12 LR, PSR and PC are pushed automaticallyo the stack at
interrupt entry and popped back at interrupt esints

Only one instruction set (Thumb2) assuring software upward
compatibility with the entire ARM roadmap

Several Extreme Low-Power Modesvith an attached Wake-Up Interrupt
Controller (WIC)

Cristinel.Ababei
Highlight

Getting Started: Creating Applications with pVision 25

Cortex-Mx Development Tool Support

In addition to the ARM specific characteristicse tkeil MDK-ARM supports the
Cortex-Mx Microcontroller Software Interface StarmléCMSIS) and provides
the following features:

Core registers and core peripheral@re accessible through C/C++
functions

Device independent debug channel for RTOS kernels

Supports object oriented programming reuse of code, and implements an
easy way of porting code to different devices

Extensive debug capabilitiesllowing direct access to memory without
stopping the processor

CMSIS is supported making the software compatible across the Cortex-Mx
architectures

Architecture Comparison Conclusions

The various architectures have pros and cons andptimal choice depends
highly on the application requirements. The follegvcode comparison section
provides additional architectural information that help you in selecting the
optimal microcontroller for your target embeddedtsyn.

Cristinel.Ababei
Highlight

Chapter 2. Microcontroller Architectures

Code Comparison

The following short but representative code exasplow the impressive
individual strengths of the different microcontesliarchitectures.

I/O Port Access Comparison

Source Code

Description

if 10_PIN==1) {
i++;

}

Increment a value when an 1/O pin is set.

= 8051devices provide bit-addressable 1/0 Ports andunsbns to access
fixed memory locations directly

= (C166 XE166, XC2000devices provide bit-addressable I/O Ports and
instructions to access fixed memory locations diyec

= ARM7 and ARM9 devices provide indirect memory access instrustion
only. However, there are no bit operations.

= Cortex-Mx devices provide indirect memory access instrustimmly, but
allow atomic bit operations

sfr PO=0x80;
shit PO_0=P0"0;

unsigned char i;
void main (void) {

if (PO_0) {
; JNB P0_0,2C0002

i++;
; INC i

; RET

6 Bytes

C166/XE166 and

XC2000 Code

sfr POL=0xFFO0O;
shit PO_0=POL"0;

unsigned int i;
void main (void) {

if (P0_0) {
; JNB P0_0,7C0001

i++;
; SUBi,ONES

}

; RET
}

‘ 10 Bytes

ARM7 and ARM9
Thumb Code

#define IOP *(int*))

unsigned int i;

void main (void) {

if (IOP & 1) {

; LDR R0,=0xE0028000
; LDR RO,[R0,#0x0]

; MOV R1,#0x1

; TST RO,R1

;BEQL_1

i++;

; LDRRO,=i ;i

; LDR R1,[RO,#0x0;i
; ADD R1,#0x1

; STR R1,[RO,#0x0[;i
}

;BX LR
}

‘ 24 Bytes

Cortex-Mx
Thumb2 Code

unsigned int i;

void main (void) {
if (GPIOA->ODR) {
; STR RO,[R1,#0xc]
; LDR RO,[R2,#0]
; CBZ RO,|L1.242|

i++;

; MOVS RO,#2

; STR RO,[R1,#0xc]
;|L1.242|

}

;BX LR
}

‘ 12 Bytes

Cristinel.Ababei
Highlight

Getting Started: Creating Applications with pVision 27

Pointer Access Comparison

Source Code Description

typedef struct { int x; int arr[10]; } sx; Return a value that is part of a struct and
int (sx xdlata *sp, int) { indirectly accessed via pointer.
return sp->arr[i];

8051devices provide byte arithmetic requiring sevenarocontroller
instructions for address calculation

= (C166 XE166, XC2000devices provide efficient address arithmetic with
direct support of a large 16 MByte address space

ARM devices are extremely efficient with regard tonpei addressing and
always use the 32-bit addressing mode

In Cortex-Mx devices, any register can be used as a pointextéo d
structures and arrays

8051 C166, XE166, ARM 7 and ARM9 Cortex-Mx
Code XC2000 Code Thumb Code Thumb2 Code

MOV DPL,R7 MOV R4,R10 LSL RO,R1,#0x2 ADD RO,RO,R1,LSL #2
MOV DPH,R6 SHL R4#01H ADD RO,R2,RO LDR RO,[RO,#4]

MOV AR5 ADD R4,R8 LDR RO,[RO,#0x4]
ADD AACC EXTS R9,#01H
MOV R7,A MOV R4,[R4+#2]
MOV AR4
RLC A

MOV R6,A

INC DPTR

INC DPTR
MOV A,DPL
ADD AR7
MOV DPLA
MOV A,DPH
ADDC A,R6
MOV DPH,A
MOVX A @DPTR
MOV R6,A

INC DPTR
MOVX A @DPTR
MOV R7,A

25 Bytes 14 Bytes 6 Bytes 6-Bytes

Cristinel.Ababei
Highlight

28

Chapter 2. Microcontroller Architectures

Generating Optimum Code

The C/C++ compilers provided by Keil are leadersade generation and
produce highly efficient code. However, code gatien and translation is
influenced by the way the application software igten. The following hints
will help you optimize your application performance

Coding Hints for All Architectures

Hint Description

Keep interrupt functions short. Well-structured interrupt functions only perform data collection
and/or time-keeping. Data processing is done in the main
function or by RTOS task functions. This reduces overhead
involved with context save/restore of interrupt functions.

Check the requirement for Atomic code is required for accessing data while using multiple

atomic operations . RTOS threads or interrupt routines that access the memory
used by the main function. Carefully check the application to
determine if atomic operations are needed and verify the
generated code. The various architectures have different
pitfalls. For example, incrementing a variable on the 8051 and
C166/XE166/XC2000 device is a single, atomic instruction,
since it cannot be interrupted, whereas multiple instructions are
required for an increment on ARM devices. In contrast, the
8051 requires multiple instructions to access the memory of an
int variable.

Apply the volatile attribute on The volatile attribute prevents the C/C++ compiler from

variables that are modified by an optimizing variable access. By default, a C/C++ Compiler may

interrupt, hardware peripherals, assume that a variable value will remain unchanged between

or other RTOS tasks. several memory-read operations. This may yield incorrect
application behavior in real-time applications.

When possible, use automatic As part of the optimization process, the Keil C/C++ compiler

variables for loops and other attempts to maintain local variables (defined at function level) in

temporary calculations. CPU registers. Register access is the fastest type of memory
access and requires the least program code.

Getting Started: Creating Applications with pVision

29

Coding Hints for the 8051 Architecture

Hint Description

Use the smallest possible data The 8051 uses an 8-bit CPU with extensive bit support. Most

type for variables. Favor instructions operate on 8-bit values or bits. Consequently, small

unsigned char and bit. data types generate code that is more efficient.

Use unsigned data types The 8051 has no direct support for signed data types. Signed

whenever possible. operations require additional instructions whereas unsigned
data types are directly supported by the architecture.

Favor the SMALL memory Most applications may be written using the SMALL memory

model. model. You can locate large objects, as arrays or structures,

into xdata or pdata memory using explicit memory types. Note,
the Keil C51 run-time library uses generic pointers and can work
with any memory type.

When using other memory Variables in the data address space are directly accessed by an
models, apply the memory type 8-bit address that is encoded into the 8051 instruction set. This
data to frequently used memory type generates the most efficient code.

variables.

Learn how to use pdata memory The pdata memory provides efficient access to 256 bytes using
type on your device. MOVX @RI instructions with 8-bit addressing. However, pdata

behaves differently on the various 8051 devices, since it may
require setting up a paging register. The xdata memory type is
generic and accesses large memory spaces (up to 64KB).

Use memory-typed pointers By default, the Keil C51 Compiler uses generic pointers that

when possible. may access any memory type. Memory-typed pointers can
access only a fixed memory space, but generate faster and
smaller code.

Reduce the usage of Reentrant The 8051 lacks support for stack variables. Reentrant functions

Functions . are implemented by the Keil C51 Compiler using a compile-time
stack with data overlaying for maximum memory utilization.
Reentrant functions on the 8051 require simulation of the stack
architecture. Since reentrant code is rarely needed in
embedded applications, you should minimize the usage of the
reentrant attributes.

Use the LX51 Linker/Locater The extended LX51 Linker/Locator (available only in the PK51
and Linker Code Packing to Professional Developer’s Kit) analyzes and optimizes your
reduce program size. entire program. Code is reordered in memory to maximize 2-

byte AJMP and ACALL instructions (instead of 3-byte LIMP
and LCALL). Linker Code Packing (enabled in C51
OPTIMIZE level 8 and above) generates subroutines for
common code blocks.

30

Chapter 2. Microcontroller Architectures

Coding Hints for C166, XE166, XC2000 Architectures

Hint Description

When possible, use 16-bit data Parameter passing is performed in 16-bit CPU registers (many

types for automatic and 16-bit registers are available for automatic variables). More 16-

parameter variables. bit variables (signed/unsigned int/short) can be assigned to
CPU registers. This generates code that is more efficient.

Replace long with int data types Operations that use 16-bit types (like int and unsigned int) are

when possible. much more efficient than operations using long types.

Use the bit data type for boolean These CPUs have efficient bit instructions that are fully
variables. supported by the Keil C166 Compiler with the bit data type.
Use the SMALL or MEDIUM In these memory models, the default location of a variable is in
memory model when possible. near memory, accessible through16-bit direct addresses

encoded in the CPU instructions. You can locate large objects
(array or struct) into huge or xhuge using explicit memory
types.

When using other memory Variables in the near, idata, or sdata address space are
models, apply the near, idata, or accessed through a 16-bit address that is encoded directly into
sdata memory type to frequently a single C166/XE166/XC2000 instruction. These memory types

used variables. generate the most efficient code.

Use the memory model The memory models COMPACT and LARGE use the obsolete
HCOMPACT/HLARGE instead far memory type and have an object size limit of 16KB. The
of COMPACT/LARGE . memory models HCOMACT and HLARGE use the huge

memory type that feature a 64KB object size limit. Even cast
operations from near to huge pointers are more optimal.

Use near pointers when Check if a near pointer is sufficient for accessing the memory,

possible. since near pointers can access variables in the near, idata, or
sdata address space. Near pointers generate faster and
smaller code.

Getting Started: Creating Applications with pVision

31

Coding Hints for the ARM7 and ARM9 Architecture

Hint Description

When possible, use 32-bit
data types for automatic and
parameter variables.

Use the Thumb instruction
set.

Use _ swi software interrupt
functions for atomic
sequences.

Enhance st r uct pointer
access by placing scalars at
the beginning and arrays as
subsequent struct

members.

Assign high speed interrupt
code to RAM.

Optimize for Size

MicroLIB

Optimize for Speed

Parameter passing is performed in 32-bit CPU registers. All ARM
instructions operate on 32-bit values. In Thumb mode, all stack
instructions operate only on 32-bit values. By using 32-bit data
types (signed/unsigned int/long), additional data type cast
operations are eliminated.

Thumb mode is about 65% of the code size and 160% faster than
ARM mode when executing from a 16-bit memory system. The
MDK-ARM Compiler automatically inserts required ARM / Thumb
interworking instructions.

Via the __swi function attribute, the MDK-ARM Compiler offers a
method to generate software interrupt functions directly, which
cannot be interrupted by IRQ (__swi functions can be interrupted
by FIQ interrupts). In contrast to other embedded architectures,
ARM prevents access to the interrupt disable bits | and F in User
mode.

Thumb and ARM instructions encode a limited displacement for
memory access. When a st r uct is accessed via a pointer, scalar
variables at the beginning of a st ruct can be accessed directly.
Arrays always require address calculation. Consequently, it is
more efficient to place scalar variables at the beginning of a
struct.

Code executed from Flash ROM typically requires wait states or
CPU stalls. Code execution from RAM does not. Consequently,
time critical functions (like high-speed interrupt code) can be
located in RAM directly using the Memory Assignment feature in
Options for File — Properties available via the Context Menu of
that file.

To optimize an application for minimal program size select under

Options for Target the following toolchain:

= Inthe dialog page Target enable Code Generation - Use
Cross-Module Optimization

= Inthe dialog page C/C++ select Optimization: Level 2 (-O2)
and disable the options Optimize for Time , Split Load and
Store Multiple , and One ELF Section per Function

The compiler offers a MicroLIB to be used for further reducing the
code size of an application. MicroLIB is tailored for deeply
embedded systems, but is not fully ANSI compliant.

Do not use MicroLIB when execution speed is your primary goal.

To optimize an application for maximum execution speed, under

Options for Target select the following toolchain:

= Inthe dialog pageTarget enable Code Generation - Use
Cross-Module Optimization

= Inthe dialog page C/C++ select Optimization: Level 3 (-O3),
enable Optimize for Time , and disable Split Load and Store
Multiple

32

Chapter 2. Microcontroller Architectures

Coding Hints for the Cortex-Mx Architecture

Hint Description

When possible, use 32-bit
data types for automatic
and parameter variables.

Optimize for Size

MicroLIB

Optimize for Speed

Sleep mode features

Enhance st r uct pointer
access, by placing scalars
at the beginning and
arrays as sub-sequent
struct members.

Parameter passing is performed in 32-bit CPU registers. All ARM
instructions operate on 32-bit values. In Thumb mode, all stack
instructions operate only on 32-bit values. By using 32-bit data types
(signed/unsigned int/long), additional data type cast operations are
eliminated.

To optimize an application for minimal program size select under

Options for Target the following toolchain:

= Inthe dialog page Target enable Code Generation - Use Cross-
Module Optimization

= Inthe dialog page C/C++ select Optimization: Level 2 (-O2) and
disable the options Optimize for Time , Split Load and Store
Multiple , and One ELF Section per Function

The compiler offers a MicroLIB to be used for further reducing the
code size of an application. MicroLIB is tailored for deeply
embedded systems, but is not fully ANSI compliant.

Do not use MicroLIB when execution speed is your primary goal.

To optimize an application for maximum execution speed, under

Options for Target select the following toolchain:

= Inthe dialog pageTarget enable Code Generation - Use Cross-
Module Optimization

= Inthe dialog page C/C++ select Optimization: Level 3 (-O3),
enable Optimize for Time , and disable Split Load and Store
Multiple

To optimize power consumption of an application you may use the
WFI instruction to send the processor into Sleep Mode until the next
interrupt is received. In C programs, use the intrinsic function __ wfi()
to insert this instruction into your code.

Thumb2 instructions encode a limited displacement for memory
access. When a struct is accessed via a pointer, scalar variables
at the beginning of a st r uct can be directly accessed. Arrays
always require address calculations. Therefore, it is more efficient to
place scalar variables at the beginning of a st r uct .

Cristinel.Ababei
Highlight

Getting Started: Creating Applications with pVision

33

Chapter 3. Development Tools

The Keil development tools offer numerous feataned advantages that help
you to develop embedded applications quickly ammtassfully. They are easy
to use and are guaranteed to help you achievedgsign goals in a timely
manner.

Software Development Cycle

When using the Keil tools, the project developnwaie is similar to any other
software development project.

1.

Create a project, select the target device fror

the Device Data base, and configure the too
settings

. Create your source files in C/C++ or

Assembly

Build your application with the Project
Manager

Debug and correct errors in source files, ver
and optimize your application

Download your code to Flash ROM or SRAN
and test the linked application

1

m

pVision IDE
Integrated Development Environment

‘ uVision Project Manager

[
C/C++ Compiler

L5

‘ ’ Macro Assembler

‘ CIC++ Libraries

o s RJ

‘ Linker / Locator

bt 1

‘ uVision Debugger
| |

‘ Device Simulation

’ Target Hardware

Each component shown in the block diagram is desdrin the following
section.

34

Chapter 3. Development Tools

uVision IDE

The pVision IDE is a window-based software develeptiplatform combining a
robust editor, Project Manager, and Make Utilitgltou Vision supports all the
Keil tools including C/C++ Compiler, Macro Assemblkeinker, Library
Manager, and Object-HEX Converter. pVision helgseelite the development
process by providing:

= Device Databasdor selecting a device and configuring the develept
tools for that particular microcontroller
= Project Manager to create and maintain projects

= Make Utility for assembling, compiling, and linking your embedd
applications

= Full-featured source code editor

= Template Editor that is used to insert common text sequencesautdne
blocks

= Source Browserfor rapidly exploring code objects, locating am@lgzing
data in your application

= Function Browser for quickly navigating between functions in your
program

= Function Outlining for controlling the visual scopéhin a source file

= Built-in utilities, such agind in Files and functions for commenting and
uncommenting source code

= pVisionSimulator andTarget Debugge are fully integrated

= Configuration Wizard providing graphical editing for microcontroller
startup code and configuration files

= |nterface to configur&oftware Version Control Systemsand third-party
utilities

= Flash Programming Ultilities, such as the family of Keil ULINK USB-
JTAG Adapters

= Dialogsfor all development tool settings

= On-line Help and links to microcontroller data sheets and gaates

Cristinel.Ababei
Highlight

Getting Started: Creating Applications with pVision 35

KVision Device Database

The pVision Device Database offers a convenient twagelect and configure
your device and project parameters. It includes@nfigured settings, so that
you can fully concentrate on your application regurents. In addition, you can
add your own devices, or change existing settindse the features of the Device
Database to:

= |nitialize the start up code and device settings

= Load the configuration options for the assemblemjgiler, and linker

= You can add and change microcontroller configuresiettings

uVision Debugger

The pVision Debugger is completely integrated the 1Vision IDE. It
provides the following features:

= Disassemblyof the code on C/C++ source- or assembly-levet wrogram
execution in varioustepping modesand variouview modes like
assembler, text, or mixed mode

= Multiple breakpoint options including access and complex breakpoints
= Bookmarks to quickly find and define your critical spots

= Reviewandmodify memory, variable, and register values

= List theprogram call tree including stack variables

= Reviewthe status of on-chip microcontrolleeripherals

= Debugging commandsr C-like scripting functions

= Execution Profiling to record and display the time consumed, as wgatha
cycles needed for each instruction

= Code Coveragestatistics foisafety-critical applicationtesting

= Variousanalyzing toolsto view statistics, record values of variables and
peripheral I/O signals, and to display them omeetaxis

= |Instruction Trace capabilities to view thaistory of executed instructions

= Definepersonalizedscreen and windovayouts

Cristinel.Ababei
Highlight

Cristinel.Ababei
Highlight

36

Chapter 3. Development Tools

The pVision Debugger offers two operating mod&imulator Mode and
Target Mode.

Simulator Mode configures the pVision Debugger asadtware-only product
that accurately simulates target systems incluglisguctions and most on-chip
peripherals. In this mode, you can test your apfittn code before any
hardware is available. It gives you serious bésédr rapid development of
reliable embedded software. The Simulator Modersff

Software testing on your desktop with no hardwardrenment

Early software debugging on a functional basis oups software reliability
Breakpoints that are impossible with hardware dgbugy

Optimal input signals. Hardware debuggers adchextise

Single-stepping through signal processing algorstisrpossible. External
signals are stopped when the microcontroller halts.

Detection of failure scenarios that would destregl hardware peripherals

Target Mode® connects the pVision Debuggerrial hardware Several target
drivers are available that interface to a:

ULINK JTAG/OCDS Adapter that connects to on-chip debugging systems

Monitor that may be integrated with user hardware orithavailable on
many evaluation boards

Emulator that connects to the microcontroller pins of #igét hardware

In-System Debuggetthat is part of the user application program and
provides basic test functions

ULINK Pro Adapter a high-speed debug and trace unit connecting to
on-chip debugging systems via JTAG/SWD/SWV, anerifify Cortex-M3
ETM Instruction Trace capabilities

! Some target drivers have hardware restrictiong timait or eliminate features of the pVision
Debugger while debugging the target hardware.

Cristinel.Ababei
Highlight

Cristinel.Ababei
Highlight

Getting Started: Creating Applications with pVision 37

Assembler

An assembler allows you to write programs usingragiontroller instructions. It
is used where utmost speed, small code size, aual Bardware control is
essential. The Keil Assemblers translate symtadgembler language
mnemonics into executable machine code while suipgosource-level
symbolic debugging. In addition, they offer powidapabilities like macro
processing.

The assembler translates assembly source filesaAtmatable object modules
and can optionally create listing files with symbaible and cross-reference
details. Complete line number, symbol, and tyfermation is written to the
generated object files. This information enabtesdebugger to display the
program variables exactly. Line numbers are useddurce-level debugging
with the pVision Debugger or other third-party dgbimg tools.

Keil assemblers support several different typematro processors (depending
on architecture):

= TheStandard Macro Processoris the easier macro processor to use. It
allows you to define and use macros in your assgpiolgrams using syntax
that is compatible with that used in many otheeagsers.

= TheMacro Processing Language or MPLis a string replacement facility
that is compatible with the Intel ASM-51 macro pesor. MPL has several
predefined macro processor functions that perfaseiul operations like
string manipulation and number processing.

Macros save development and maintenance time, soraenonly used
sequences need to be developed once only.

Another powerful feature of the assembler’'s macoz@ssor is the conditional
assembly capability. You can invoke conditionaeasbly through command

line directives or symbols in your assembly progra@onditional assembly of
code sections can help achieve the most compaetmaskible. It also allows

you to generate different applications from a sragsembly source file.

Cristinel.Ababei
Highlight

Cristinel.Ababei
Highlight

38

Chapter 3. Development Tools

C/C++ Compiler

The ARM C/C++ compiler is designed to generate dast compact code for the
ARM7, ARM9 and Cortex-Mx processor architecturehjle/the Keil ANSI C
compilers target the 8051, C166, XE166, and XCZ4@0itectures. They can
generate object code that matches the efficiendyspred of assembly
programming. Using a high-level language like Ct®ffers many advantages
over assembly language programming:

= Knowledge of the processor instruction set is equired. Rudimentary
knowledge of the microcontroller architecture isidable, but not necessary.

= Detalils, like register allocation, addressing @& tlarious memory types, and
addressing data types, are managed by the compiler

= Programs receive a formal structure (imposed byCii@++ programming
language) and can be split into distinct functiombis contributes to source
code reusability as well as a better applicatiomcstire.

= Keywords and operational functions that resemb#eiiman thought
process may be used

= Software development time and debugging time ayeifgiantly reduced

= You can use the standard routines from the run-lilbbnary such as
formatted output, numeric conversions, and floapogt arithmetic

= Through modular programming techniques, existiraymm components
can be integrated easily into new programs

= The C/C++ language is portable (based on the AkBidgrd), enjoys wide
and popular support, and is easily obtained fortrepstems. EXisting
program code can be adapted quickly and as needwtdr processors.

Object-HEX Converter

The object-hex converter creates Intel HEX filesyirabsolute object modules
that have been created by the linker. Intel HEXSfare ASCII files containing a
hexadecimal representation of your application paog They are loaded easily
into a device program for writing to ROM, EPROM,A%H, or other
programmable memory. Intel HEX files can be malafad easily to include
checksum or CRC data.

Cristinel.Ababei
Highlight

Getting Started: Creating Applications with pVision 39

Linker/Locator

The linker/locator combines object modules intingle, executable program. It
resolves external and public references and asalggute addresses to re-
locatable program segments. The linker includesapropriate run-time library
modules automatically and processes the object leeduveated by the Compiler
and Assembler. You can invoke the linker from¢bemmand line or from

within the pVision IDE. To accommodate most aptliens, the default linker
directives have been chosen carefully and needididi@nal options. However,
it is easy to specify additional custom settingsdioy application.

Library Manager

The library manager creates and maintains librariedbject modules (created by
the C/C++ Compiler and Assembler). Library filesyide a convenient way to
combine and reference a large number of modulésrthg be used by the linker.

The linker includes libraries to resolve externafiables and functions used in
applications. Modules from libraries are extraced added to programs only if
required. Modules, containing routines that areimeoked by your program
specifically, are not included in the final outpibject modules extracted by the
linker from a library are processed exactly likbastobject modules.

There are a number of advantages to using librasesurity, speed, and
minimized disk space are only a few. Librariesvie a vehicle for distributing
large numbers of functions and routines withoutrittisting the original source
code. For example, the ANSI C library is supphbeda set of library files.

You can build library files (instead of executaplegrams) using the pVision
Project Manager. To do so, check théreate Library check box in the
Options for Target — Output dialog. Alternatively, you may invoke the
library manager from th€ommand Window.

40 Chapter 4. RTX RTOS Kernel

Chapter 4. RTX RTOS Kernel

This chapter discusses the benefits of using a Rea Operating System
(RTOS) and introduces the features available i R€X Kernels. Note that the
Keil development tools are compatible with manyd¥party RTOS solutions.
You are not bound to use Keil RTX; however, the RA&nels are well
integrated into the development tools and are featah, and well tailored
towards the requirements of deeply embedded systems

Software Concepts

There are two basic design concepts for embeddaatajons:

= Endless Loop Designthis design involves running the program as an
endless loop. Program functions (tasks) are céited within the loop,
while interrupt service routines (ISRs) performeiaritical jobs including
some data processing.

= RTOS Design:this design involves running several tasks witkeal-Time
Operating System (RTOS) The RTOS provides inter-task communication
and time management functions. A preemptive RTéaBces the
complexity of interrupt functions, since time-otél data processing is
performed in high-priority tasks.

Endless Loop Design

Running an embedded program in an endless loapasliequate solution for
simple embedded applications. Time-critical fumies, typically triggered by
hardware interrupts, are executed in an ISR tisat pérforms any required data
processing. The main loop contains only basicaipers that are not time-
critical, but which are executed in the background.

This software concept requires only one stack anekis very well suited for
devices with limited memory. Architectures thabyde several interrupt levels
allow complex low-level ISR functions. Time-criiiobs may execute in higher
interrupt levels.

Getting Started: Creating Applications with pVision 41

ISR

level 2

ISR B

level1 A

ISR - -

level 0 A

A

Main[| I

» Time

8051, C166/XE166/XC2000, and ARM Cortex-Mx microtoiiers provide
several interrupt levels. Higher-level interruptay halt lower-level interrupts,
or the main function.

It is impossible to suspend the execution of ané&&ept through higher priority
interrupts. Therefore, the timing of a system wathny complex ISR levels is
unpredictable, since high priority interrupts malgeg up most of the CPU time.

Another challenge is to determine the worst-casekstesting. Applications
with complex ISR designs can have unnoticed stes&urce issues, which may
cause sporadic execution faults. Note, that th&ARchitecture provides an
extra stack for ISR that avoids stack memory sagsriduring the main loop
execution.

RTOS Design

The RTOS design, due to its very nature, allowssstasks to execute within
sequential time slices. A preemptive RTOS providsk priority levels, in
which high priority tasks interrupt the executidriaw priority tasks. Most
RTOS systems offer inter-task communication ane titelay functions
supporting the design of complex applications.

The ARM based architectures are designed for RT€28a1 An RTOS is almost
mandatory on ARM7, ARM9, and Cortex-Mx based systémat have several
interrupt sources. ARM devices provide a sepd@&festack, and hence, each
task needs no additional stack for ISR executisiréguired on 8051 and
C166/XE166/XC2000 devices).

42

Chapter 4. RTX RTOS Kernel

ISR p
level 1 A

ISR
level 0 A

Tasks -
Priority 2

Tasks
Priority 1

\

Tasks [T]

Priority O

» Time

A preemptive RTOS supports multiple task prioritidgasks with the same
priority are executed in sequence; tasks with adrigriority suspend tasks with

a lower priority. An ISR always interrupts taskeextion and may exchange data
with other tasks.

The RTOS also solves many other challenges spégig@mbedded applications.
It helps you to maintain memory resources and catamunication facilities,
and allows you to split a complex application istmpler jobs.

Keil provides several different RTOS systems fa ¥arious microcontroller
architectures:

= RTX51 Tiny andRTX166 Tiny (for 8051 and C166/XE166/XC2000) is a
non-preemptive RTOS and uses a special stack sagpgihnique designed
for devices with limited RAM

= RTX (for ARM7/ARM9 and Cortex-Mx) andRTX166 (for
C166/XE166/XC2000) are preemptive RTOS kernelsrivffetask priority
levels. These kernels support message passingS®$ and implement
functions with thread-safe memory block allocataom deterministic
execution times. An ISR may collect data into ragssbuffers and send
messages to a high priority task, which subsegueetiforms complex data
processing. The ISR remains short and simple.

Getting Started: Creating Applications with pVision 43

RTX Introduction

Many microcontroller applications require simultans execution of multiple
jobs or tasks. For such applications, an RTOSallibexible scheduling of
system resources (CPU, memory, etc.) to sevetd.tas

With RTX, you write and compile programs using stam C. Only a few
deviations from standard C are required in ordespiecify the task ID and
priority. RTX-166 programs require the inclusidttoe RTX166.H or
RTX166T.H header file also. RTX_CONFIG.C is regdiion ARM devices.
By selecting the operating system through the di@lptions for Target —
Target, the linker, L166, included in pVision, links thppropriate RTX-166
library file.

Single Task Program

A standard C program starts execution withrtteen function. In an embedded
application, themainfunction is usually coded as an endless loop ande
thought of as a single task that is executed coatisly. For example:

int counter;

main (void) {
counter = 0;
while (1) { Il rep eat forever
counter++; Il inc rement counter

}
}

Round-Robin Task Switching

Round-Robin task switching allows a quasi-parafiehultaneous execution of
several tasks. Each task is executed for a prestbfieriod. A timeout suspends
the execution of a task and causes another task started. The following
example uses this round-robin task switching teslni

Program execution starts wiflob0, as an RTOS task function. The RTX
function os_tsk_createmarksjobl as ready for execution. The task functions
jobOand jobl are simple counting loops. After its time slot bagn consumed,
RTX suspends the execution b0 and begins execution gbbl. As soon as
its time slot is consumed, the system continuelk yabO.

Chapter 4. RTX RTOS Kernel

Simple RTX Program using Round-Robin Task Switching

int counterO;
int counterl;

__task * void jobO (void) {

os_tsk_create (jobl, 1); /I star tjob 1
while (1) { /I end less loop
counterO++; /l'Inc rement counter 0
}
}
__task void job1 (void) {
while (1) { /I End less loop
counterl++; /I Inc rement counter 1
}
}
main (void) { I the main function
0s_sys_init (job0); /I sta rts only job O

The Wait Functions

The RTX kernels providevait® functions that suspend the execution of the
current task function and wait for the specifie@mv During that time, a task
waits for an event, while the CPU can execute athek functions.

Wait for Time Delay

RTX uses a hardware timer of the microcontrollericketo generate periodic
interrupts (timer ticks). The simplest event tinge delay through which the
currently executing task is interrupted for a sfiedinumber of timer ticks.

This following program is similar to the previousaenple with the exception that
jobO0 is suspended witlos_dly wait after counterO has been incremented.
RTX waits three timer ticks untijobO is ready for execution again. During this
time, jobl is executed. This function also catts_dly_waitwith 5 ticks time
delay. The resultcounterQis incremented every three ticks andunterl is
incremented every five timer ticks.

! For non-ARM devices the syntax is: void jobO (voidjask {...}.
2 Within RTX Tiny time delays are created with the function os_\{itTMO, ...).

Getting Started: Creating Applications with pVision

45

Program with Wait for Time Delay

int counterO;
int counterl;

__task void jobO (void) {

os_tsk_create (jobl, 1); /[start
while (1) {
counterO++; /I Incr
os_dly_wait (3); /I Wait
}
__task void job1 (void) {
while (1) {
counterl++; /I Incr
os_dly_wait (5); /I Wait
}
}

Wait for Event Flags

job 1

ement counter O
3 timer ticks

ement counter 1
5 timer ticks

Event flags are used for task coordination, thea tsisk waiting for another task
to raise an event flag. If an event flag was setipusly, the task continues its

execution.

Program with Wait for Event Flag
(jobl waits for jobO and counts overflow of0)

long i0, save_i0, i1;
OS_TID id1; I/ task |

__task void job0 (void) {

id1 = os_tsk_create (job1, 1); /] start j
while (1) {
i0++;
if (0 > 1000000) { /I when
i0=0; /I clear
os_evt_set (1, id1); /l sete
}
}
}
__task void job1 (void) {
while (1) {
os_evt_wait_or (1, Oxffff); /I wait
save_i0 = i0; /] save
i1; /I count
}

}

D for event transmits

ob 1

i1 reaches 1000000
il
vent '1' on jobl

for event '1'
value of i0
events in il

46

Chapter 4. RTX RTOS Kernel

Preemptive Task Switching

Tasks with the same priorityexample above) need a round-robin timeout or an
explicit call to a RTXwait function to execute other tasks. Therefore, & th
example above, the value shve_iOis not zero, as you might have expected. If
jobl has a higher task priority thgwb0, execution ofjobl starts instantly and
the value ofsave_iOwill be zero.jobl preempts execution gbb0 (thisis a

very fast task switch requiring a few ms only).

Start jobl with Higher Task Priority

__task void job0 (void) {
id1 = os_tsk_create (job1, 2); /] start job 1 with priority 2

L RTX Tiny does not offer task priorities. Inste&i[X Tiny has one event flag per task, called
signal, and uses the function os_wait (K_SIG, ..wad for this signal flag.

Getting Started: Creating Applications with pVision 47

Mailbox Communication

A mailbox is a FIFO (first in — first out) buffeof transferring messages between
task functions. Mailbox functions accept pointalues, typically referencing
memory buffers. However, by using appropriate typgts, you may pass any
integer 32-bit data type.

Program with Mailbox Communication®

0s_mbx_declare(v_mail, 20); /I mailb ox with 20 entries

__task void job0 (void) {

inti, res;
os_mbx_init (v_mail, sizeof (v_mail)); // creat e mailbox first
os_tsk_create (jobl, 2); /I befor e waiting tasks
for 1=0;i<30;) { /I send 30 mail
res = os_mbx_send (v_mail, (void *) i, 1000);
if (res == OS_R_OK) i++; /I check that mail send OK
os_tsk_delete_self (); Il when done delete own task
}
__ task void job1 (void) {
intv, res;
while (1) {
res = os_mbx_wait (v_mail, (void **) &v, OXFFFF); Il receive mail
if res== 0S_R_OK || s == OS_R_MBX) { /I check status
printf ("\nReceived v=%d res=%d", v, res); /I use when correct
}
}
}

The taskjobO uses a mailbox to send informationjabl. Whenjobl runs
with a higher priority tharjobQ, the mail is instantly delivered. The mailbox
buffers up to 20 messages whgl runs with the same or lower priority than
job0.

The os_mbx_sendnd os_mbx_waitfunctions provide a timeout value that
allows function termination when no mail can benasked within the timeout
period.

1 When creating high-priority tasks using a mailbimtjalize the mailbox before it might be used
by a high-priority task.

48

Chapter 4. RTX RTOS Kernel

Semaphores

Semaphores are utilized to synchronize tasks wihiapplication. Although
they have a simple set of calls to the operatirsgesy, they are the classic
solution in preventing race conditions. Howevieytdo not resolve resource
deadlocks. RTX ensures that atomic operations withdsemaphores are not

interrupted.

Binary Semaphores

Synchronizing two tasks is the simplest use casesgimaphore:

0S_sem semA; /l dec

__task void jobO (void) {
0s_sem_init(semA, 0);

while(1) {
do_func_A();
0s_sem_send(semA); Il fre

}
}

__task void job1 (void) {
while(1) {
0s_sem_wait(semA, OXFFFF); I wai

do_func_B();

}

lare the semaphore

e the semaphore

t for the semaphore

In this case the semaphore is used to ensure #dueiteon of do_func_A() prior

to executingdo_func_B()

Getting Started: Creating Applications with pVision 49

Counting Semaphores (Multiplex)

Use a multiplex to limit the number of tasks thah @ccess a critical section of
code. For example, a routine to access memory reseand that supports a
limited number of calls only.

0s_sem mplIxSema; /I declar e the semaphore

__task void jobO (void) {

0s_sem_init (mplxSema, 5); Il init semaphore with 5 tokens
while(1) {
0s_sem_wait (mplxSema); /I acqui re a token
processBuffer();
0s_sem_send (mplxSema); Il free the token

}
}

In this example, we initialize the multiplex semaphwith five tokens. Before a
task can callprocessBuffer()it must acquire a semaphore token. Once the
function has completed, it returns the token tosttimaphore. If more than five
calls attempt to invokeprocessBuffer()the sixth must wait until one of the five
running tasks returns its token. Thus, the mdi@emaphore ensures that a
maximum of five calls can usprocessBuffer()simultaneously.

Interrupt Service Routines

An interrupt is an asynchronous signal from thedhare or software that forces
the microcontroller to save the execution statgertupts trigger a context
switch to an interrupt handler. Software intersugte implemented as
instructions in the instruction set of the microrolter and work similar to
hardware interrupts. Interrupts can be classHied:

= Maskable interrupt (IRQ) — a hardware interrupt tten be ignored by
setting a bit in a bit-mask

= Non-maskable interrupt (NMI) — a hardware interrilatt cannot be
configured and thus cannot be ignored

= Software interrupt — generated within a procesgaxecuting an instruction

50

Chapter 4. RTX RTOS Kernel

RTX ensures that interrupts execute correctly aaslds the machine in a well-
defined state. Interrupt service routines, alsovkmas interrupt handlers, are
used to service hardware devices and transitiotrglea operation modes, such
as system calls, system timers, disk /0O, powerafg keystrokes, watchdogs;
other interrupts transfer data using UART or Etkérn

Hints for working with interrupt functions in RTX:

= Functions that begin witbs _can be called from a task but not from an
interrupt service routine

= Functions that begin wittsr_ can be called from adRQ interrupt service
routine but not from a task. Never use them fri@.

= Never enable an\RQ interrupt that callssr_ functions before the kernel has
been started

= Avoid nestinglRQ functions on ARM7/ARM9 targets
= Use shortRQ functions to send signals and messages to RT®S tas

= Interrupt functions are added to applications e way as in non-RTX
projects

= By default, interrupts are globally enabled attsiar

Another important concept is the interrupt latereiich is defined as the period
between the generation and servicing of that iafgrr This is especially
important in systems that need to control machimergal time, and therefore
require low interrupt latency. RTX ensures thatiaroutine will finish its
execution in an agreed maximum length of time dad the interrupt latency
does not exceed a predefined maximum length of. time

The general logic of an ISR looks like the follogzioode example. The interrupt
function ext0_int sends an event tprocess_taskand exits. The task
process_taskprocesses the external interrupt event. Indkénple,
process_taskis simple and only counts the number of interexygnts.

Getting Started: Creating Applications with pVision 51

#define EVT_KEY 0x00001

OS _TID pr_task;
int num_ints;

__irg void ext0_int (void) { /I external interrupt routine
isr_evt_set (EVT_KEY, pr_task); // send even t to ‘process_task’
acknYourlnterrupt (); /I acknowled ge interrupt;

}

_ task void process_task (void) {
num_ints =0;
while(1) {

os_evt_wait_or (EVT_KEY, OXFFFF);
num_ints++;
}
}

__task void init_task (void) {

enableYourlnterrupt ();
pr_task = os_tsk_create (process_task, 100); / / create task with prio
os_tsk_delete_self ();

}

Press1 to browse through the numerous examples and addiiioamation in
the on-line help.

Memory and Memory Pools

The compilers delivered with the Keil developmeartl$ provide access to all
memory areas, regardless of the microcontrolldnitacture. Variables can be
explicitly assigned to a specific memory spacertmjuiding a memory type in the
declaration, or implicitly assigned based on thenmey model. Function
arguments and atomic variables that cannot beddaatregisters are also stored
in the default memory area. Accessing the intedatd memory is considerably
faster than accessing the external data memonyosKible, place often-used
variables into the internal memory space and Issslvariables into the external
memory space.

RTX provides thread-safe and fully reentfaaitocation functions for fixed sized
memory pools. These functions have a determingstgcution time that is

! variable length memory allocation functions aré reentrant! Disable/enable system timer
interrupts using tsk_lock() and tsk_unlock() durthg execution of malloc() and free().

Chapter 4. RTX RTOS Kernel

independent of the pool usage. Built-in memorgadtion routines enable you
to dynamically use the system memory by creatingnorg pools and use fixed
sized blocks from the memory pool. The memory pwads to be properly
initialized to the size of the object.

#include <rtl.h>

os_mbx_declare (MsgBox, 16); /[decl are an RTX mailbox

U32 mpool [16*(2 * sizeof (U32)) /4 + 3]; // memo ry for 16 messages

__task void rec_task (void); /I task to receive a message

__task void send_task (void) { Il Task to send a message
U32 *mptr;

0s_tsk_create (rec_task, 0);

os_mbx_init (MsgBox, sizeof (MsgBox)); //ini t mailbox
mptr = _alloc_box (mpool); /I alloc. memory for the message
mptr[0] = Ox3215fedc; /] set me ssage content

mptr[1] = 0x00000015;
os_mbx_send (MsgBox, mptr, Oxffff); // Send t he message to 'MsgBox'

os_tsk_delete_self ();

}

__task void rec_task (void) {
U32 *rptr, rec_val[2];

os_mbx_wait (MsgBox, &rptr, Oxffff); // Wait for message
rec_val[0] = rptr[0]; /I Store content to ‘rec_val'
rec_val[1] = rptr[1];

_free_box (mpool, rptr); /I Relea se the memory block

os_tsk_delete_self ();

}
void main (void) {
_init_box (mpool, sizeof (mpool), sizeof (U32));

0S_sys_init (send_task);

To send a message object of a variable size anthes&riable size memory
block, you must use the memory allocation functjevisich can be found in
stdlib.h.

Getting Started: Creating Applications with pVision

53

RTX and ARTX166 Function Overview

Function Group
Task Management

Event/Signal Functions

Semaphore Functions

Mailbox Functions

Memory Management

Mutex Management

System Clock (Timer -
Ticks)

RTX

create-task, delete-task, pass-
task, change-priority, running-
task-id, running-task-priority,
lock-task, unlock-task, system-
init, system-priority

clear-event, get-event, set-event,
wait-event, isr-set-event

initialize -semaphore, send-
semaphore, wait-semaphore,
isr-send-semaphore

check-mbx, declare-mbx,
initialize -mbx, send-mbx, wait-
mbyx,

isr-receive-mbx, isr-send-mbx,
imrvr AlhAnls miba

e
create-pool, check-pool, get-
block, free-block

initialize-mutex, release-mutex,
wait-mutex

delay-task, wake-up-task, set-
slice, create-timer, kill-timer, call-

ARTX166

create-task, delete-task, pass-
task, change-priority, running-
task-id, running-task-priority,
lock-task, unlock-task, system-
init, define-task

clear-event, get-event, set-event,
wait-event, isr-set-event

initialize -semaphore, send-
semaphore, wait-semaphore,
isr-send-semaphore

check-mbx, declare-mbx,
initialize -mbx, send-mbx, wait-
mbyx,

isr-receive-mbyx, isr-send-mbx,

initialize-mutex, release-mutex,
wait-mutex

delay-task, wake-up-task, set-
slice, create-timer, kill-timer, call-

timer timer
Generic WAIT Function interval-wait interval-wait
RTX and ARTX166 Technical Data
Technical Data RTX ARTX166
max Tasks 250 250
Events/S ignals 16 per task 16 per task
Semaphores, M ailboxes , unlimited unlimited
Mutexes
min RAM 2 — 3 KBytes 500 Bytes
ARM7/ARM9 Cortex-Mx
max Code Space 4.2 KBytes 4.0 KBytes 4.0 KBytes
Hardware Needs 1 on-chip timer SysTick timer 1 on-chip timer
Task Priorities 1-254 1-254 1-127
Context Switch <7usec @ 60 MHz <4pusec @ 72 MHz <15 psec @ 20 MHz
Interrupt Lockout 3.1 ysec @ 60 MHz not disabled by RTX 0.2 psec @ 20 MHz

54 Chapter 4. RTX RTOS Kernel

RTX51 Tiny and RTX166 Tiny Function Overview

Function Group RTX51 Tiny RTX166 Tiny
Task Management create-task, delete-task, create-task, delete-task,
running-task-id, running-task-id,
switch-task, set-ready, delay-task
isr-set-ready
Signal Functions send-signal, clear-signal, isr- send-signal, clear-signal, isr-
send-signal send-signal,
wait-signal
System Clock (Timer -Ticks) reset-interval delay-task
Generic WAIT Function wait wait

RTX51 Tiny and RTX166 Tiny Technical Data

Technical Data RTX51 Tiny RTX166 Tiny
max Tasks 16 32

Signals 16 32 max

RAM 7 + 3 Bytes/Task 8 + 4 Bytes/Task
max Code Space 900 Bytes 1.5 KBytes
Hardware Needs No Timer 1 on-chip Timer
Context Switch 100-700 Cycles 400 - 4000 Cycles
Interrupt Lockout < 20 Cycles <4 psec, O ws.

Getting Started: Creating Applications with pVision 55

Chapter 5. Using pVision

The pVision IDE is, for most developers, the edsies/ to create embedded
system programs. This chapter describes commadg p1Vision features and
explains how to use them.

General Remarks and Concepts

Before we start to describe how to use pVision,esganeral remarks, common
to many screensnd to the behavior of the development tool, aesgnted. In
our continuous effort to deliver best-in-class depment tools, supporting you
in your daily work, pVision has been built to resgenthe look-and-feel of
widespread applications. This approach decreas@slgarning curve, such that
you may start to work with pVision right away.

Based on the concept of windows:
= pVision windows can be re-arranged, tiled, andchtd to other screen areas
or windows respectively

= |tis possible to drag and drop windows, objeats! @ariables

= A Context Menu, invoked through the right mousedmtis provided for
most objects

= You can use keyboard shortcuts and define yourshentcuts
= You can use the abundant features of a modernredito

= Menu items and Toolbar buttons are grayed out winéravailable in the
current context

= Graphical symbols are used to resemble optionsatt unsaved changes, or
reveal objects not included into the project

= Status Bars display context-driven information

= You can associate pVision to third-party tools

The screenshots presented in the next chaptersiiemretaken from different example programs
and several microcontroller architectures to reségrthe main feature, sometimes the special
feature, of that topic. The same window, dialagab category will look slightly different for

other microcontroller architectures.

56

Chapter 5. Using pVision

(7} Meas{e - pVision
File Edit View Project Flash Debug Peripherals Tools

‘juﬂ 2B 90 == PBREBK

/ Project Name ‘/ Menu bar

SVCS Window Help
1z llg 2

4 Toolbars
== =S

adcm/'@al@'o X VR
o-E- %

% EO wreu » DREEE-[D-] 2. .- A=
Breakpoint
(] TRAFFIC e — 7: i 1= 4; i++ Symbols X -
~ TRAFFIC | o 0x000007F4 E3A06000 MOV RE,: N s
[% = 0x00000 TP Oxéw Maskc mED ©
=-£3 ConstFar _ Text file;
- 1268;) 00000 | [Name [Address [Type [4]
ox000261 Options changed RO, ‘[P55 PepherdlS
Next statement 0x0G000¢ RO,! ’ :
’ *| = B Measure Application
and Breakpoint < # (] Runtime. b
= I 5 . = = = (=] Getline Module =
=-&3 Blinky k7 2] Measure.ct [[5], Seriake, | [] Getiinec _‘.‘ © geti.. | 0x000001A0 Function X
1 Simulator else { # [) Mcomm.. Module =
Booki K if (interval.msec-- == Q) = u Measure Module
ookmar interval.msec = @ cmd... | 0x400000A4 amay[1000] of uc...
DSTM32F10 if (interval.sec-- == (+ @ cur.. | (40000034 struct mrec —
0 Retarget o= - # ER.. | 00000010 amey{16]of uchar

iEer.
/* Analog0() simulates analog input values given to chi s .
/e Address: |0
Signal void analog0 (float limit) { 0x00000000: 0000073 [RO.#0x0
float volts: 0x0000000F : ©<00000738 | E2800001 | ADD RO.RO.#Gx00C
0x0000001E: 65532 | (x0000073C | E3C00801 BIC R0.R0.#0x0001
printf ("AnalogO (%f) entered.\n", limit); 0x0000002D: 65533 | (x00000740 | E5SF1430 |LDR R1.[PC.#0x04:
while (1) { /* forever */ - ||oxo000003cC: 65534 | (x00000744 |E1C100B4 | STRH RO[R1.#(x0¢
P . 0x000000458: | 65535 |(«00000748 |E3500FFA |CMP RO.#0x00000:
0x0000005A: 65536 | (x0000074C | 1A00001C BNE (x000007C4
> 0x00000069:
ASSIGN BreakDisable BreakEnable Br@akKill BreakList | 0x00000078: 00 00 40 E2 D7 FO 21 E3 00 DO RO E1 00 00 40
[E uita Butput | 5 command [GaFind in Fites | | & can stack [G@rocals [F@watcn 1 I:IMemoryl l
Real-Time Agent: Target Stopped .\ Simulation t1: 167045508 sec L1

* Command Line * Commands available Status bar

To launch pVision click the pVision icon on yourséitop or select
pVision from the Start Menu.

V.

Window Layout Concepts

You can set up your working environmeint pVision at your discretion.
Nevertheless, let us define three major screersarehae definition will help you
to understand future comments, illustrations, astrictions.

! Any window can be moved to any other part of Misipn screen, or even outside of pVision to
any other physical screen, with the exception efabjects related to the Text Editor.

Getting Started: Creating Applications with pVision

57

Project Windows Editor Windows
\&d Blinky - pVision - =
File Edit View Pfoject Flash Debug Peripherals Tools SCCS Window Help
= A 4 EiE] 2 C& (D~ X
% EO BTG U R I e
5= WorkSpace 108: while (cnt--);:
T 27.8%50x08000890 1E40 sUBS x0,x0,#1
Y ol - 18.95950x08000892 D2FD BCS delay (0x08000830)
=3 Simulator E]
= £3 Startup Code 7RNR 3n.. ov . =
[£] STM32F10x.s :
563 Initialisation 2 Lco_bitc | v x
[#] STM32 Init.c 147 67.250 ps |-k j
=-£3 Configuration 148 unsigned char status;
B RTX Config.c _ || 149 =
""" » 150 do {
1.902s status = lcd read status(); i
i Project | &5 Registers | » [
// Clear Display * | _Stack Frames | Value/Address |
LCD_Clear(): % & delay)

} else if (Cmd & 0x80) {
// Set Cursor Position
Cursor = Cmd & Ox7F:

a m

+ @ lod_read_status)
% @ wait_whie_busy()

v B3 o R

% & led_int)

>

BSSIGN Bocakpicabic Srcakzostic Sica

kX311 Rreakliar

h '..".(;u:;k R Iy [0

gcmon | R]

t1: 182.68061347 se:

Output Windows I

TheProject Windows area is that part of the screen in which, by defthe
Project Window, Functions Window, Books Window, d&egisters Window are

displayed.

Within theEditor Windows area, you are able to change the source code, view
performance and analysis information, and checklib&ssembly code.

The Output Windows area provides information related to debuggingnony,
symbols, call stack, local variables, commandswiseoinformation, and find in

files results.

If, for any reason, you do not see a particulardeinm and have tried
displaying/hiding it several times, please invake tlefault layout of pVision
through thewindow — Reset Current LayoutMenu

58

Chapter 5. Using pVision

Positioning Windows

The pVision windows may be placed onto any argda@fbcreen, even outside of
the uVision frame, or to another physical screen.

= Click and hold theTitle Bar® of a window with the left mouse button

= Drag the window to the preferred area, or ontgpttegerred control, and
release the mouse button

Please note, source code files cannot be moveitlewktheEditor Windows?.

Invoke theContext Menu of the window'sTitle Bar to change the docking
attribute of a window object. In some cases, yostperform this action before
you can drag and drop the window.

uVision displays docking helper contrlemphasizing the area where the
window will be attached. The new docking arearesented by the section
highlighted in blue. Snap the window to the MUkipocument Interface (MDI)
or to a Windows area by moving the mouse over th&eped control.

New location of moving window Snap to Windows area
(highlighted area)
1 Measure - pVision ™ e
File Edit View Project Flash Debug Peripherals AYools SCCS Window Help
2340 @ ==) A (X M-
(5] [@ 1 33 Smudator N AD |

=63 Blinky
523 Simulator
543 Startup Code

Functions | _ SirBts) i =

Pemeei[IToe) |

£ Pr... 0. }
O ¥ Name + | Definitions and References - <none> O{
<

l

‘ Snap to MDI ‘

Page/object name

1 You may click the page/object name to drag ang the object.
2 Source code files stay in the Text Editor's window

3 Controls indicate the area of the new window posit The new position is highlighted.

Getting Started: Creating Applications with pVision 59

pVision Modes

pVision operates in two modeBuild Mode andDebug Mode Screen settings,
Toolbar settings, and project options are storatiéncontext of the mode. The
File Toolbar is enabled in all modes, while tBebugToolbar andBuild
Toolbar display in their respective mode only. Buttonsnig, and menus are
enabled if relevant for a specific mode.

The standard working modeBsiild Mode. In this mode you write your
application, configure the project, set preferensekect the target hardware and
the device; you will compile, link, and assemble ginograms, correct the errors,
and set general settings valid for the entire appbn.

In Debug Modeg you can also change some general options and@dite code
files, but these changes will only be effectiveeaftou have switched back to
Build Mode, and rebuild your application. Changes to delaitings are
effective immediately.

Menus

TheMenu bar provides access to most pVision commandsdirgiifile
operations, editor operations, project maintenageeelopment tool settings,
program debugging, window selection and maniputaimnd on-line help.

File Menu

TheFile Menu includes commands that open, save, printchosg source files.
TheDevice DatabaseindLicense Managerdialogs are accessed from this
menu.

Edit Menu

TheEdit Menu includes commands for editing the source coddo, redo, cut,
copy, paste, and indentation, bookmark functioasipus find and replace
commands, source outlining functions, and advaedgdr functions. Editor
configuration settings are also accessed fronmtieisu.

Cristinel.Ababei
Highlight

Chapter 5. Using pVision

View Menu

TheView Menu includes commands to
display/hide a variety of windows. You can
also enable/disable ttgtatus Bar. The
Periodic Window Update option is useful
in Debug Modeto force the screens to
periodically refresh. If this option has not
been selected, you can manually update th
screens via th&oolbox.

Project Menu

TheProject Menu includes commands to
open, save, and close project files. You ca
Export your project to a previous version of
M Vision,Manage project components, or
Build the project. In addition, you can set
Options for the project, group, and file. You
can manage multiple projects through the
Multi-Project Workspace... Menu.

Flash Menu

TheFlash Menu includes commands you
can use to configure, erase, and program
Flash memory for your embedded target
system.

I=
=

[<]

g BT 5103 EERE

IL_.

tatus Bar

Toolbars

Project Window

Books Window
Functions Window
Templates Window
Source Browser Window
Build Qutput Window
Find In Files Window

Command Window
Disassembly Window
Symbaol Window
Reqgisters

Call 5tack

Watch

Memory

Serial

Analysis

Trace

System Viewer

#7 Toolbox

Full 5creen

Periodic Window Update

Getting Started: Creating Applications with pVision

Debug Menu

TheDebugMenu includes commands that | pebug

start and stop a debug session, reset the CRR) start/stop Debug Session Ctrl=F5
run and halt the program, and single-step inee ... o
high-level and assembly code. In addition,

commands are available to manage S F

breakpoints, view RTOS Kernel information,"j-," Zul

and invoke execution profiling. You can {_i e Fi

modify the memory map and manage Oy sem o F10

debugger functions and settings. | [T i+
4} Runto Cursor Line Ctrl=F10

5 Show Mext Statement

Tools Menu

Ereakpoints... Ctri=B

. . Insert/Remove Breakpoint Fa
Configure and run PC-Lint or set up your Enable/Disable Breakpaint Ctrl=F9

2
- oo O

own tool shortcuts to third party utilities. (3 Disable All Ereakpoints
&

Eill A1l Breakpoints Ctrl=5hift=F9
SVCS Menu 0S support >
Execution Profiling 3
TheSVCSMenu allows you to configure Memory Map..
and integrate your project development with . weccompiy.
third-party version control systems. Function Editor (Open Ini File)...

Debug Settings...

Help Menu

TheHelp Menu includes commands to start| Heip

the on-line help system, to list information |@: pvision Heip

about on-chip peripherals, to access the € Open Books Window
knowledgebase, to contact the Technical
Support team, to check for product updates,
and to display product version information.

Simulated Peripherals for 'LPC2129°
Internet Support Knowledgebase
Contact Support
Check for Update

About pVision..,

Chapter 5. Using pVision

Peripherals Menu

ThePeripherals Menu includes dialogs to Peripherals

display and change on-chip peripheral settings System Control Block v
The content of this menu is tailored to show the vecored interrupt controtier
specific microcontroller options selected for your o, cannect Block
application. Dialogs are typically available for -

System Configuration, Interrupts, UARTS, 12C, if; :
Timer/Counters, General Purpose 1/0, CAN, -

Pulse-Width Modulators, Real-Time Clocks, L2CInterface

and Watchdog Timers. This menu is active in SPlInterface 4
Debug Modeonly. Timer v

Pulse Width Modulator

A/D Converter

CAN 4
Real Time Clock

Watchdog Timer

Window Menu

TheWindow Menu includes Window
commands to split, select, and | —

close various windows in the

_1 Debug Restare Views...

Text Editor. Beset View to Defaults

In addition, you can define your 2plit

own screen layouts through the Close All

Debug Restore Views..dialog,

and switch back and forth ChkeibARMAExamples\Blinky\Abstract bt

between the screen layouts you C\Keil ARMYExamples\Blinky\Blinky.c
defined.

Restore the default layout throuBleset View to Defaultsat any time.
Currently open source code windows are listedeabtittom of théVindow
Menu.

Getting Started: Creating Applications with pVision 63

Toolbars and Toolbar Icons

The pVision IDE incorporates several Toolbars waitiitons for the most
commonly used commands.

= TheFile Toolbar contains buttons for commands used to edit sdilese to
configure pVision, and to set the project speafitions

= TheBuild Toolbar contains buttons for commands used to build tbgept

= TheDebug Toolbarcontains buttons for commands used in the debugger

TheFile Toolbar is always available, while tH&uild Toolbar andDebug

Toolbar will display in their context. In both modd3uild Mode andDebug
Mode, you have the option to display or hide the aglie Toolbars.

File Toolbar
ISH@ %an 9 PRBB =EER L
| @ ADC cRe R e [E] A

New File — opens an empty text window

Open File — dialog to open an existing file

Save File — saves the contents of the current file
Save All — saves changes in all open files

Cut — deletes the selected text and copies itdalipboard

o= W K

Copy — copies the currently selected text to tigbolrd
Paste — inserts text from the clipboard to theenircursor position

Undo changes — removes prior changes in an eddomin

?7 5 [

Redo changes — restores the last change that wlasein

1_\

Navigate Backwards — moves cursor to its formekwacd position

64

Chapter 5. Using pVision

&

EI-ID‘

$ O 0 ¢ B %

F B

Navigate Forwards — moves cursor to its former gvdiposition
Bookmark — sets or removes a bookmark at cursatigros

Previous Bookmark — moves the cursor to the bookmpeavious to the
current cursor position

Next Bookmark — moves cursor to the bookmark atwédlle current
cursor position

Clear All Bookmarks — removes bookmarks in the enirdocument
Indent — moves the lines of the highlighted tex tab stop to the right
Unindent — moves all highlighted text lines one s&ip to the left

Set Comment — converts the selected code/textrtonmamt lines
Remove Comment — converts the selected text linek to code lines

Find in Files — searches for text in files; ressh®wn in an extra
window

Find — searches for specified text in current dcentm

Incremental Find — finds expression as you type

Debug Session — starts/stops debugging

Breakpoint — sets or removes a breakpoint at cyrssition

Disable Breakpoint — disables the breakpoint as@uposition
Disable All Breakpoints — disables all breakpointall documents
Kill All Breakpoints — removes all breakpoints fraat documents
Project Window — dropdown to enable/disable projelzited windows

Configure — dialog to configure your editor, shat; keywords, ...

Getting Started: Creating Applications with pVision 65

Build Toolbar
WA Whad %3 | Simulator A

i Translate/Compile — compiles or assembles therfithe current edit
window

% Build — builds and links those files of the projétat have changed or
whose dependencies have changed

%4 Rebuild — re-compiles, re-assembles, and re-lilkdes of the project

#& Batch Build — re-builds the application based otthénstructions. This
feature is active in a Multi-Project environmentyon

Stop Build — halts the build process

i3 Download — downloads your application to the tagystem flash

-l Target — drop-down box to select your target sygiarthe Toolbar
example above: Simulator)

A% Target Options — dialog to define tool and targétisgs. Set device,
target, compiler, linker, assembler, and debugoogthere. You can also
configure your flash device from here.

e File Extensions, Environments, and Books — diatoganfigure targets,
groups, default folders, file extensions, and aoditl books

B Manage Multi-Project Workspace — dialog to addemnaove individual

projects or programs to or from your multi-projeontainer

66

Chapter 5. Using pVision

Debug Toolbar

Od=
RST

i

© M

g B o £ B

D meao » DRBEEGE e - -8 0 2 B

Reset — Resets the microcontroller CPU or simulatole debugging
Run — continues target program execution to nesdlpoint

Stop — halts target program execution

Step One Line — steps to the next instruction tr pmocedure calls
Step Over — steps over a single instruction and pracedure calls
Step Out — steps out of the current procedure

Run to Line — runs the program until the curremsouline

Show Current Statement — Shows next statement ¢xéeuted
Command Window — displays/hides the Command Window
Disassembly Window — displays/hides the Disassembidow
Symbol Window — displays/hides Symbols, VariabRsits, ...
Register Window — displays/hides Registers

Call Stack Window — displays/hides the Call Staeket

Watch Window — drop-down to display/hide Locals &ddtch Windows
Memory Window — drop-down to display/hide Memoryntfows

Serial Window — drop-down to display/hide UART-gevéral windows
and the Debug printf() View

Logic Analyzer — displays variable values graphicahlso used as a
drop-down to display/hide the Performance Analyaed Code Coverage
Window.

Getting Started: Creating Applications with pVision 67

Performance Analyzer — displays, in graphical fattme, time consumed
by modules and functions as well as the numbeumdtfon calls

Code Coverage — dialog to view code executionssiegiin a different
way than with the Performance Analyzer

System Viewer — view the values of your Peripheygjisters
Instruction Trace — displays/hides the Instruclioace Window

Toolbox — shows/hides the Toolbox dialog. Depegdin your target
system, various options are available.

Debug Restore Views — drop-down to select the predlevindow layout
while debugging

Additional Icons

= |

i}

0,
=

)

Print — opens the printer dialog

Books — opens the Books Window in the Project Woaks
Functions — opens the Functions Window in the Rtdj¢orkspace
Templates — opens the Templates Window in the Ertjorkspace
Source Browser — opens the Source Browser WindaherOutput
Workspace. Use this feature to find definition®ocurrences of
variables, functions, modules, and macros in yodec

uVision Help — opens the pVision Help Browser

File — Source file; you can modify these files;aléf options are used

File — Source file; you can modify these filesgfiiptions have been
changed and are different from the default options

File or Module — header files; normally, includadamatically into the
project; options cannot be set for these file types

68

Chapter 5. Using pVision

Folder or Group — expanded — icon identifying apagded folder or
group; options correspond to the default settings

Folder or group — expanded — icon identifying apagded folder or
group; with changed options that are different fittvea default settings

Folder or group — collapsed — with options corresjiog to default
settings

Folder or group — collapsed — with options chargyed different form
default settings

Lock — freezes the content of a window; preveras window from
refreshing periodically; You cannot manually chatige content of that
window.

Unlock — unfreezes the content of a window; alldfaat window to
refresh periodically. You can manually changedbetent of that
window.

Insert — creates or adds an item or object tat a lis
Delete - removes an item or object from a list

Move Up - moves an item or object higher up inlisie
Move Down - moves an item or object down in the lis

Peripheral SFR (Peripheral Registers, Special kam&egister)
Simulator VTREG (Virtual Register)

Application, Container

Variable

Parameter

Function

Getting Started: Creating Applications with pVision

69

Project Windows

Project Windows display information about the

current project. The tabs at the bottom of thésaar
provide access to:

Project structure and management. Group your
files to enhance the project overview.

Functions of the project. Quickly find and
navigate between functions of the source code.

MicrocontrollerRegisters Only available while
debugging.

Templatesfor often-used text blocks. Double
click the definitions to insert the predefined text
at cursor position.

Booksspecific to the pVision IDE, the project,

=853 LPC2129 Simulator

E-£5 Startup Code

{ -[#] Startup.s
L——_Ia Systern Calls
- [#] Retarget.c

: stdio.h
i [r_misch
- [#] Serial.c
lpc2laxh
45 Source Code

[(] Getline.c
Meormmand.c
Measure.c

- [

]EIP..| {} F..|§R..|[].,T.. |@5..|

and sometimes to the microcontroller used. Conéigund add your own

books to any section.

70

Chapter 5. Using pVision

TheFunctions Window
displays all functions of
your project or of open
editor files.

Double-click a function to
jump to its definition.
Invoke itsContext Menu
to toggle the displaying
mode of this window or
scan the files.

TheTemplates Window provides user-defined text

Functions X

B[] Getline.c

. & getline (char*ling int n)
[]--- Mecommand.c

o [(e

- [=s] Retarget.c

[_sys_exit (int return_code)
& _thywrch (int ch)

@ ferror (FILE* f)

.. @ fputc (int ch, FILE*f)
|'_—‘|--- Serial.c

& getkey (void)

& init_serial (void)

‘.. @ sendchar (int ch)

Functions *
_ayz_exit [int return_code]

_tiwarch [int ch)

ChangeSFRO [void)

clear_records [void)

DeflSR [void)

fermor [FILE* f]

fputc (int ch, FILE*f]

getkey [void]

getline [charline,int n)

init_zerial [void]

mairn [void]

meazure_digplay [struct mrec dizplay]
1_basepri [void]

1_fault [~oid)

1_mzp [woid)

Go to Function

=

Scan Project Files

Scan Current Editor Files

oo w6

58

Display Modules

ﬂ Pr-:uj...|@8-:u-3ks| {}Fun.. | [].,Tem... |

|£Pr-:|... |@Ba... | {}Fu.. |[].,Te... |

blocks, which can be defined through the
Configuration — Templatesdialog.

Double-click a definition or invoke th@ontext

Menu to insert often-needed constructs into your cof

files.

Alternatively, you can type the first few letterfstioe
template name followed bstri+Space to insert the

text.

Templates x
Hdefine

i

Hinclhide

continue

do

LM

far
pointer_type

Jl@ction

Header

if

ifelze

awitch Insert Template

“ struct |
Vi Configure Templates...

i

EPr-J...|@B-:... | {}Fu.. |[]..Te... |7

Getting Started: Creating Applications with pVision

Editor Windows

TheEditor Windows are used to: orernc | 1) Wi |) b | L) meen |) domne

212 Srrrnr
213 | char cmdbuf [1000]; /* comn
214
218

» Write, edit, and debug source files. g it s o

27 int i;

Press1 on language elements for help.s; ™

220 PINSEL1 = 0x15400000:
=221 IODIR1 = OxFF0000;

» Set breakpoints and bookmarks . EEEERTOLTY
224 init_serial ();
= Set project options and initialize target = "
. 227 /* setup timer counter 0 interrupt */
systems by using powerful m | Tomo - s
configuration wizards Ll
= View disassembly code and trace 9 e [[0 weoswree [] oo [] witan] 7
instructions while debugging oot | oo | |
| Optian Velue
Typically, this area contains tA@xt Looscomngin
Editor with source code files, the |
Disassembly Window Performance o
Analyzer, andLogical Analyzer.
§ TextEditor), Configuration Wizard

Editor Configuration

Configure Editor settings, |cenfausten ; . =
Co|0rs and fonts user Edtor | Colors & Forts | User Keywords | Shotcut Keys Templates \Other |

; ! Text File Types:
defined keywords, Shortcut] e s

keys, and templates

through theConfiguration EarTe Fls
dialog.

Templates El P

Text:

You can invoke this dialog | [
via theContext Menu of
the Template Window, puble
the Edit — Configuration
Menu, or

// TODO: enter the block content here

Cancel Help

=%, through theFile Toolbar command.

72

Chapter 5. Using pVision

Using the Editor

You can view text
files in the Editor
side by side. Invoke
the Context Menu

of the file tab and
choose a horizontal
or vertical
arrangement.

Files can be dragged
and dropped from
oneTab Group into
the other, or can be
moved to the Next
Tab Group through
the Context Menu.

In addition, you can
tile a file vertically
and horizontally.
Complete your code
in any part of these
fragments.

Double-click the
tiling line to remove
the fragmentation.

Double-click a file's
tab to close the file.

MAIN.C CAN.C [].]. ABSTRACTTE - x
001 $ifdef Taq Close =
002 | #define Close All But This

Fdefir
R P
Up; #define Copy Full Path
ane #define
007 | #endif Open Containing Folder
008
009 | #include ° E Mew Horizontal Tab Group
oo |JJ Mew Vertical Tab Group
mi| UFE IOL & 5100 Vil biect
012} // A total of 31 such structures exists
m3
014 | struct stCanCbij
ms | {
o6 ubyte ubDatalg]:
m?z ulong ulCANAR;
018 ulong ulCANAMR;
ms uword uwM3SGCTR;
020 uword uwCounter;
021 uword uwMSGCFG; -
g »

mamr [arsteactme | X ks X
- v CAN.C -
oo e 001 #ifdef Targeth il

ooz Close All But This 002 #define IDO Ox100
003 Close Al 003 #define ID1 Ox101
004 004 #else
005 Copy Full Path 005 #define IDD Ox101
00e . 006 #define ID1 0x100
o7 Open Containing Folder pa 007 | #endif
008 . oo - -
s 1] Mew Vertical Tab Group 008 | #include "Mz TI|\HQ line
oin | Move To Mext Tab Group i 010 j
011U /% Int Vector at 00FOH — =
012 | #ifdef Targetd 001 #ifdef Targetd il
03 obj0dat = pattern;: 002 #define IDO Ox100
014 | #else 003 #define ID1 0Ox101
015 objodat
016 | #endif Tile the file horizontally or vertically | »= Tpo ox101
o7 CAN_wLoa 1e ID1 O0x100
018| CAN vTrgad®it (0): TR ETTTT
09 if ern) pattern = pat 008 . o
020 else pattern = 0x01; 008 | #include "MAIN.H"
gsend = 1; - oo

el

s

Getting Started: Creating Applications with pVision 73

Output Windows

By default, theDutput Windows" are displayed at the bottom of the pVision
screen and include:

= TheBuild Output Window includes errors and warnings from the compiler,
assembler, and linker. Double-click a messagartpjto the location of the
source code that triggered the message. Pidss on-line help.

= TheCommandWindow allows you to enter commands and review
debugger responses. Hints are provided oistaris Bar of that window.
Press1 for on-line help.

= TheFind in Files Window allows you to double-click a result to locate the
source code that triggered the message

= TheSerialandUART windowsdisplay I/O information of your peripherals
= TheCall Stack Window enables you to follow the program call tree

= ThelLocalsWindow displays information about local variables of the
current function

= TheWatch windows provide a convenient way to personalizetat
variables you would like to trace. Objects, stuoes, unions, and arrays may
be monitored in detail.

= TheSymbols Windowis a handy option to locate object definitions.uYo
can drag and drop these items into other area¥isfqn.

= TheMemory windows enable you to examine values in memorysarea
Define your preferred address to view data.

= TheSource Browser Windowoffers a fast way to find occurrences and
definitions of objects. Enter your search critéoiaarrow the output.

! Since almost all objects can be moved to their imalow frame, the terminology ‘page’ and
‘window’ is interchangeably used in this book.

74

Chapter 5. Using pVision

Other Windows and Dialogs

Peripheral Dialogs and Windows

Peripheral Dialogs and Windowsallow you to review and modify the status of

on-chip peripherals. These dialogs are dependetiteotarget system you

selected at the beginning of your project and thasoptions provided will vary.

On-line Help

pVision includes many pages of on-line manuals@mext-sensitive help. The

main help system is available from tHelp Menu.

&’ ARM Development Tools

7 e & O

Hide Back Print Options

Conterts | |ndex | Search | Favortes |

[E=S o=

ﬁ Real\View® Compilation Toals Introduction »
= @ Getting Stated User's Guide

@ pVision® IDE User's Guids

Q RealView Compiler User Guide

@ RealView Compiler Rsference Guids
@ RealView Librariss and Floating Poirt Suppe
0 RealView Assembler User Guide

@ ARM Instruction Set User's Guide

@ RealView Linker User Guide

® Q RealView Linker Reference Guide

& @ RealView Liiities Guide

@ RLARM Real Time Library User's Guide
@ NCB1700 User's Guide

= @ MCB2100 User's Guide

= @ MCB2103 User's Guide

= @ MCB2130 User's Guids

@ NCB2140 User's Guide

@ NCB2300 User's Guide

@ NCB2400 User's Guide

@ NICB2900 User's Guide

@ MCBSTM32 User's Guide

@ MCBSTMA3ZE User's Guide

= @ MCBSTRY User's Guide

= @ MCBSTR730 User's Guide

@ MCBSTR750 User's Guide

@ NCBSTRS User's Guide

@ MCBTMPM3220 User's Guide

i

] 1, '

= @ ULINK2 User's Guide -

We are constantly adding new devices and simulation support for on-chip peripherals so
be sure to check web-based Device Database™ if your plan to use a device that is
currently not listed in your local Vision installation.

This Getting Started User's Guide provides an overview of the Keil ARM toolchain and
contains the following chapters.

= Introduction gives an overview of the development tools and discusses the folder
structure.

Development Tools describes the major features of the Keil ARM development
tools including the pVision IDE/Debugger. It explains how to select the Keil CARM
Compiler, GNU, or ADS/RealView toolchain,

Creating Applications describes how to create projects, edit source files, compile
and fix syntax errors, and generate executable code.

Testing Programs describes how you use the pVision debugger to simulate and
test your entire application.

Sample Programs provides several sample programs that show you how to use
Keil pvision/ARM and the related development tools.

Using On-chip Peripherals shows how to access the on-chip peripherals with the
development tools.

CPU Setup provides information about the CPU startup code and the tool
configuration.

JTAG Debugging discusses how to use the Keil ULINK USB-ITAG Adapter to debug
in your target system.

Flash Programming describes how to setup Keil ULINK for Flash programming via
the JTAG interface.

RDI Interface Driver explains the usage of RDI compliant Debugaing Solutions.

Revision History

Context sensitive on-line help is available in mdiatogs in pVision.
Additionally, you can pressl in theEditor W indows for help on language
elements like compiler directives and library raes. Use1 in theOutput
Window for help on debug commands, error messages, aminga.

Getting Started: Creating Applications with pVision

75

Chapter 6. Creating Embedded Programs

MVision is a Windows application that encapsulétesKeil microcontroller
development tools as well as several third-partities. pVision provides
everything you need to start creating embeddedranag quickly.

MVision includes an advanced editor, project managel make utility, which

work together to ease your development effortsiedees the learning curve, and
helps you to get started with creating embeddedcgions quickly.

There are several tasks involved in creating a exvedded project:

Creating a Project File

Using the Project Windows

Creating Source Files

Adding Source Files to the Project

Using Targets, Groups, and Files

Setting Target Options, Groups Options, and Filaddp
Configuring the Startup Code

Building the Project

Creating a HEX File

Working with Multi-Projects

The section provides a step-by-step tutorial thats you how to create an
embedded project using the pVision IDE.

Creating a Project File

Creating a new pVision project requires just thstps:

1. Select the Project Folder and Project Filename

2. Select the Target Microcontroller

3. Copy the Startup Code to the Project Folder

Cristinel.Ababei
Highlight

76

Chapter 6. Creating Embedded Programs

Selecting the Folder and Project Name

To create a new project file, select Pmject — New Project...Menu. This
opens a standard dialog that prompts you for thepreject file name. Itis
good practice to use a separate folder for eagegiroYou may use th€reate
New Folderbutton in this dialog to create a new empty falder

Select the preferred folder and enter the file nbon¢ghe new project. pVision
creates a new, empty project file with the spedihame. The project contains a
default target and file group name, which you camwon theProject Window.

Selecting the Target Microcontroller

After you have
selected the folder and
decided upon a file
name for the project,
MVision asks you to
choose a target
microcontroller. This
step is very important,
since pVision
customizes the tool
settings, peripherals,
and dialogs for that
particular device.

The Select Devicé?

Select Device for Target 'LPC2129 Simulator'... @
CPU
Vendor: NXP founded by Philips)
Device: LPC2129
Toolset: ARM
Data base Description:
7 -5 based high-peformance it licrocontroller wit -
£3 LPc2i05 IARM7TDMI-S based high-perf 32bit RISC M ller with Th
£ LPC2105/m [256KE an-chip Flash ROM with In-System Programming {1SP) and In-Applic
£3 LPC2106 16KB RAM, Vectored Intemupt Controller,
Two UARTS, 12C serial interface, 2 SPI serial intefaces

~-£3 LPC2106/01 \Two timers (7 capture/compare channels),
--£3 LPC2109 PVWM unit with up to 6 PWM outputs,

£3 LPc2109/01 |4-channels 10bit ADC, 2 CAN channels.

eal Time Clock, Watchdog Timer, General purpose 1/0 pins.

£ 1Pc2114 Real Time Clock, Watchdog Timer, G | 170
81 [poriamt ICPU clock up to 60 MHz, On-chip crystal oscillator and On-chip PLL
-3 LPc2118
--£3 LPC2119/01
--£3 LPC2124

£3 LPC2124/01

a p

« wo » “ i v

dialog box lists all the devices from the pVisibavice Database.

You may invoke this screen through fmject — Select Device for Target...
Menu in order to change target later.

! For some devices, uVision requires additional paeters you must enter manually. Please read
the device description in the Select Device diglagfully, as it may contain extra instructions for

the device configuration.

21f you do not know the actual device you will fipaise, pVision allows you to change the device
settings for a target after project creation.

Cristinel.Ababei
Highlight

Getting Started: Creating Applications with pVision 77

Copying the Startup Code

All embedded programs require some kind of microadler initialization or
startup code?that is dependent of the tool chain and hardwatewith use. It is
required to specify the starting configuration ofiy hardware.

All Keil tools include chip-specific Wison =
S_tartup COde for most Of the deVICeS @) Copy Standard 8051 Startup Code to Project Folder and Add File to
listed in theDevice Database Copy & proeats

the startup code to your project folder
and modify it there only. pVision
automatically displays a dialog to copy
the startup code into your project folder. Ansives question with/ ES.

K Vision will copy the startup code to your projéaider and adds the startup file
to the project.

Ves No

The startup code files are delivered with embedu#dments used by the
configuration wizard to provide you with a GUI irfice for startup
configuration.

Using the Project Windows [Taget -
=45 Seurce Group 1
o [STM32F10x.s

Once you have created a project file successtiligy,
Project Window shows the targets, groups, and files of
your project. By default, the target name is edtarget

1, while the group’s name Bource Group 1
]EIProm @Ba... []¢Te... {} Fu...

The file containing the startup code is added &o th _— .
source group. Any file, the startup fileluded,may be = gg vion
moved to any other group you may define in future. ' uVision Relesse Notes

EHII Tools User's Guide
.. Release Notes

TheBooks Window, also part of th@roject Windows, e et el
provides the Keil product manuals, data sheets, and L@ RV Compiler Introduction

programmer’s guides for the selected microcontrolle .
Double-click a book to open it. Erro..| @5o.. [UyTe [(.]

! The startup code’s default settings provide a gstagting point for most single-chip
applications. However, changes to the startup codg be required.

2 Library and add-on projects need no startup code.

Cristinel.Ababei
Highlight

78 Chapter 6. Creating Embedded Programs
Right-click theBooks Windowto open itsContext Open
Menu. ChooseManage Books.., to invoke the &' Manage Books..
Components, o e e =
Environments and Project Componerts | Folders/Bxtensons Books |
Books' dialog to modify
. e General Books 1} | % | 4 | ¥ | Tool Speciic 12| # | & | |Device Specic. 1 W |4+ | ¥
the Settlngs Of the eX|t|ng uVision Release Notes ?E\Eal:e NS‘E? e 5ol :
manuals or add your own EE%:“[S“.”NME“
manuals to the list of
books.
Later, while developing
the program, you may use
the Functions Window E.’j;",f”“ lﬁfz::__i:’;___ f‘*a”" et =
andTemplates Window (i
as well.

Creating Source Files

Use the button on tHeile Toolbar or the select thEile — New... Menu
to create a new source file

This action opens an empEgitor Window to enter your source code. pVision
enables color syntax highlighting based on theditension (after you have
saved the file). To use this feature immediatedye the empty file with the

desired extension prior to

starting coding.

Il Save the new source file using the button orFileeToolbar or use the

File — SaveMenu

! Most microcontroller manuals are part of the tag|sor are available on the Keil Development

Tools CD-ROM.

Getting Started: Creating Applications with pVision

79

Adding Source Files to the Project

After you have created and saved SourceFiled.c. | [£], Sour
your source file, add it to the project| = Terget1 |
Files existing in the project folder, ik
but not included in the current
project structure, will not be
compiled. opentizp e

(%] Rebuild all target files
£

,;;\ Cptions for Group 'Source Group1'.., Alt+F7

DOpen File

Open List File

E4 Build target F7

Right-click a file group in the
Project Window and selecAdd
Files to Group from theContext

Translate File

Stop build

Add Group..

Menu. Then, select the source file | Add Files to Group ‘Source Group ..

or source f|IeS to be a_dded Remave Group ‘Source Group 1° and its Files
|i Manage Components...

A Self'eXpIanatory WIndOW Wl” Show Include File Dependencies

guide you through the steps of = - F - :
adding a file. [@0] 11

Add Files to current Project Group

Using Targets, Groups, and Files

The pVision’s very flexible project management stuwe allows you to create
more than ond&arget for the same project.

A Target is a defined set of build options that assemldeyaile, and link the
included files in a specific way for a specific fhbam.

Multiple file groups may be added to a target andtipie files may be attached
to the same file group.

You can definenultiple targets for the same project as well.
You should customize the name of targets and grtupsatch your application
structure and internal naming conventions. It@®ad practice to create a

separate file group for microcontroller configuoatifiles.

#4 Use theComponents, Environment, and Books. dialog to manage
your Targets, Groups, and Files configuration

Cristinel.Ababei
Highlight

Cristinel.Ababei
Highlight

Chapter 6. Creating Embedded Programs

To change the name of a Target, Group, or Filergay either:

™ Double-click the Components, Environment and Books =
deSIred |tem, or Project Companierts | Folders/Extensions | Books |

= Highlight the item Proisct Targets: 2| 3| & | [Growe X[+ [[Fes X[+
and presgz — San STM3ZF10x

Change the name and
click theOK button.
Changes will be visible in
the other windows as
soon as this dialog has

been closed.
Set as Cument Target Add Files
Cancel Help

i1 Insert - create a new target or group
w Delete - remove a target, group, or source filenfthe project
4 Move Up - move a target, group, or source file lupltst

4 Move Down - move a target, group, or source filevdahe list

Instead of using the Move Up or Move Down buttgms) may drag and drop the
source files within th&roject Window to re-arrange the order of the files.

Getting Started: Creating Applications with pVision

81

Setting Target Options

A& Open theDptions for Target dialog from theBuild Toolbar or from the

Project Menu

Options for Target 'Simulator’ @
Device Target | Output | Listing | User | CAC++ | Asm | Linker | Debug | Litilities |
STMicroelectronics STM32F103RB
Code Generation
¥al (MHz): |8.0
Operating system: |N0ne j ™ Use Cross-Module Optimization
[Use MicroLIB -
[Use Link-Time Code Generation
Read/Only Memory Areas Read/Write Memory Areas
default off-chip Start Size Startup default off-chip Start Size MNaolnit
~ Rom: | | o - Ram: | | -
I Rowz | | s ~ RAmz | | r
~ Rom3: | | ' ~ Ram3: | | -
on-chip on-chip
¥ IROM1; |BBODDDDD [Cx20000 a3 W IRAM1 |(x20000000 [B<5000 ~
I IRomz: | | C I IRAmMZ: | | r
OK | Cancel Diefaults | Help

Through this dialog, you can

= change the target device

= settarget options

= and configure the development tools and utilities

Normally, you do not have to make changes to tli@ultesettings in th&arget
andOutput dialog.

The options available in th@ptions for Target dialogs depend on the
microcontroller device selected. Of course, thailable tabs and pages will
change in accordance with the device selected ahdhve target.

When switching between devices, the menu optioasaailable as soon as the
OK button in theDevice Selectiordialog has been clicked.

82

Chapter 6. Creating Embedded Programs

The following table lists the project options tlaa¢ configurable on each page of
theTarget Options dialog.

Dialog Page Description

Device Selects the target device from the Device Database

Target Specifies the hardware settings of your target system

Output Specifies the output folders and output files generated

Listing Specifies the listing folders and listing files generated

User Allows you to start user programs before and after the build process

C/C++ Sets project-wide C/C++ Compiler options

Asm Sets project-wide Assembler options

Linker Sets project-wide Linker options. Linker options are typically required to
configure the physical memory of the target system and locate memory classes
and sections.

Debug Sets Debugger options, including whether to use hardware or simulation

Utilities Configures utilities for Flash programming

Setting Group and File Options

In uVision, properties of objects and options carsét at the group level and on
individual files. Use this powerful feature to sgtions for files and groups that
need a configuration different from the defaultisgs. To do so, open the
Project Window:

= Invoke theContext Menu of a file group and sele€@ptions for Group to
specify the properties, compiler options, and aséenoptions for that file

group

= Invoke theContext Menu of a source file and sele©ptions for File to
specify the properties, compiler, or assembleromgtifor that file

TreatTarget options similar to general options. They aredrédr the entire
project and for that target. Some options candfmed at the group level and on
individual files. File-level options will supersedroup-level options, which in
turn, supersede the options set at the target level

i3 28 Red dots on the icon’s left side are an indicathat the options of
that item differ from the general target options

Getting Started: Creating Applications with pVision

83

Configuring the Startup Code

Keil tools include files with chip-specific startgpde for most of the supported

devices.
Elinky - pVision (o= =]
Eile Edit View Project Flagsh Debug Peripherals Tools 35VCS Window Help
=2" N~ e} E = [[adc1_int B
& (XY $% | OnChip Flash M- |
START_V2.A66
[=-£21 On-Chip Flash
- ource Files Expand Al Collapse Al Help
#] Blinky.c
| START V2,466 Option Value
ocumentation [=l- Definitions for Systern and User Stack
D ABSTRACT.THT -~ STKSZ: Maximum System Stack Size selection 00200
~USTSZ: User Stack Size Definition
~UST1SZ: User Stack Size for local register bank 1 0:0020
+- UST2SZ: User Stack Size for local register bank 2 0:0020
[#- Definitians for Startup Code
CPU Configuration
QCDS Debug Peripheral Suspend Configuration [
Peripheral Cenfiguration
[+ Definitions for Reset Configuration Register RSTCON [
[+~ Definitions for PLL Control Register PLLCON [
- Definitions for Watchdog Timer Control Register WDTCON [
[+l Definitions for Frequency Output Signal FOCON [v
[#- External Bus Canfiguration
]Elpmject (0, Templ...| £} Fundti. | TextEditor J, Configuration Wizard

-:_';IEulId Qutput _RFlnd in Files

Keil startup files contain assembler code with @psiyou can adjust to your
particular target system. Most startup files heawdedded commands for the
M Vision Configuration Wizard , which provides an intuitive, graphical, and

convenient interface to edit the startup code.

Simply click the desired value to change dataerltively, you can use
the Text Editor to directly edit the assembly source file.

Keil startup files provide a good starting point foost single-chip applications.
However, you must adapt their configuration for ytarget hardware. Target-

specific settings, like the microcontroller PLL ckoand BUS system, have to be

configured manually.

84

Chapter 6. Creating Embedded Programs

Building the Project

Several commands are available fromBudd Toolbar or Project Menuto
assemble, compile, and link the files of your pcbjeBefore any of these actions
are executed, files are saved.

i Translate File — compiles or assembles the cugraetive source file

l# Build Target — compiles and assembles those filashave changed,
then links the project

% Rebuild — compiles and assembles all files, regasiWwhether they have
changed or not, then links the project

While assembling, compiling, and linking, pVisioisglays errors and warnings
in theBuild Output Window .

Highlight an error or R — :
Warning and preﬂ to assembling STM32F10x.s...

get help regarding that

particular message.

Double-click the messagez=::.

to jump to the source Iine i;g&;;zm:zzazjezzzd Error: L6218E: Undefined symbol 1f:fscd_clear (referred from measure.o).
that caused the error or

compiling Retarget.c...
compiling LGD_4bit.c
compiling Serial.c..
compiling STM32_

ing: #223-D: function "lfsfscd clear” declared implicitly

~|compiling Mcommand.c...

warning.

uVision displays the e mmianer -
messag@ Error(s), 0 i

Warning(s) on vy

successful completion oOf e el

the build process. PLoren Liae commast0 R0 detan1o20 RE-dsvance 21 ascemises

".\Obj\Measure.axf" - 0 Error(s), 0 Warning(s).

Though existing
warnings do not prevent
the program from running correctly, you should dédessolving them to
eliminate unwanted effects, such as time consumptiodesirable side effects,
or any other actions not necessary for your program

Getting Started: Creating Applications with pVision

85

Creating a HEX File

Check theCreate HEX File box undeiOptions for Target — Output, and
M Vision will automatically create a HEX file durirtige build process.

Select the desired HEX format through the drop-doamirol to generate

formatted HEX files, which are required on somesklprogramming utilities.

Options for Target 'Simulator’ @I
Device | Target Output | Lising | User | C166 | EC++ | A166 | L166 Locate | L166 Misc | Debug | Utities |

Select Folder for Objects... | Name of Executable: |TwinCAN

{+ Create Executable: \TwinCAN

[v Debug Information v Browse Information
W Creste HEXFie HEX Fomat: [HEX 386 (H167) +] Star: | End: |
HEX-86
HEX-386 (H167) H Fil Byte: | Offset: |
(" Create Library: \TwinCAN.LIB [Create Batch File

0K | | Cancel | | Defaults

86

Chapter 6. Creating Embedded Programs

Working with Multiple Projects

Sometimes, application development requires workiitg more than one
project at the same time. With single projectat tequires closing the current
project and opening the new project. The pVisiantMProject feature allows
you to define a group of projects as a Multi-Projde and to work with those
projects in one Project Window.

By combining pVision projects, which logically deykeon each other, into one
Multi-Project , you increase the overview, consistency, and paesicy of your
embedded system application design. pVision sugpou in grouping various
stand-alone projects into one project overview.

While all features described for single-projectapply to Multi-Projects,
additional functionalities are required and areilatée in the pVision IDE.

Creating a Multiple Project

ChooseProject — New Multi-Project Workspace... | eroject

to create a new Multi-Project file. This opens a New pyision Project...
standard Windows dialog that prompts you for the New Multi-Project Workspace...
new project file name. Qpen Project...

To open an existing Multi-Project, choose

Project — Open Project You can differentiate a Multi-Project file froanstand-
alone project file by its file extension. A filewtaining a Multi-Project has the
extensiorfilenameuvmpyv rather tharfilenameuvproj — the naming convention
for stand-alone projects.

Managing Multiple Projects

Invoke theManage Multi-Project Workspace Componentdlialog through the
Project — Manage — Multi Project Workspace...Menu, or
use theManage Multi-Project Workspace... button of theBuild Toolbar.

B Manage Multi-Project Workspace... — dialog to add individual
projects or programs to your Multi-Project

Getting Started: Creating Applications with pVision

87

Add eXlSt'ng Stand-a|0ne Manage Multi-Project Workspace Components

prOJECté’Z tO yOUf Mu|tl- pVision Project Components |
Project. Use the controls

pVision Projects:

to change the file order, to C\KaiARMBoards \Keil\WICBS TM32\HTX_Blirkey \Blinky uvproj
MCBSTM32\Timer\Timer.uvproj

WKeil\MCBSTM32 \Measure\Measure uvproj
RM*BoardsSILICALPCZ2103"Elinky"Blinky uvpraj
"bruneul1DocumentsyVision wVision MultiProject.\Measure\Measure uvproj
RM \Boards Keil"MCE2300nRTX_Traffic\ TRAFFIC uvproj
T\ Examples' Traffic\ TRAFFIC uvproj
FarMemony™, 1MB Constants on C!asswc: 8051 ConstFar.uvproj

RM"Boards"|
RM"Boards'

add or remove project files
or to define the active
project.

Removing or deleting a
project from this list will
not physically delete the
project files, or the
respective project from the
storage location.

oK |

Cancel | Help |

Activating a Multi-Project

To switch to another project, right click |project

the project name you wish to activate, [g.=
and clickSet as Active Project B

+

In this exampleMeasureis the
currently active project, where8&&inky
is just about to become the active
project.

B

To uniquely identify the currently

w-{77 Tirmer
£

WorkSpace

Cl‘

Set as Active Project

{7 Measure

active

project, uVision highlights its name in black. Afitions executed within the

pVision IDE apply only to this project; therefosgu can treat this project the

same way you treat a stand-alone project.

! Only existing projects can be maintained and adoeal Multi-Project. You have to create the

stand-alone project prior to managing it in the MRroject environment.

2 Projects can have identical names as long as tésigle in different folders.

88

Chapter 6. Creating Embedded Programs

Batch-Building Multiple Projects

While you can compile the individual projects onedne, the Multi-Project
environment provides a more convenient way to ctavadi the projects in one
working step.

Use theBatch Build* command from th8uild Toolbar or from theProject —
Batch Build Menu to build, re-build, or clean the Project Tetsy

e

Batch Build — opens the window which lets you selke targets and

actions
Select the checkbox of the [atenguid =
projects and related targets sekectrroectTargess:
you wish to build, re-build, ey Build
or clean. \.J¥ McBsTM32 Rebuild
[=- Blinky
]]] |7 m Clean
Object files will be created (Do
based on the settings & ConstFar
outlined in the respective ey o 5 Coratants on Class: 8051 SeectAl
project. No ‘in common’ -2 LPC2129 Simieter Deselect Al
object file will be created ¥ McB2130
in addition. i p——
LW MCBSTM32
- TRAFFIC Help
-V Simulator

TheBuild button compiles and assembles those files that bhanged and links
the selected targets.

TheRebuild button compiles or assembles all files and limksdelected targets.

The Clean button removes the object files for the selectegdts.

! Batch Build can be used in a Multi-Project setuyyo

Getting Started: Creating Applications with pVision 89

Chapter 7. Debugging

The pVision Debugger can be configured as a Simdlat as a Target
Debugget. Go to theDebugtab of theOptions for Target dialog to switch
between the two debug modes and to configure eacle m

TheSimulator is a software-only product that simulates mostuiess of a
microcontroller without the need for target hardevaBy using the Simulator,
you can test and debug your embedded applicatimmebany target hardware or
evaluation board is available. pVision also sirtegaa wide variety of
peripherals including the serial port, external, ki@ers, and interrupts.
Peripheral simulation capabilities vary dependingte device you have
selected.

TheTarget Debuggeris a hybrid product that combines pVision with a
hardware debugger interfacing to your target systé@ire following debug
devices are supported:

= JTAG/OCDS Adapters that connect to on-chip debugging systems like the
ARM Embedded ICE

= Target Monitors that are integrated with user hardware and tleat ar
available on many evaluation boards

= Emulators that connect to the MCU pins of the target hardwar
= |n-System Debuggerghat are part of the user application program and
provide basic test functions

Third-party tool developers may use the Keil Adwoh&DI to interface pVision
to their own hardware debuggers.

No matter whether you choose to debug with the &itauor with a target
debugger, the pVision IDE implements a single ugerface that is easy to
learn and master.

! The Simulator offers more capabilities and feasutean those available when debugging on
target hardware. The Simulator runs entirely oa BC and is not limited by hardware
restrictions.

2 Programs run on your target hardware. You canuigiour application with restrictions.

Chapter 7. Debugging

Options for Measure - Target 'LPC2129 Simulator'

=

To debug programs

using the Simulator,

check

Use Simulatoron the
left side of theDebug
dialog.

To debug programs
running on target
hardware, check

Use Hardware
Debugger> on the right
side of theDebug
dialog.

Device | Target | Output | Listing | User | C/C++| Asm | Linker Debug | Uilties |

@ Use Smulator
[~ Limi Speed to Real-Time

Settings || { Use: |ULINK ARM Debugger v | Settings

[+ Load Application at Startup ¥ Run to main{) ¥ Load Application at Startup [Run to main)
Initialization File Initialization File:
[\Weasure i J Edt.. || [J
Restore Debug Session Settings Restore Debug Session Settings

[¥ Breakpoints ¥ Toolbox [¥ Breakpoints ¥ Toolbox

[V Watchpoints & PA I~ Watchpoints

[¥ WMemory Display [¥ WMemory Display
CPUDLL: Parameter: Driver DLL: Parameter:
SARMODLL [<LPC2100 [sARMDLL |
Dialog DLL: Parameter: Dialog DLL: Parameter:
[DARMP.DLL ~ [pLPC2103 [TARMPDLL [pLPC2103

oK I Cancel ‘ Defaults ‘ Help

In addition to selecting whether you debug with $i@ulator or Target
Debugger, th®ebugdialog provides a great variety of debugger camfigion

options.

Control Description

Opens the configuration dialog for the simulation driver or the

Settings

Load Application at Startup
Limit Speed to Real-Time

Run to main()

Initialization File

Breakpoints

Watchpoints & PA

Memory Display
Toolbox
CPU DLL

Driver DLL

Dialog DLL

Advanced GDI target driver

Loads the application program when you start the debugger

Limits simulation speed to real-time such that the simulation
does not run faster than the target hardware

Halts program execution at the main C function. When not set,
the program will stop at an implicit breakpoint ahead of the main

function

Specifies a command script file which is read and executed
when you start the debugger, before program execution is

started

Restores breakpoint settings from the prior debug session

Restores watchpoints and Performance Analyzer settings from

the prior debug session

Restores memory display settings from the prior debug session
Restores toolbox buttons from the prior debug session

Specifies the instruction set DLL for the simulator. Do not

modify this setting.

Specifies the instruction set DLL for the target debugger. Do not

modify this setting.

Specifies the peripheral dialog DLL for the simulator or target
debugger. Do not modify this setting.

Getting Started: Creating Applications with pVision 91

Simulation

MVision simulates up to 4 GB of memory from whiglesific areas can be
mapped for reading, writing, executing, or a corakion of these. In most cases,
pVision can deduce the correct memory map fronptbgram object module.
Any illegal memory access is automatically trappad reported.

A number of device-specific simulation capabilitiee possible with pVision.
When you select a microcontroller from the Deviadbase, [1Vision configures
the Simulator accordingly and selects the appragpitestruction set, timing, and
peripherals.

The pVision Simulator:

= Runs programs using the ARM7, ARM9, Thumb, Thun8{Q1,
C166/XE166/XC2000 instruction sets

= |s cycle-accurate and correctly simulates instanstiand on-chip peripheral
timing, where possible

= Simulates on-chip peripherals of many 8051, C1686G2XC2000, ARM7,
ARM9, and Cortex-Mx devices

= Can provide external stimulus using the debuggscript language

Starting a Debug Session

When you start a debug session, pVision loadsgpécation, executes the
startup code, and, if configured, stops at the r@afanction. When program
execution stops, uVision opengext Editor window, with the current source
code line highlighted, andRisassembly Window showing the disassembled
code.

@) Use theStart/Stop Debug Sessic command of th®ebug Toolbai to
start or stop a debugging session. Screen lagnetsestored when
entering and saved automatically when closing teeugger.

== The current instruction or high-level statemeng (@me executed on the
next instruction cycle) is marked with a yellowas. Each time you
step, the arrow moves to reflect the new currewt dir instruction.

Cristinel.Ababei
Highlight

Cristinel.Ababei
Highlight

Chapter 7. Debugging

This screenshot below shows some of the key windosagiable inDebug
Mode.

Source Editor ‘ ‘ Peripheral Window ‘

File Edit View Tools SCCS Wind
LS (@00 a0 (kR8s R FEE:
% E0 Biteu » DREEEE (D@

Help.
i, 08 whie
N R = NE =R

[System Viewer Windows

oot I u a0 47: if (BUT2 3 Show or hide the system viewer /* If BUT2 was pressed */ -
=l . E3560000 | CM ow:
1.743miox000002C4 1A000001 | BN
1.743m{0x000002C8 E3R00001 @HOV
5247 c E B Pulse Width Modulator (PW|
MOV Prescal
By 5247mi0x000002D4 ES9F10CE8 LDR Enable
5247mf0x000002D8 E5911000 LDR 00000000 for:Booooooc0 - Ee IR: [3:00000000
1.749mt0x000002DC E1D00721 BICS PC: [x00000000 TC:[3:00000000 [~ pwM Enable |
5247 0R000017 BEQ &
<=

(x000007d5
(x40000538
(x00000200
(x000002d4

[Cols [TmetSec) | Tmeco
1 1 R

99.690ms

™ Stop on MRO

Mask: | I™ Case Senstive
Name [Address [Type []
000000000 0x40000090: 407D4400 41000000 0000407F # [Binky Module
0:00000000 : 00000000 4460000 00314949 # [Forts7 Module
0x400000A8: 417F4100 4cj7F0000 00404040 = [2) LEDmatrx Module
0x400000B4: 417F4100 41BE0000 00224141 @ coL (40000020 amay[8] of uint
0x400000C0: 1111117E OSOS007E 00080808 @ disp_s... | Ox int
. 0x400000CC: 4040407F O0Y47F0040 00060909 @ INTEN &m amay(9] of uint
0x400000D8: 4141413E 61420022 00464951 @ intensty | 040000068 | uchar v
0x400000E4: 407F4200 SIBE0000 003E4549
0%40000050: 454cdint arhoonss o o EIComm-na|5!Louls|ﬂwnm335ymbols
Show or hide the system vieer windows Real-Time Agent: Target topped Simulation t1: 012405931 pec CAP
—_— ——
Call Stack ‘ ‘ Memory Window ‘ ‘ Symbols Window ‘

‘ Performance Analyzer ‘

Getting Started: Creating Applications with pVision 93

Debug Mode

Most editor features are also available while dgingy TheFind command can
be used to locate source text and source codeecarodified. Much of the
Debugger interface is identical to the Text Editterface.

However, inDebug Modethe following additional features, menus, and
windows are available:

DebugMenu andDebug Toolbar— for accessing debug commands

Peripherals Menu — is populated with peripheral dialogs usedhtmitor the
environment

Command Window — for executing debug commands and for showing
debugger messages

Disassembly Window- provides access to source code disassembly
Registers Window- to view and change values in registers directly
Call Stack Window — to examine the programs call tree

Memory, Serial, andWatch Windows — to monitor the application

Performance Analyzer Window— to fine tune the application for
performance

Code Coverage Window- to inspect the code for safety-critical systems
Logic Analyzer Window — to study signals and variables in a graphicahfo
Execution Profiler — to examine the execution time and number oscall
Instruction Trace Window — to follow execution of the program sequence
Symbol Window — to locate program objects comfortably

System Viewer— to supervise peripheral registers

Multiple Debug Restore Layouts— can be defined to switch between
preferred window arrangements

Besides the disabled build commands, you may not:

Modify the project structure

Change tool parameters

Cristinel.Ababei
Highlight

Chapter 7. Debugging

Using the Command Window

Generic compile and Command x

. . define button "Analogl 0..3V", "Analogl(3.0)" -
debug |nf0rmat|0n are define button "Stop Analogl"™, "=ignal kill Analogl™
displayed here while 1cD_pisplay()

H L& "ADC1 IN1
stepping throu_gh the code. ;.75
Additional notifications . cor s :

. . ¥%% error : signal () already activated

are provided if, for push 52 ()
example, memory areas 8
cannot be accessed. Enter >
debugger Commands on ASSIGN BreakDisable BreakFnable BreakKill Breaklist BreakSet |
theCommand Line of the
Command Window. Valid instructions will rise on its status baitlwhints to
parameters and parameter options. Insert exprestioview or modify the
content of registers, variables, and memory ar&asi can invoke debugger
script functions as well. We strongly advise yountake use of the detailed on-
line help information, by pressimy. Describing the many options available is

beyond the scope of this book.

Using the Disassembly Window

Configure this window by pisssemby E
. ; X 0014 p9x02000128 4668 MOV 0, =p -
|nvok|ng Its Context 0014 1x08000123 F3808809 MSR PSP, r0
. 0042 p9x0200012E 4804 LDR 0, [pe, #16] ; BOx0B000140
19x08000130 6800 LDR 0, [z0, $0x00]
Menu. You can use this Egﬁuﬂ 08000132 07CO L5L3 0,0, #31
window to view the time 0014908000132 BF12 ITE ¥
. . 0014 908000136 2002 MOVNE x0,$0x02
an instruction needs to 0014 p9x08000138 2003 MOVEQ ~ £0,$0x03
R B 00%819x0800013A F3208814 MSR CONTROL, £0
execute orto display the & oz e = e
number of calls. You can 108000142 0200 __LSRE . 0,20, #0
also set or remove)x08000142 FEDFCOIE LDR.W =12, [pc,$24] ; @0x02000160
b kpoint d 1x08000148 F3EFS305 MRS r3, TIPSR a
reakpoints an « '

bookmarks.

View a trace history of previously executed instiats through the
View — Trace — View Trace Record$/enu. To view a history trace, enable the
optionView — Trace — Enable Trace Recording

If the Disassembly Windowis the active window, single-stepping works at the
assembler instruction level rather than at the ranmgsource level.

Getting Started: Creating Applications with pVision

95

Executing Code

pVision provides several ways to run your prografvieu can

= |Instruct the program to run directly to the maifu@ction. Set this option in
theDebugtab of theOptions for Target dialog.

= Select debugger commands from BebugMenu or theDebug Toolbar

= Enter debugger commands in themmand Window

= Execute debugger commands from an initializatitn fi

Starting the Program

Select thdRun command from
theDebug Toolbar
or DebugMenu
or typeGO in theCommand Window to run the program

Stopping the Program

€ SelectStop from
theDebug Toolbar
or from theDebugMenu
or press th&sc key while in theCommand Window

Resetting the CPU

g4 SelectResetfrom
theDebug Toolbar
or from theDebug — Reset CPWMenu
or typeRESET in theCommand Window to reset the simulated CPU

Chapter 7. Debugging

Single-Stepping

1 To step through the program and into function aadis theSter.
command from th®ebug Toolbar or DebugMenu. Alternatively,
you entefTSTEP in theCommand Window, or press11.

{* To step through the program and over function calstheStep Ovel
command from th®ebug Toolbaror DebugMenu. EnterPSTEPIn
the Command Window, or press10.

.
k2

To step out of the current function use 8tep Oui command from the
Debug Toolbar or DebugMenu. EnterOSTEP in theCommand
Window, or pressctri+F11.

Examining and Modifying Memory

pVision provides various ways to observer and chgrggram and data
memory. Several windows display memory contentsseful formats.

Viewing Register Contents

TheRegistersWindow shows the content of Registers x
microcontroller registers. To change the contémt 0 o= =
H H 1 RO 00000004
register double-click on the value of the register. iy 020000008
H R2 000007100
You may also pres= to edit the selected value. R3 0020004
R4 08000520
RS 08000520
RE 00000000
R7 00000000
RE D 00000000
RS 00000000
R1D 00000000
R11 D 00000000
R12 00000000
R13 (5P} 20000208
R14 (LR} 02000391
R15{PC} 02000488
+ - xPSR 01000000
+ Banked
* System
= Intemal
Mode Thread
Privilege Privieged
Stack MSP
States 27936734
Sec 0.38801158
= Registers

Getting Started: Creating Applications with pVision 97

Memory Window

Monitor memory areas through four distiddemory Windows.

Open thaMemory Window from theDebug Toolbat or the
View — Memory — Memory[x] Menu

TheContext Menu allows you to select the — Memons g
output format. | o mrtores —— mE
0x00000001: 002 OOQ 032 253 000 000 008
. . . OXOOOOOOOSE Ooi Decimal
Enter an expression in teldressfield to ox00000514: 055 9 Unsgnes 3

monitor the desired area or object. To chang&:o:t: oo

o

o

g Signed 3
x00000028: 000 O

o

o

o

o

the content of an address, double-click on th&:eema . soa o A

Float

value and modify it. 000000020+ 015 0 | pouse

0x00000047: 008

0x0000004E: 000 O Modify Memory at 0x00000009
To update thdemory Window periodically, :22599%%: 222 9 setsreatpoint at 000000000
enableView — Periodic Window Update Sx00000082: 205 | Acd Mimenledeos to.. :
UseUpdate Windowsin theToolbox to [stack [Brocai [@watens | Ememoy1 [

refresh the windows manually.

i1 To stop theMemory Window from refreshing, uncheckiew — Periodic
Window Update, or use thd.ock button to get a snapshot of the window.
You may compare values of the same address spae&ibyg snapshots of
the same section in a secdviémory Window.

Memory Commands

The following memory commands can be entered irCdmamand Window.

Command Description

ASM Displays or sets the current assembly address and allows you to enter
assembly instructions. When instructions are entered, the resulting op-
code is stored in code memory. You may use the in-line assembler to
correct mistakes or to make temporary changes to the target program.

DISPLAY Displays a range of memory in the Memory Window (if it is open) or in the
Command Window. Memory areas are displayed in HEX and in ASCII.

ENTER Allows you to change the contents of memory starting at a specified
address
EVALUATE Calculates the specified expression and outputs the result in decimal,

octal, HEX, and ASCII format
UNASSEMBLE Disassembles code memory and displays it in the Disassembly Window

Chapter 7. Debugging

Breakpoints and Bookmarks

In uVision, you can set breakpoints and bookmarhkiew

= Creating or editing your program source code
= Debugging, using thBreakpoints dialog, invoked from th®ebugMenu

= Debugging, using commands you enter in@eenmand Window

Setting Breakpoints and Bookmarks

To set execution breakpoints in the Mixed Mode
source code or in tHeisassembly

Assembly Mode
Window, open theContext Menu and R — \
select thdnsert/Remove Breakpoint -
Command, Show Disassembly at Address...
Set Program Counter
You can double-click the gray sidebar afsy gunto cursor line Crl=Fi0
the Editor Window or Disassembly
Window to set a breakpoint, or use the Insert/Remove Breakpoint
breakpoint buttons of theile Toolbar. Q| Enable/Disable Breakpoint Ctrl+F9

Inline Assembly

Breakpoints and bookmarks visualize i
theEditor and theDisassembly

Window alike and differ in their Instruction Trace ’
coloring. Breakpoints will display in Execution Prafiling 3
red, where as bookmarks can be
recognized by their blue color.

Load Hex or Object file..,

1:‘“-" Insert/Remove Bookmark Ctri=F2

23 Copy Ctrl+C

Analog actions are required to define
bookmarks. In contrast to breakpoints, bookmarksnwt stop the program
executing.

UseBookmarks to set reminders and markers in your source c@usine the
critical spots easily and navigate quickly betwbenkmarks using the bookmark
navigation commands. You can also define a bookmad a breakpoint on the
same line of code concurrently.

Whereas bookmarks do not require additional explams, breakpoints are
discussed in detail in the following section.

Getting Started: Creating Applications with pVision

99

Breakpoints Window

Invoke theBreakpoints
Window from the
DebugMenu.

You have to stop the
program running, to get
access to this dialog.

Modify existing
breakpoints and add nev
breakpoints via this
dialog. Enable/disable
breakpoints using the

Breakpoints

Current Brezkpoints:

02: (A readwrite (x4000000C Ien—-l'_l slarl'll
03: (A write 0xE0034000 len=4), "'ADCR == l]xl]l]ZElMlH " count=4,
04: (E) 0xD0000AG4

Access
™ Read

Expression: |setinterval.sec: == 100 ™ Write

Court: |1 J;I

Command: |prirrl‘f_"-"3;u, Interval sec set to: 'n "

. setinterval sec);

Define |Ki|| Selec:led| Kl Al | Help |

checkbox in the
Current Breakpoints list.
definition.

Double-click on an existing breakpoint todify its

Define a breakpoint by entering Bxpression Depending on the expression
entered, one of the following breakpoint typesafireed:

= An Execution Breakpoint (E) is defined when the expression specifies a

code address. This breakpoint is triggered whersgiecified code address is
reached. The code address must refer to thebfitetof a microcontroller

instruction.

= An Access Breakpoint (A)is defined when the expression specifies a
memory access (read, write, or both) instructidhis breakpoint is triggered
when the specified memory access occurs. You ipegify the number of
bytes or objects (based on the expression) whigher the breakpoint.
Expressions must reduce to a memory address aad §perators (&, &&,
<.<=. >, >=, ==, I=) may be used to compare valoefore thé\ccess
Breakpoint triggers and halts program execution or execiie€ommand.

= A Conditional Breakpoint (C) is defined when the expression specifies a

true/false condition and cannot be reduced to dnead. This breakpoint is
triggered when the specified conditional expressgdnue. The conditional
expression is recalculated after each instructibimerefore, program
execution may slow down considerably.

100 Chapter 7. Debugging

When aCommand has been specified for a breakpoint, pVision etecthe
command and continues to execute your target pmagiithe command specified
can be a pVision debug function or signal functi@io. halt program execution
in a uVision function, set thebreak_ system variable. For more information,
refer toSystem Variableim the on-line help.

TheCount value specifies the number of times the breakpmiptession is true
before the breakpoint is triggered.

Breakpoint Commands

The following breakpoint commands can be enteradé€ommand Windows.

Command Description

BREAKSET Sets a breakpoint for the specified expression. Breakpoints are program
addresses or expressions that, when true, halt execution of your target
program or execute a specified command.

BREAKDISABLE Disables a previously defined breakpoint
BREAKENABLE Enables a previously defined breakpoint that is disabled
BREAKKILL Removes a previously defined breakpoint

BREAKLIST Lists all breakpoints

You may also set execution breakpoints while egliindebugging using buttons
on theFile Toolbar.

Watchpoints and Watch Window

By default,Watch Windows consist of four page tabs: thecalsto view
variables of the current function, tWdatch pages for personalized watchpoints,
and theCall Stack showing the program tree. Through Watch Window, you
can view and modify program variables. Nestedtionccalls are listed in this
window as well. The content is updated automdticahenever you step

through the code iDebug Modeand the optioiew — Periodic Window
Updateis set. In contrast to thevcals Window, which displays all local
function variables, th#&/atch Window displays user-specific program variables.

Getting Started: Creating Applications with pVision 101

Watchpoints
Define watchpoints to observe wateh1 x
variables, objects, and memory| yame Value
areas affected by your target \Measure'mdisplay 00000000
program. Watchpoints can be {PORTD & GeB000)>>15 00000001
defined in twowWatch pages Port0 BeTBFFFFFF

. S =l " Measure"setinterval struct irterval { ... }
TheLocals Window contains min 00
items of the currently executed sec 00
function. Items are added CLOET(EC &ﬂmu
aL{tomatlcaIIy to theocals
Window.

|r:,,-1jCaII Stack |;:§"Jana|s |g§wEtch1 |j:;?ﬂ-.f\.-'atchz |

There are several ways to add a
watchpoint:

= In anyWatch Window, use the fielédouble-click or F2 to add>
= Double-click an existing watchpoint to change thene

= In Debug Mode open theContext Menu of a variable and uskdd <item
name> to... — Watch Window. pVision automatically selects the variable
name beneath the mouse pointer. You can also ameeixpression and add
it to theWatch Window.

= |n theCommandWindow, use thewWVATCHSET command to create a new
watchpoint

= Finally, drag-and-drop any object from tBgmbols Windowor from source
code files into th&vatch Window

Modify local variables and watchpoint values by dieuclicking the value you

want to change, or click on the value and pressRemove a watchpoint by
selecting it and press tinel key.

Watchpoint Commands

The following watchpoint commands can be enteraddl@€Command Window.

Command Description

WATCHSET Defines a watchpoint expression to display in a Watch Window
WATCHKILL Deletes all defined watchpoint expressions in any Watch Window

102 Chapter 7. Debugging

Serial /O and UARTSs

pVision provides thre8erial Windows, named {JART #{1|2|3}», for each
simulated on-chip UART. Serial data output frora gimulated microcontroller
are shown in these windows. Characters you tyjoetive Serial Window are
considered input to the simulated microcontroller.

UART #1 X || Toolbox (==
4EE ARk k&% REMOTE MEASUREMENT RECORDER #*#*## s mmmadddy -~
.) . X) Update Windows
| Thi=s program is a simple Measurement Recorder. It is based on |
| the STR912FW44 and records the state of the Buttons 52,53 and | 1 Button Key2
| the wvoltage on the four analog inputs ADO trough AD3. | 2 Button Key3
+ command -+ syntax —-—-—-—-— + function + T e oo |
| Read | B [n] | read <n» recorded measurements | 3 __JEEEEiEﬁL__
| Display | D | display current measurement values | 4 Analog10..3V
| Time | T hh:mm:s= | set time | 5 Stop Analog1
| Interval | I mm:=s=s.ttt | set interval time
| Clear | C | clear measurement records
| Quit 1 Q | gquit measurement recording | =
| Startc | 5 | start measurement recording

Command: r 1
Command: d

Display current Measurements: (ESC to abort)
Time: 0:00:22.858 GPICA:0001 GPICC:3000 Al1:2.70V A2:0.00V A3:0.00V

The serial output can be assigned to a PC COMysany theASSIGN
Debugger command.

Several modes for viewing the data are provided:

= Basic VT100 Terminal Mode

= Mixed Mode

= ASCIl Mode

= HEX Mode

You can copy the content of the window to the abi@tal or save it to a file.

Where applicable, you can use ffmolbox" features to interact with the
program.

1 You can add, remove, and change Toolbox buttoasyatime. Use the Command Line in the
Command Window for this purpose.

Cristinel.Ababei
Highlight

Getting Started: Creating Applications with pVision 103

Execution Profiler

TheExecution Profiler in pVision records the amount of time and the neimb
of times each assembler instruction and high-lstatbment in your program
executes.

The amount of time and the number of calls, whiehdasplayed in the
Disassemblywindow and in theEditor Window alike, are cumulative values.

Measure.c [Getline.c r Mcommand.c [Serial.c r Retarget.c] * X

163 461 mdisplay = 07 /* mdisplay = 0 for ready sig. */ z‘

166 461 = TIM3->5R &= ~(1<<0}; /* clear UIF flag =

163 3467 |}

173 L’ slculste first Read Index
174 S P iy

175 1&*istatic int read index (char *buffer) {
o176 | int index = o:

177 ‘ int args; Jﬂ
»

Enable théexecution Profiler through theDebug — Execution ProfilingMenu.

Invoke theContext Menu of theDisassembly Windowto switch between the
time and calls.

When you locate program hotspots (with Bexformance Analyze), the
Execution Profiler makes it easy to find real performance bottlenecks

104 Chapter 7. Debugging

Code Coverage

TheCode Coverage Code Coverage x
Window marks the Code Update || Reset || Module: |:AI\ Modules> j
that has been eXeCUted, an oer\lll:es,-"Fundciions | Execution percentage I:
. . = Mcomman
gI’OUpS the InfOI'matIOI”I measure_display 0% of 40 instructions
set_time 0% of 51instructions
based on mOdU|eS and set_interval 0% of 80instructions
i +- Getli
functions. il
save_cument_measur... 0% of 36 instructions
H adc_Init 100% of 60 instructions
Use thIS featu re to teSt TIM3_IRQHandler 44% of 125 instructions, 10 condjumpis) not fully executed
safety-critical applications read ndex. 0 of 48 stuchons
. . clear_records % of 17 instructions
where certification and main 3% of 262 instuctions
validation is required. L T
+-LCD
+ Serial 2
+-- Retarget -

You can detect instructions
that have been skipped, or have been executed jalitially, or not at all.

Code Coveragedata can be saved to a file. You can even incudemplete
CPU instruction listing in this report. To makesu all these features, examine
the COVERAGE command in th€ommand Window.

In addition to theCode Coverage Window pVision provides color-coded hints
on the side bar of theisassemblyandEditor Window . The colors have the
following meaning:

= Lines not executed — are marked withray block

= Fully executed lines — are marked witlgraen block

« Skipped braches — are marked withoaainge block

« Executed branches — are marked withiue block

= Lines with no code — are marked withight grey checkedblock

Getting Started: Creating Applications with pVision

105

Performance Analyzer

The pVisionPerformance Feromance ansiyzes

. Module/Function Calls Time(Sec)
Analyzer displays the T e L]
execution time recorded e cert e o
for functions in your Ty R e
application program. it P el
main o 112113 ms
8 erial 42098 ms |26
Results show up as bar | ;ﬂkde; A Bl o
graphs along with the il T
number of calls, the time BoLo et R
spent in the function, and - Getine b %
+--5TM32 Init Ous 0%

the percentage of the total
time spent in the function.

Time(%) -

[—

Use this information to determine where your pragspends most of its time

and what parts need further investigation.

Objects are sorted automatically dependent onitiegpent.

Invoke theContext Menu of thePerformance Analyzerto switch to another
presentation of your investigation. You can dtive output to display statistics
of modules or functions. Eventually, you might di¢e clean up the collected

data to get a fresh summary.

Double-click an object exposed in the Module/Fuctiolumn to jump to the

source code line.

106 Chapter 7. Debugging

Logic Analyzer

TheLogic Analyzer T T T e T
. Setup ...| Export 4021874s [4D24295s [0.100000ms [0.005000 ms MMJMMM
displays values of -

variables or virtual

ADCTINT

ADCIINL

|]

registers and shows the -
changes on a time axis. = m
2

°bLD

[EE—=[

Add values through the

Setup ...button or drag g i >< ><
and drop objects from = 7

other windows intothe ¢]

Logic Analyzer. e T pEe
Presel, or use the B - R

Setup... button,
or invoke theContext Menu
to remove items from the list.

TheLogic Analyzer window contains several buttons and displays sévietds
to analyze data in detail. Move the mouse poittiéhe desired location and
wait one second to get additional information, \ehpops-up automatically.

Control Description

Setup... Define your variables and their settings through the Logic Analyzer Setup dialog
Export... Saves the currently recorded signals to a tab-delimited file

Min Time Displays the start time of the signal recording buffer

Max Time Displays the end time of the signal recording buffer

Range Displays the time range of the current display
Grid Displays the time range of a grid line
Zoom Changes the time range displayed. Zoom All shows the content of the buffer

recording the signals. Zoom Sel zooms the display to the current selection (hold
Shift and drag the mouse to mark a section).

Show Opens the Editor or Disassembly Window at the code that caused the signal
transition. It will also stop the program from executing.

Setup Configures the range of a signal. The Auto button configures the minimum and

Min/Max maximum values based on the values from the current recording. The Undo button

restores the settings prior to using Auto .

Getting Started: Creating Applications with pVision

107

System Viewer

Peripheral Registers are memory mapped regis

that a processor can write to and read from to

Vectored Interrupt Controller (VIC)

control a peripheral device. pVision provides an- o cmese

advanced method for viewing and debugging
these peripheral registers.

Invoke theSystem Viewerfrom the

Debug Toolbaror from the

View — System Viewer WindowsVienu. You

can define up to 100 different peripheral objeots
monitor their behavior.

The System Vieweroffers the following features:

= Parse a microcontroller device C header file
into a binary format

= Additional properties can be added to the
header file to provide extra information such

General Purpose Input/Output [GPIO)

Memory Accelerator Madule (MAM]

Phase Locked Loop (PLL)

WPEB Divider

Power Control

External Interrupts

Timer 0

Timer 1

Pulse Width Modulator (PWM)

Universal Asynchronous Receiver Transmitter 0 (UARTO)
t Universal Asynchronous Receiver Transmitter 1 (UARTL)
L2C Interface

SPI0 (Serial Peripheral Interface 0)

SPI (Serial Peripheral Interface 1)

Real Time Clock

A/D Converter

CAN Acceptance Filter RAM

CAN Acceptance Filter

CAN Central Registers

CAN Controller 1 (CAN1)

CAN Controller 2 (CAN2)

CAN Controller 3 (CAN3)

CAN Controller 4 (CAN4)

Watchdog

as Peripheral Register descriptions and the
data breakdown of an Peripheral Register

= The value of a Peripheral Register is Juision s crid checkst

updated either from the Simulator or 124
from the target hardware. This can | """
happen when the target is stopped, or
periodically by enabling the

View — Periodic Window Update
Menu.

Low-

High

Enab

7-bit

= At any time, the content of a
Peripheral Register can be changed
simply by overwriting its value in the
System Viewer

Value

=l wVision SFR-Grid CheckSFR
=] |GRSFRO @0x40000020 := 0x000000B0

nibble mode undefined value 0x0
-nibble mode Mode #11

le nibble bit 0

field 0

ed halfword 00

GRSFRO @0x40000030 := 0x000000B0
GRSFRO - a test fr

PropertyGrid attribute checker

[® Pin Connect Block | 8 uvision SFR-Grid ... | [12C Interface

108

Chapter 7. Debugging

Symbols Window

TheSymbols Windowdisplays information from the Debugger in an oeder
and grouped manner and can be called vid#teug Toolbaror from the
View—Symbol Window Menu. This functionality includes objects:

= Of simulated resources as the virtual registemsulator VTREG, with

access to 1/0 pins, UART communication, or CANftcaf

= From Peripheral RegistefBeripheral SFR, to access peripherals

= Of the embedded application, recognizable by timenaf the program, with
access to functions, modules, variables, structaras other source code

elements

Use this functionality to find items quickly. Dramd drop the objects to any

other window of pVision.

Mask works similar to a
find function. Enter your
search criteria and browse
the results. For nested
objects, the entire tree is
displayed if a leaf item is
found. The following
search criteria may be
used:

matches a digit (0 - 9)

$ matches any single
character

* matches zero or more
characters.

Configure the window by
invoking theContext
Menu.

Symbols x
Mask: |m* [Case Senstive
MName Address | Type
Simulater VTREG
+- P Peripheral SFR
- B Measure Application
+-(77 Runtime Library
+ Getline Madule
= Mcommand Madule
= @ measure_display cDO000264 Function
=l i@ display [F13+5-28) struct mrec
= i@ time struct clock
@ min uchar
i@ mesec ushort
—- @ =et_interval (00000304 Function
+- @@ itime [R13+8-16] struct interval
@ min [R13=-20] it
@ msec [R13+5-28] int
+- @ set_time (00000308 Function
= Measure Module
@ mdisplay (40000008 int
i@ measurement_interval | 40000004 int
@ menu (k0002540 amay[860] of uchar
& main (k0000320 Function
Retarget Module
[o] Serial Module
|-5-j(a|l Stack |g'§7~:_'lL-:|caIs |j§§'.-‘."atch1 | i Memory 1 |_IESymbols

Getting Started: Creating Applications with pVision

109

Browse Window

TheBrowse Window enables you to search for objects in the codes fEature
can be used ibebugandBuild Mode. Nevertheless, the browse information is
only available after compilation. You have to thet optionOptions for Target

— Output — Browser Information to signal to the compiler to include browse
information into the object file. Launch this winal via theFile Toolbar or

View — Source Browser Window

Enable or disable theéilter on buttons, enter your search criteria in $yanbol
field and narrow the result through thide Outline drop-down. You can sort the
results by clicking the header controls. Clickitem to browse the occurrences
and locate its usages. Double-click a line inDiedinition and Referencepage
to jump to the code line.

Browse x
Symbol: | | Memary Spaces: [eram
Fitter on: Macros Data [data
IV const
Functions Sfr{Bits) [l som
Parameters Types V¥ code
File Ovtline: |:aII files j
& MName | Class Type Space | Uses + | Definitions and References - time
vsscanf function func code 1 E-E] C\KeilARM\Examples\Measurelmeasure.h
vsprintf function func code 1 : -id? [D] Line 19, member of tag 'mrec’
vsnprintf f“”‘t!U” func code 1 |_f_|--- C:\Keil\ ARMExamples'Measure\Measure.c
\rsc.antff :unc:!on :unc coje 1 _____ id.§ [R Line 106 [rfw]
vprin unction unc code 1 0 s .
vfscanf function func code 1 ‘d: [R] LfnelO? ["‘:]
viprintf function func code I ‘d: [R] L!nelﬂg [rfw]
val data uint data 6 | i idy [R]Line 110 [w]
ungete function func code 1 e il [R]Line112 [rfw]
toupper function func code 2] id.§ [R]Line113 [w]
tolower function func code 1 Pl i '.d,§ [R]Line 115 [r/w]
tmpnam function func code 1 Pl i -“.4 [R]Line 116 [w]
tmpfile function func code 1 i@ [R]Line 173 [w]
time member struct data 19 s : .
P ——————e A I idy [R]Line222[r]
el function func code 2 s A
stdout macro none 5 |'_—‘|--- IC?KelI\ABM\Examples\Measure\Mcommand.c
stdin macro none [iy [R]Line30[r]
stderr macro none 1] 'l# [R]Line31[r]
startflag data int data 6 | i id.§ [R]Line32[r]
stack_limit member uint data 1 Pl i ;d‘ [R]Line33[r]
stack_base member uint data 1 | i -“.4 [R]Line 59 [w]
ssc.antff :un:?on :unc coje i _____ id.§ [R]Line 60 [w]
sprin unction unc code 1 i i .
snprintf function func code 1 - ld: [R] L!neﬁl (w]
- ™ sl iy [R]Line 62 [w]

Invoke theContext Menu while pointing at an item. Dependent on the object
class you will get different options. For functsiyou can invoke the callers
graph and the call graph.

110 Chapter 7. Debugging

Toolbox
TheToolbox contains user-configurable buttons that Toolbox 5
execute debugger commands or user-defined functions [Upde Windows |
Click on aToolbox button to execute the associated 1 Btton Key2
command.Toolbox buttons may be clicked at any time,) Btton Ky
even while the program executes. s WySesiio |
i . . Analogl 0.3V
Define aToolbox button using th€ommand Window ¢ St;poinalog]
and theDEFINE BUTTON? command. Use the same ;

command to redefine the button. The general sylatathis command is:
DEFINE BUTTON " button_I abel *," comand"
Where:

button_| abel is the name that displays in the Toolbox

command is the command that executes when the buttoresspd

The following examples show the commands useddaterthe buttons in the
Toolbox shown above:

DEFINE BUTTON " Deci mal Qutput"," radi x=0x0A"

DEFINE BUTTON"M/ Status Info"," MStatus ()" /* call debug function */
DEFINE BUTTON " Anal ogl 0..3V'," anal og0 ()" /* call signal function */
DEFINE BUTTON " Show R15"," printf (\"RL5=%94XH\\n\")"

Remove aroolbox button with thexiLL BUTTON ®* command. The button number
required in this statement is shown on the lef sifithe button. For example:

KILL BUTTON 5 [* resembles to: “Remove the ‘Stop Analogl’ button” */

! The printf() command defined in the last exampioduces nested strings. The double quote (*)
and backslash (\) characters of the format stringshbe escaped with \ to avoid syntax errors.

2 Use this command to redefine the meaning of abuwtt change the description.

3 TheUpdate Windows button in the Toolbox is created automatically @adnot be removed.
When pressed, this button updates the contentssefa Debugger windows.

Getting Started: Creating Applications with pVision 111

Instruction Trace Window

To follow the instruction sequence history, invake Instruction Trace
Window from theDebug Toolbar or via theView — TraceMenu. Use this
window in conjunction with th®isassembly Window Trace recording has to
be enabled to gather the information needed. Tsodase the

View — Trace — Enable Trace Recording/ienu.

Double-click any line in thénstruction Trace Window to jump to or open the
Disassembly Window Use the predefineflilter options to view the instruction
tree in the preferred mode.

Instruction Trace x
. . o Fiter: [Execution-Al - i
This functionality is = oor
> B e
available for the oo | Earcoa TAGD FC.
. . 53| 100001268 |E12FFFIC BX R12
Simulator and while 54 | BDOODIZEC | 4C05 DR R4 [FC#BO014]
. 55 | x0DOD126E | 4D06 DR R5[PC#5:0018]
debugglng the tal’get 5% | L00ODIZ70 | E004 B mD000IZTC
A s 57 | BODOMIZTC | 42AC CMP R4RS
hardware. The window’s 58 | GOOODIZZE | D3FE BCC x000D1272
. 59 | (x00001272 | 0020 lSL ROR4HD
IOOk and feel m|ght Vary’ B0 | DxDDOD1Z74 | CBOF LDMIA ROL{RO-R3}
. . 61| <00001276 | FODD BL _ARM_common_cal_via_3{B<00001B7C) - Part #1
since It depends on the 62 | 0x0D001278 | FCB1 BL _ ARM_common_call_via_r3{(x00001B7C) - Part #2
dr|Ver Sett|ngs Of the [Disassembly | & Instruction Trace

debugging environment.

Defining Debug Restore Views

Multiple window layouts are possible iebug Modeto switch quickly between
preferred screen settings and window arrangemeénmteke the layouts from the
Window — Debug Restore Views..dialog, or from thédebug Toolbar.

Restore defaults throughlindow — Reset View to Defaults

Define and save your Debug Restore Views =)
preferred IOOk and feel Global Views: . Project Views: 3=
through théVindow Defaut [Co> | Defaut

. . MemoryAmangement
Restore Views...dialog. [|
Global Views propagate to |
all your projects, where
Project Viewsare bound | preefeeVew

. . MemoryArangement [Project] _Close
to that particular project. | ot | [o= |

112 Chapter 8. Using Target Hardware

Chapter 8. Using Target Hardware

This section describes the debugging possibildfgsVision in conjunction with
your target hardware. The Keil ULINK USB-JTAG Adapfamily is discussed
in detail, and third-party adapters are mentioned.

The following device families are supported by kel ULINK adapters:

= 8051 ULINK for Infineon XC8xx, ST pPSD3xxx, and NXP LPC95x
= 166 ULINK for Infineon C166, XE166, and XC2000

« ARM ULINK , ULINK Pro for ARM7, ARM9, and Cortex-Mx devices

The pVision Debugger interfaces to the target hardwhrough the following
drivers, which are provided by Keil:

= 8051 Monitor, FlashMon, MonADI , ISD51, EPM90GQ, Infineon DAS
= 251 Monitor

« 166 Monitor for C166

« 166 Monitor, Infineon DAS for XE166, XC2000

» ARM SEGGERI-Link/J -Trace for ARM7, ARM9, and Cortex-Mx

In addition, many third-party vendors offer pVisidnvers for their hardware,
for example:

= 8051 CyprestISB development kit for EZ-USB devices
= 8051 Quickcord-PGA based Pro805 device

« 8051 SSTSoftICE for FlashFlex51 devices

= 8051 Silab$ebug Adapter for C8051Fxxx devices

= ARM Signum System3TAGjet for ARM7, ARM9, and Cortex-Mx
devices

Getting Started: Creating Applications with pVision

113

Configuring the

#X ChooseTarget Options — from theBuild Toolbar and select thBebug

tab

Alternatively, you can use
theProject — Options for
Target Menu, to open this
dialog.

Check thdJseradio button

and select the appropriate

debug interface.

Control Description

Settings

Load Application at Startup
Limit Speed to Real-Time

Run to main()

Initialization File

Breakpoints

Watchpoints & PA

Memory Display
Toolbox
CPU DLL

Driver DLL

Dialog DLL

Debugger

Options for Timer - Target "MCB5TM32'

" Use Simulator

Device | Target | Output | Listing | User | C/C++| Asm | Linker Debug | Utittes |
I Limit Speed to Real Time LLINK

Settings || & Use
ULINK Cortex Debuager

ROl Intefface Dirver
v

¥ Load | o Blastor Cortow Debugger
Initializatic | uminany Eval Board

¥ Load Application at Startup
Initialization File

Restore Debug Session Sttings
¥ Toolbox

[¥ Run to main{) b main()

[Breakpoints
¥ Watchpoints & PA
¥ Memary Display

¥ Breakpoints
¥ Watchpoints
¥ Memory Display

¥ Toolbax

CPUDLL: Parameter: Driver DLL: Parameter:

==

ULINK ARM Dsbugger +| Settings
ARM D

[sARMCM3.DLL [[SARMCM3.DLL |

Dislog DLL: Parameter: Dislog DLL: Parameter

[pARMSTM.DLL [»STM32F103RB [TARMSTM DLL [pSTM32F103RE

ok | [Cancel | [Defats |

Opens the configuration dialog for the simulation driver or the
Advanced GDI target driver

Loads the application program when you start the debugger

Limit simulation speed to real-time such that the simulation does

not run faster than the target hardware
Program execution halts at the main C function. When not set,

the program will stop at an implicit breakpoint ahead of the main

function

Specifies a command script file which is read and executed
when you start the debugger, before program execution is
started

Restores breakpoint settings from the prior debug session

Restores watchpoints and Performance Analyzer settings from
the prior debug session

Restores memory display settings from the prior debug session
Restores toolbox buttons from the prior debug session

Specifies the instruction set DLL for the simulator. Do not
madify this setting.

Specifies the instruction set DLL for the target debugger. Do not

madify this setting.

Specifies the peripheral dialog DLL for the simulator or target
debugger. Do not modify this setting.

Chapter 8. Using Target Hardware

Programming Flash Devices

The pVision IDE can be configured to program thesklmemory of your target
system. You can use third-party Flash programroogs that you may attach to
and invoke from the development environment. Flasigramming is
configured from theJtilities tab of theOptions for Target dialog. You have to
select the target driver, or a third-party comménd-tool, which is usually
provided by the chip vendor.

Options for Measure - Target 'LPC2129 Simulator’ ==
Device | Target | Output | Listing | User | C/C++ | Asm | Linker | Debug lilties |
Configure Flash Menu Command

{+ |Use Target Driverfor Flash Programming

ULINK ARM Debugger - Settings ™ Update Target before Debugging
it Fie: | |
" |se Extemal Tool for Flash Programming
Command:|—:':;]:"3]
Arguments:| #H" "% S0 COM1: 9600 1
=3
QK | Cancel | Defaults | Help

SelectUse Target Driver for Flash Programmingto use a target adapter, like
the Keil ULINK USB-JTAG Adapter, SEGGER J-Link, ER®IO Emulator, or
Silabs adapter to program your system’s Flash mgmor

SelectUse External Tool for Flash Programmingto use a third-party
command-line utility, like FlashMagic, to programuy system’s Flash memory.

i3 Once configured, thBownload to Flast button of theBuild Toolbar
or Flash Menu downloads the program to your target systéttash
memory

You can configure the puVision Debugger to autonadiijadownload to flash
memory. To do so, ched¢kpdate Target before Debugging

Getting Started: Creating Applications with pVision

115

Configuring External Tools

To configure pVision for Flastprogramming with a command-line utility, select

Use External Tool for Flash Programmingand specify th€ommand and the

Arguments to be used.

A% ChooseTarget Options — from theBuild Toolbar and select the

Utilities tab

Alternatively, you can use tHeroject — Options for TargetMenu to open the

Utilities dialog.

Device | Target | Output | Listing | User | C/Cs+ | Asm | Linker | Debug Utilties .
Configure Flash Menu Command

(" Use Target Driver for Flash Programming
||_|_ NK ARM Debugger J r
Init. File: | J

{* Jse Extemal Tool for Flash Programming;

Command:|LPC210x_ISP.EXE
Arguments: ["#H" "X SD COM1: 3600 1

[+ Run Independent

Ok | Cancel | Defaults | Help

Options for Measure - Target 'LPC2129 Simulator' ==

Project-specific items, like the path for the geed HEX file, output file name,

device name, or clock frequency can be used idtgaments field.

Please use the on-litelp for additional information.

! The pVision Device Database provides the correnfiguration for memory Flash of many

microcontroller devices.

116 Chapter 8. Using Target Hardware

Using ULINK Adapters

The Keil ULINK USB-JTAG family of adapters, furthegferred to as ULINK,
connects your PC’s USB port to your target systdime connection between the
microcontroller and the ULINK unit can be estabdidhvia the JTAGport pins

of the embedded system. The ULINK adapters engbolgso:

= Download target programs

= Examine memory and
registers

= Single-step through
programs

= |nsert multiple breakpoints

= Run programs in real-time — e =

= KEIL ULINK
= Program Memory Flash ;Dz“‘”'”"/wiﬂ

Before using the Debugger on target hardware, yawe o configure the
pVision IDE to use the ULINK adapter, or any otk&ternal tool suited for
Flash programming.

The pVision Debugger can display memory contendsvamiables in several
familiar formats. Memory and variables are updatedodically, providing an
instant view of the current program status, eveinduyrogram execution. It is
possible to set breakpoints that trigger on acogssispecific variable.

The Keil ULINK adapter family supports Flash devpregramming with
configurable programming algorithms. You can cleolwem preconfigured
programming algorithms, or customize the algoritlamsording to your needs.
External Flash memory programming is supportedrfany target systems as
well.

! The ULINK adapters support a wide variety of desiand protocols, and support your target
hardware port pin characteristics.

Getting Started: Creating Applications with pVision 117

ULINK Feature Comparison

Feature ULINK2 ULINKPro
Run control debug (ARM & Cortex-Mx) Yes Yes

Run control debug (8051 & C166) Yes -

Data Trace(Coretex-M3) Yes Yes
Instruction Trace(Cortex-M3) - Yes

JTAG Clock Speed 10MHz 50MHz

Flash Download 28 KBytes/s 600 KBytes/s

Configuring pVision for ULINK Adapters

When using ULINK adapters, you must change a fdtings, so that the
pVision IDE knows how to use the ULINK adapters debugging. In detalil,
you must configure:

= Debug Settings

= Trace Settings (for Cortex-Mx devices only)

« Flash Download

Connect the ULINK adapter to your PC. Only théxe, WLINK configuration is
possible in pVision.

4% Click Target Options from theBuild Toolbar and select thBebuc tab,

or open the dialog from theroject — Options for Target — Debug
Menu

Click the Settingsbutton to open th&arget Driver Setup dialog.

118 Chapter 8. Using Target Hardware

Configuring Debug Settings

TheTarget Driver Setup (Ceisiterst o s =
dialog depends on the Debug | Trace | Fiash Downioad |
. . ULINK USB - JTAG/SW Adapter JTAG Device Chain
target deVICe SeIeCted In Serial No mj IDCODE Device Name |_IRlen
your project. VUK Voo TENE || e |
Device Family: [Corex M DI J
. Firnweare Version: V137 * Butomstic Detection ——
Please use the on-litelp | | oo refie =l | - oo
for additional information. Max Cocc [Tz = l—
Decbnungnem & Resst Options Cache Options Dowrload Options
Connect: [Nomnal _v| Reset:[Autodetect | | | W Cache Code I Verfy Code Download
[# Reset after Connsct F¥ Cache Memory | | I~ Download to Flash

Configuring Trace Settings

TheTrace dialog tab Cortex M Torget Driver Setup =
1 Debi Trace | Flash Download
controls the real-time trace| oo ™ |Fe Dowross|
operations. Core Clock: | 10.000000 MHz ¥ Trace Eriskls
Trace Port Timestamps Trace Events
Serial Wire Output - UART/NRZ ¥ Enable Prescaler: |1 = [CPI: Cycles per Instruction
Please use the on-lielp W0 Clock Prescaer. [© — [EXC: ol avatend
o) . - cep Cycls
for additional information. , ¥ dsices Prscae 1026756 =] | | 5 Load St U yckes
SWO Clocke:| 1250000 MHz [Periodic Period: | <Disabled> I FOLD: Folded Instructions
Ermor: <SW Port not selected> I on Data R/W Sample [v¥ EXCTRC: Exception Tracing
TheTrace features are ITM St Pocs
. 3 Port 2423 Port 16 15 Port 8 7 Port 0
ava”able for CorteX-MX Enable: |FFFFFFFF | e v g v e el v v e v v o v el v v e o e e v el v e e v e e v e

Privilege: | 00000007 Port 31.24 [Port 23.16 [v Port 15.8 [¥ Pot 7.0 [¥

devices only.

Cancel Help

Getting Started: Creating Applications with pVision 119

Configuring Flash Download
The Keil ULINK drivers support a wide variety ofdsh-based microcontrollers.

#% Click Target Options from theBuild Toolbar and select theltilities
tab, or open the dialog from tiegoject — Options for TargetMenu

To configure pVision for a specific driver, selétte Target Driver for Flash
Programming and choose the appropriate driver from the droprdoontrol.

Use theSettingsbutton to open the driver-specifitash Download Setup
dialog.

Here, you can configure |fshbowniesdseu s
how Flash Download P B il Cr 7 Frogram retfer B

works and specify the B o Pimwan || riomom sehon
programming algorithms Programming Agorihm

that are required by your | | ESSmem e

target system.

Please use the on-lielp
for additional information. Star: [G00000000 Size: 00020000

Add Remove OK | Cancel ‘ Help

120

Chapter 8. Using Target Hardware

Programming Algorithms

The ULINK driver allows
you to specify the
programming algorithm
used to program Flash
memory.

Use theAdd button of the
Flash Download Setup
dialog to open this dialog
Add Flash Programming
Algorithm .

From here you can select
one or more programming
algorithms, one for each
different Flash device.
Highlight your preferred

=]

Add Flash Programming Algerithm
Description | Device Type | Device Size |
ADUCTOZX Fash (v1.1) On-chip Flash B2k
ADUCTOIX Flash 32KB (v1.4) On-chip Flash 30k
ADUCT03X Fash 64KE {v1.1) On-chip Flash B2k
ADuUCT70% Fash S6KE (v1.4) COn-chip Flash Sdlc
ADUCT0EX Flash 32KE {v1.0) On-chip Flash 30k
ADUCT12¢ Flash (v1.2) On-chip Flash 126k
ADUCTZZS Fash (v1.2) On-chip Flash 126k
AMZ9F1600B Flash Ext. Flash 16-bit 2M
AMZ9F1600T Flash Ext. Flash 16-bit 2M
AMZIF32008B Flash Ext. Fash 16-bit 4M
AMZSF3200B Dual Fash Ext. Fash 32-bit &M
AMZ9F3200T Fash Ext. Flash 16-bit 4M
AMZ9F3200T Dual Fash Ext. Flash 32-bit &M
AMZ25<033 Flash Exd. Flash 8-bit 4M
AMZ5<128 Flash Ext. Fash 16-bit 16M
AMZ29<800BE Fash Ext. Flash 16-bit ™
| | | Cancel

»

m

programming algorithm tédd it for your target hardware.

If the Flash device you use is not listed, you meafine new algorithms. Do this
for a new Flash device, which is currently not dilesupported by Keil. You
may use the algorithms found in amyAsH\ folder as a template for new

algorithms.

The programming algorithms included in your kit atered in these folders:

= ARM Toolset: \KEILMARM\FLASH\

= C16x Toolset:\KEIL\C166\FLASH\

Getting Started: Creating Applications with pVision 121

Using an Init File

Some applications or target systems require theutiom of specific debug
commands or functions ahead of Flash programmiitigs feature is typically
used to define BUS configuration for your deviceéamprogram Flash with
auxiliary files, containing code or data, which aot included in your target
program. The debug commands and functions aredstoran initialization file
defined by thdnit File text box. This file is executed before the Fldelwnload
is performed.

BUS Configuration

Typically, the BUS system has to be configured teéodevice with external
Flash memory can be programmed. If you use thdNHLWSB-JTAG adapter,
you may create an initialization file that usesdefined debug functions, like
_WBYTE and_WDWORD, to write to memory and configure the BUS. For
example:

_WDWORD(0xFFE00000, 0x20003CE3); // BCFGO: Flash Bus Configuration
_WDWORD(0xXE002C014, OXOE6001E4); // PINSEL2: CSO, OE, WE, BLS0..3

Auxiliary Memory Content

In addition to BUS configuration, the initializatidile may contain instructions
to load auxiliary programs or data into memory.r €&xample:

LOAD MyFile.HEX

By default, the executable specifiedoject — Options for Target — Outputis
downloaded to Flash.

122 Chapter 9. Example Programs

Chapter 9. Example Programs

Each Keil toolset includes example programs, whiehready to run and which
help you to get started. Browse the examplesaimlaow the development tools
work and get familiar with the look and feel, adlvas with the behavior of
pVision. You may copy the code of the examples/éar own purpose.

Example progranmisare stored in thexamPLES\ folder, where each program
resides in a separate subfolder along with itsgptdjles. Thus, you can re-build
the examples and evaluate the features of pVigiorkly.

While there are numerous example programs for gaxamine, this manual
describes and demonstrates only four:

= Hello: Your First Embedded Program
= Measure: A Remote Measurement System
= Traffic: A Traffic Light and Pedestrian Cross W&ystem

= Blinky: An example of how to use target hardware

As described in the previous chapters, many actioffisnctions of pVision can
be called from a toolbar, a menu, or by entericgramand in th&€ommand
Window. Some actions may be triggered through key comlminati

We advise you to try out the various functions ¥fgion while inDebug Mode
Please test the features described in precedimmearsa In particular, get

familiar with the navigation, invoke tHéontext Menu of various objects, drag
and drop windows to other screen areas or othesigdlyscreens, and create and
save personalized layouts. Invoke Bexformance Analyzer, Logic Analyzer,
Code Coverage Symbols Window and drag and drop items from one window
to another window. Single-step through the codéfamiliar with the
Disassembly Window and inspect how it works in conjunction with the
Register Window, Output Window , andSerial Window.

! Example programs are license free.

Getting Started: Creating Applications with pVision 123

“Hello” Example Program

The first program in any programming language synmpints ‘Hel | o Wor | d”

to the screen. In an embedded system, theressreen, so the “Hello” program
sends its output to the on-chip serial port. Hmisre program has one single
source fileHELLO.C.

This small application helps you to confirm thatiyean compile, link, and
debug an application. You may perform these omeratfrom the command
line, using batch files, or from pVision using th@vided project file.

The target hardwatdor the “Hello” project is based on a standard
microcontroller. Examples are provided for all goged architectures and are
located in the folders as specified in the tablewe

Architecture Example Folder

ARM \KEIL\ARM\EXAMPLES\HELLO\
C166/XE166/XC2000 \KEIL\C166\EXAMPLES\HELLO\
8051 \KEIL\C51\EXAMPLES\HELLO\

Opening the “Hello” Project

To begin working with the “Hello” project, open tRELLO.UVPROJ project file
from the appropriate example folder.

Select thdProject — Open ProjectMenu and opeRELLO.UVPROJ from the
..\EXAMPLES\HELLO\ folder.

Alternatively, you may drag and drop tHELLO.UVPROJ file into the pVision
application, or simply double-click the file.

! Since pVision simulates the target hardware resglifior this program, you actually do not need
target hardware or an evaluation board.

124

Chapter 9. Example Programs

Once the project has been opened,
pVision shows the source files that
comprise the project. The files are
shown in theProject Window.
Double-click onHELLO.C to view or
edit the source file. pVision loads
and displays the file contents in the
Editor Window .

Building the “Hello” Project

Compile and link the project using
theBuild button of theBuild
Toolbar, or select théroject —
Build Target Menu.

pVision runs the assembler and
compiler, to assemble and compile
the source files of the project. The
linker adds the necessary object
modules and combines them into a
single executable program, which
may be loaded by the pVision
Debugger for testing.

You can follow the build process in
theBuild Output Window . Errors,
warnings, and additional trace
messages are displayed here.
Double-click an error or warning
message to jump to the source line
that triggered the notification.

Hello - ¥ision
File Edit View Proje¢ Flash Debug Peripherals Tools SVCS Window Help

=Hd # sdetint
2

Ga:
3 | Lpc2100

== Es

B33 LPC2100

15 Startup Code
Startup.s

3 System Calls

#include <stdie.h>

[] Abstract.tet #include <LPC21xx.H>

| & proj.. [Dy Tem.] £ Fun.,

Hello - pVision

File Edit View | Project | Flash Debug Peripherals Tools SV
._} H ﬂ Mew pVision Project...
@ (i Mew Multi-Project Workspace...
Open Project...
o £ LPC2100 Close Project
Ea Startup J Export »
: Manage 3
Select Device for Target 'LPC2100°...
Remove Item
Options for Target "LPC2100"... Alt+F7
Clean target
LE] Build target F7
Rebuild all target files
Batch Build...
@ Translate C\Keil\ARM\Examples\Hell Ctrl+F7
Stop build
=] Project | Oy Temy]
Build target files 1 C\KeilARM\Examples\Hello\Hello
7 CAKail ST FramnlaciHF L OWHFL It
Build Output x
Build target 'LPC2100' »

compiling Retarget.c...
compiling Serial.c...
compiling Hello.c...
linking...

Program Size: Code=728 RO-data=32
".\Cbj\Hello.axf" - 0 Error(s),

RW-data=4 ZI-data=1164
0 Warning(s).

Getting Started: Creating Applications with pVision 125
Testing the “Hello” Project
Once the Hello program haS been i Debug | Peripherals Tools 5VCS Window He

. . . ‘lash
compiled and linked successfully, test it
with the pVision Debugger. Select
Debug — Start/Stop Debug Session
from the menu or from thiile Toolbar. = Eun e
pVision initializes the debugger, starts '
program execution, and halts before
entering the main() C function.

|@ Start/Stop Debug Session Ctrl=F5]

C2104 85| Reset CPU

F11
F10 |= 1

Ctri+F11 |

{4 Funto Cursor Line Ctrl=F10 71

Use the following debugger commands
to control program execution.

Open theSerial Window UART #1 to display the application’s output

Click theRun button of theDebug Toolbar or chooséebug- Run to
start the “Hello” program. Hel | o Wor | d” is printed to theSerial
Window and the program enters into an endless loop.

Click the Stop button to halt the program. Alternatively, préssEsc
key while in theCommand Line of theCommand Window

Use thelnsert/Remove Breakpoin command to set or clear a
breakpoint

Test theReset command to reset the simulated microcontrollethédf
program is still running, it halts at the first Bkpoint.

Single-step through the program using $teg buttons. The current
instruction, which will execute next, is markedhvé yellow arrow. The
yellow arrow moves each time you step.

Chapter 9. Example Programs

While debugging, pVision displays the following delt screen layout. If you
re-arrange the layout, pVision saves the layouraatically and provides this
layout next time you invoke the debugger. Howeyeu cannot explicitly recall
the changed layout, unless you saved it throughtimelow — Debug Restore
Views... Menu.

Hello - pVision
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
HIRA=2 " B- AR ;| (% adeLint ‘Rle@ecosa[H]:
Hit AN T T (R e T
|Vajue _L: 26: printf ("Hello World\m™): /% the 'printf' function call =
i [
1"0x00000208 E28F000C ADD RO, BC, #0x0000000C
= -1 *""“”“"C"ﬁ’"-‘ SO -‘Af’ i S§VenSATSISS 2printf (0x0000025C)
ime: alls: verage: - - i
0017 ps 1 0017 s | /* Bn embedded program dt
S g e v
BO0BS363 "0x00000214 EAFFFFEF = nvnnnnn21a
0x00000218 E002C00¢ Instruction Trace x
0x0000021C 6CEC654 e [Becmondsm v] Il =
NxNNNNN220 AFRET20AT
4l Nr. [Address [Opcode | instnuction
Helior (o = 63517 [GDD0O0214 | EAFFF.. (B (xDO0D0214 x|
- = —| 65518 | GeDOOOO214 | EAFFF.. (B (xDO000214
1o TElint main (voic| ge5ig | (40000214 | EAFFF.. |B 00000214 f]
18 65520 | (00000214 | EAFFF.. | B
20 /* ipitiali: | Ge00000214 |8
. EINSELE = 0 G0000214 | EAFFF... | B
- S il |
o ! UILCR = OX8I| 65503 | (00000214 | EAFFF... | B
o] UIDEL = 972 | gag4 | GNI000214 | EAFFF.. B
= 1 ULLCR = Ox03| gaeg5 | G000214 | EAFFF.. B
& : 48 65525 | ODOO214 | EAFFF.. | B (I
:‘0 User/System 4 op 1 e - — L [=
- Fast Interrupt 27
= Intemnypt - Wz 1 while (1) ¢ + dn embstded program doeE
&= project |§Reg|sters L
f.‘[ellu World Addrass: Imam—- | Mask: | ™ Case Sensitive
| I[4]
|0x000001DC: 10 40 2D ES 05 08 A0 E3 2C 10 9F ES Name [Adsress I Type
|0x000001E8: 00 DO 81 E5 83 00 A0 E3 07 19 41 E2 &) Simuato
|0x000001F4: OC 00 C1 E5 61 00 A0 E3 00 00 C1 E5 - #5d Peripher...
|0x00000200: 03 00 AC E3 OC 00 C1 E5 OC 00 8F E2 = 8 Helo Application
|0=0000020C: 12 00 00 EE 00 00 A0 E1 FE FF FF EA # [Run
|0x00000218: 00 CO 02 EO 48 65 6C 6C 6F 20 57 6F # [u] Hella Module
_ |loxo0000224: 72 6C 64 OA 00 00 00 00 01 CO 8F E2] Ret. Module
= |0x00000230: 1C FF 2F E1 05 4C 06 4D 04 EO 20 00 5[] Seral Module
] command |-§'§UART#Z ‘
Real-Time Agent: Not in target Simulation t: 5.06

Take the opportunity to get familiar with the newok and feel, and the
navigation features. See how the content of registind memory areas can be
changed. Display the values in the different repn¢ations. We recommend
taking some time and using this simple examplepdoge the pVision
capabilities.

Getting Started: Creating Applications with pVision 127

“Measure” Example Program

The “Measure” program is a simple example thateotdl analog and digital data
using methods similar to those that can be founddather stations and process
control applications. Three source fileETLINE.C, MCOMMAND.C, and
MEASURE.C are used.

The “Measure” prografirecords data received from digital ports and Adpuits.
A timer, which can be configured between 1 milled and 60 minutes,
controls the sample rate and interval. The curierdg and all data from the
input channels are measured and saved to a RAMhuff

Please find your preferred “Measure” program in ofthe following locations:

Architecture Example Folder

ARM \KEIL\ARM\EXAMPLES\MEASURE\
C166/XE166/XC2000 \KEIL\C166\EXAMPLES\MEASURE\
8051 \KEIL\C51\EXAMPLES\MEASURE\

Opening the “Measure” Project

To start the “Measure” project, open
the project filesMEASURE.UVPROJ from =3 LPc22 Simulster

Ea Startup Code

the example folder of your choice. 1
E-£3 System Calls 4% Options for File ‘Startup.s'... Alt-FT
i 1 Open Startup.s
Compile the program; enable or disable oo st
E!{ﬁ Source Code en Lis e

the include files in the project structure,

Measure.c Open Map File

invoke theContext Menu of the B Fowhya ™ pRsT—
Project Window, and toggleShow €3 Documentatq L& Buid tara<t i

o 1] Abstract.b Translate Startup.s

Stop build

=] Pr. 1} Fu Add Group...

Include File Dependencies

Three application-related source code Add Files to Group...

files are located in thBource Code TR
group. The serial I/O and system b wanage Components..
modules are placed in ti8ystem ShowIndude File Dependencies

Calls, whereas the startup file resides underSteetup Code group.

! Since pVision simulates the hardware requiredtiés program, you do not actually need target
hardware or an evaluation board.

128 Chapter 9. Example Programs

A project may contain one or more targets, a featioat allows you to build
different versions of your program. The “Measuypedject contains several
targets for different test environments includihg simulator and evaluation
boards. Select the model with the Simulator targéte following files comprise
the source code:

MEASURE.C This file contains the main C function and thesrmipt
service routine for the timer. The main functiaitializes all
peripherals and performs command processing. fteeupt
routine manages the real-time clock and sampling.

MCOMMAND.C This file processes the display, time, and inteceanmands.
These functions are called from the main C functidhe
display command lists the analog values in floapogt
format to give a voltage between 0.00V and 3.00V.

GETLINE.C This file contains the command-line editor for idwiers
received from the serial port.

Building the “Measure” Project

There are several commands you can access froRrdfect Menu and the
Build Toolbar to compile and link the files in a project.

& Use theTranslate File command to compile the selected file in the
Project Workspace

% Use theBuild Target command to compile files that have changed
since the last build and link them

¥ UseRebuild All Target Files command to compile and link all files in
the project

Use theStop Build command to halt a build that is in progress
Select thaBuild Target command to compile and link the source files ef th

“Measure” project. pVision displays a messagéetiommand Window
when the build process has finished.

Getting Started: Creating Applications with pVision 129

Source Browser

The “Measure” project is configured to generate glate browser and debug
information.

= Use theScurce Browse command from th&ile Toolbar or View
Menu to view information about program variabled ather objects

Testing the “Measure” Project

The “Measure” program is designed to accept comménadn the on-chip serial
port. If you have actual target hardware, you mnsg Hyperterm or another
terminal program to communicate with the boardyolfi do not have target
hardware, you can use pVision to simulate all aspafcthe hardware, for
example, the&serial Window in pVision simulates serial input.

@) Use theStart/Stop Debug Sessic command from th®ebug Toolbar
or DebugMenu to start the pVision debugger

Using the Serial Commands

Test the following commands in tiserial Window.

Action Command Description

Clear (¢ Clears the measurement record buffer

Display D Displays the current time and input values continuously

Interval | mm:ss.ttt Sets the time interval for measurement recording. The interval
time must be between 0:00.001 (for 1ms) and 60:00.000 (for 60
minutes).

Quit Q Quits the measurement recording

Read R [count] Displays the saved records. Specify the number of records to be

shown. All records are transmitted if count is not specified. You
can read records on the fly if the interval is greater than one
second, otherwise recording must be stopped.

Start S Start recording. Data inputs are stored at the specified time
interval.

Time T hh:mm:ss Sets the current time in 24-hour format

Cristinel.Ababei
Highlight

130

Chapter 9. Example Programs

Using the Serial Interface

=# Open the seridDART Window from theView Menu or theDebug
Toolbar to view the output
Before you start running the ' Zhe voitage on the four amalos snpucs ADO rreuzn ADS. e

“Measure” program, open the 7= 7 ¥ T RS e :
Serial Window so that you can | =™ | = e '
enter commands and view the 1 s | <
program output. | Seae 1S

| Display | D

| Interval

| Quit

Running the Program

Use the step-buttons to execute code commandsdndily. If theDisassembly
Window is the active window, the debugger steps throwgembler instructions
rather than through the source code.

2

"

The current instruction or high-level statemeng (time about to execute)
is marked with a yellow arrow. Each time you stée, arrow moves to
reflect the new current instruction line.

Use theRun command from th®ebug Toolbar or DebugMenu to start
debugging the program

Use theStop command to halt program execution or presEtaekey
while in theCommand Window

Use theStep Intc command from th®ebug Toolbar or DebugMenu
to step through the program and into function calls

Use theStep Ovel command from th®ebug Toolbar or DebugMenu
to step through the program and over a functioh cal

Use theStep Oul command from th®ebug Toolbar or DebugMenu to
step out of the current function

Use theRun To Cursor Line command from th®ebug Toolbat or
DebugMenu to run the program to the line you just highted

Getting Started: Creating Applications with pVision

131

Viewing Program Code

B, Use theDisassembly Windov command from th®ebug Toolbai or

View Menu to view mixed

Test the various stepping
commands, first while in the
Disassembly Window and then
while in theEditor Window .
Notice the different behavior of
the Debugger.

Call theContext Menu of the
windows while moving the mouse
over various code lines. Notice
the different options. They
depend on whether the statement
can be executed or not. Notice th
lines marked green, gray, or
without any color. Invoke the
Context Menu while pointing on
the memory address.

Using the Call Stack

¢4 Use theCall Stack Window command of th®ebug Toolbar or View

Menu

pVision tracks function nesting
and displays data in thzall
Stack Window. Double-click
on the line of a function to jump
to the source code.

source and assembly code

Disassembly

0x0800046C 6809 LDR ri, [rl,#0x00]

(0x0800046E EEQO00El ADD r0,r0,xrl,B5R #3

(0x08000472 491F LDR rl, [pc,#124] : B0x080004FQ

02080004 v | Mixed Mode o1

20 Assembly Made

0x020004| Address Range [y 0..64K lbaEC
L 10x080004 0..128K
FMox020004) Show Disassembly at Address...

- 0...256K

[ag0x0280004 Set Program Counter 04EC

(0x080004 0..512K

ox0z0004 *{} Runto Cursor line Ctrl+F10 oan lbaEs

(0x080004) -

Insert/Remove Breakpoint

0080004 greakp 0..16M

lox020004 Enable/Disable Breakpoint Ctrl+F9 0.4GB BES

0x020004) T

oxosopoq | INline Assembly.. ; BOx030004ES

0x080004 Load Hex or Object file... 0]

(0x080004

0x0280004 Instruction Trace »

52 Execution Profiling P50 i--)d

(0x080004

0x080004 T4 Insert/Remove Bookmark Cirl=F2 : BOxX0O80004ES

(0x080004) 0]

0x080004 53 Copy Ctrl=C

0x0800045K 391%F LUK TI, [DC,#80] : EBOx080004EC

0x0800048C 6008 STR 0, [r1,#0x00]

0X080004SE EOLL B 0x080004C4

53: sinus -= epsilon>>3:

lomaoooeao 4813 LDR r0, [pc,#76]1 ; BOx020004F0

<

Call Stack
Stack Frames | Walue/Address
% stm3dZ2_Init]
- @ main()
i@ cmdbuf k2000057 "™
@i k<0280028C0
@ ide 080028C0

].5-'_'1 Call 5tack |j§§'.-‘."atch 1 | i Memory 1 | _IES}'mb-:uls |

132

Chapter 9. Example Programs

Using the Trace Buffer

In any programming process, it is often requiretht@stigate circumstances that
led to a certain state. You can guide the pViflebugger to record instructions
into a trace memory buffer. Mebug Mode you can review the trace buffer

using theView — Trace — Show Records in Disassembfpmmand.

2] Use theTrace Windowscommand from th®ebug Toolbatr or from the

View — Trace — Instruction Trace WindowMenuto view executed
instructions stored in the trace buffer

Instruction Trace
Fiter: | Execution-Al hd
Nr. Address Opcode Instruction

[DO0D025C

(b 0D00025C

65518 | (xDOODD25C | EFFE B 0000025C
65515 | xDDODO25C | EFFE B (0D00025C
65520 | (xDOODO25C | EVFE B (0000025C
65521 | (xDDODO25C | EFFE B (0000025C
65522 | xDOODO25C | EFFE B (k0000025C
65523 | (xDDODO25C | EFFE B (:0000025C
65524 | kDOODD25C | EFFE B (b 0D00025C
65525 | (xDDODO25C | EFFE B (0000025C
65526 | kDOODOZ5C | EFFE B (b 0D00025C
65527 | xDOODO25C | EFFE B 0000025C
65528 | xDOODO25C | EFFE B (0000025C

Disassembly
=10 0x0000025C ET7FE B 0x0000025C
=2} 0x0000025C ETFE B 0x0000025C
-8 0x0000025C ET7FE B 0x0000025C
=7} 0x0000025C ETFE B 0x0000025C
-6 0x0000025C ETFE B 0x0000025C
=) 0x0000025C ETFE B 0x0000025C
=4 0x0000025C ETJFE B 0x0000025C
=% 0x0000025C ETFE B 0x0000025C
=2 0x0000025C ETEFE B 0x0000025C
=1l 0x0000025C ET7FE B 0x0000025C

0x000002 5C ETFE B 0x0000025C
0x0000025E 0000 L3L RO, RO, #0
0x00000260 6EC6ECE548 DD Ox6CECE548

0x00000264 7266206F DD

4

0x7266206F

Whereas the trace information is always availabldhéDisassembly Window
thelnstruction Trace Window is enabled for ARM devices only.

In addition, inspect thRegistersWindows showing register contents of the

selected instruction.

Invoke theContext Menu of theDisassembly Windowto review the options

offered.

When you double-click in thimstruction Trace Window, theDisassembly
Window shows the corresponding instruction.

Getting Started: Creating Applications with pVision 133

Using Breakpoints

M Vision supports execution, access, and compleakpants. The following
example shows how to create a breakpoint thaigigered when the value 3 is
written tocurrent.time.sec

Open theBreakpoints dialog from |ereskeont: =
theDebug — BreakpointsMenu. | o e

Enter theExpression Agﬁﬁﬁmxfmmﬂﬁ
current.time.sec==3 and 25 LM

select thanrite check box. This

specifies the breakpoint to trigger

K _time min’. count=70.

ite Ox40000032

when the program writes thg ValU@ ¢, e E—
3 tocurrent.time.sec . Click Cont: [T = =

the Define Button to set the Command: | 2 B s
breakpoint. Double-click any e | [Emat] _an | o | [

breakpoint definition to redefine it
Resetthe CPU to test the breakpoint, which will triggerd halt program
execution when the number 3 is writterctorent.time.sec . The program
counter line of th&®ebug Window marks the position where the breakpoint
triggered.

Viewing Memory Contents

Use theMemory Window command from th®ebug Toolbar or View
Menu to display the memory content

11 Use theLock/Freeze icon to prevent values from refreshing

pVision displays memory in s %
various formats and reserves four Lj;'f:;oj:f”j‘h"o'“'z“o-ﬁ":j“ S - PSEEM_;D
distinctMemory Windows 0x05000208 ; £1337156 0111 n nssnzss _saza 2s

' Sei024 Decimal

0x0800021A:
0x08000226:

.26329e+024 Unsigned L

. . 0x08000232: -1.98577e+029)
Define the starting\ddressto 0x0800023E: 3.1945e-02¢ | | SlOnes '
. 0x0800024%: -3.40241e+038 ascii
view the content, or drag and dropesesoecase.: = ssasecaa | =
objects from thé&symbols 0x0800026E: 1730794030 | pauti
WlndOW into theMemory 0x02000286: —1.033512+034 Modify Memory at 0x0300020F

. 0%08000292: 906504
Window. 0%OB00029E: -1.03551e+034
0x0800023A: -1.03551e+034

0%08000286: -2.381952+029

0%080002C2: -1.89677e+031 -3.86238e+030 522.769

Open theContext Menu to 0x0S0002CE: 3.32819e401% 3.63124e+024 2.12247 r
change formats, modify memory, or set breakpoints.

Set Breakpoint at 0x0800020E

Add “LCD_4bit\wait_while_busy’ to... »

134 Chapter 9. Example Programs

Watching Variables

The pVision Debugger provides tWdatch Windows to which you can add
variables, structures, and arrays for easy referefitieWatch Window updates
at the end of each execution command. Enabl¥ithe — Periodic Window
Update Menu to refresh the content of this window dunimggram execution.

s Use thewatch Window command on thBebug Toolbai or View
Menu to launch the functionality or invoke thecals

ThelLocals page shows local Watch 1 %
symbols of the currently Name [Value
executed function. \Measure\mdisplay 000000000
(PORTO & (x8000)>>15 (00000001
; “PortD [7BFFFFFF
TheWatch p_ages dlsplay =1 "\Measure\setinterval struct interval { ... }
program objects, which you min 00
desire to monitor. Structures and sec 00
arrays open on demand when mees (0000
. CTLOCK (b 10642AC0
you click on the[+] symbol.
Indented lines reflect nesting.

FELocals |,;£IWatch1 |

There are several ways to add variableg/adch pages.

= In theWatch Window, select the last line<flouble-click or F2 to add>) on
the Watch page. Press or click with the mouse on this line. Enter the
name of the variable you wish to watch.

= Select a variable in tHeditor Window , open theContext Menu (right-
click), and selecAdd to Watch Window

= In theCommand page of th@utput Window enterws (for WatchSet)
followed by theWatch Window number (1 or 2) followed by the variable
name

= Simply drag and drop an object into this window
Remove a variable from thWatch Window by selecting the line and press the

Del key or use th€ontext Menu. Individual elements of structures and arrays
cannot be removed singly.

Getting Started: Creating Applications with pVision

Viewing and Changing On-Chip Peripherals

The “Measure” program accepts input from sevefaldhd A/D ports. Use the
pVision Debugger to view data and interact withigtegrals. Changes made to
the inputs are reflected in the dialog window afleperipheral. Entew in the
Serial Window to monitor the output and the changes appliedpatimalues.

2% Rese the simulated CPU
Start the program if it is not running already
= Open theSerial Window if it is closed

Theb command causes the S — *
“Measure” program to refresh the || & | :

time, 1/0 Ports, and the A/D Inputs |i %=
continuously. The input from the s «
/O Port and the A/D converter o coceens Memeirmmenies (FEE LS SR o nssoco asse o
channels can be controlled from

peripheral dialogs, which are
available from théeripherals Menu.

Using Peripheral Windows

The pVision Debugger provides windows for I/0O aeda ports, A/D
converters, interrupts, timers, and for most ott@p-specific peripherals.
Open the WindOWS from the General Purpose Input/Output 0 (GPIO 0) ==

GPIO0

Pe”pherals Menu wooor: [Ao A P A e

I0DSET: [BBB000000 T T T T [T T [T [T rrrT
I00CLR: 00000000 [T T T T T 7T [T T [T T [TTrrrrT

TherndOWSdlSpIaytheStatusof OIN:[)03FFFFFF | [T TTTT oW FRRRRRRR FRRRRRRR FRRRRRT

the registers as well as the pins of | "~ M Feemwes R P
the simulated device. AT =
A/D Control
Open the A/D Converter dialog to || ADcR: [x002E0401 SEL: 001 v
view the status of the A/D controls || Cuks:|sck/i ~¥| CLkDIv: |04 [~ EDGE
and A/D data. You can enter input | | START:[Nene | A/D Clock: [3000000
voltages for the Analog Input, which —appas
are reflected in the Serial Window. || AbpR: [6:00000000 CHN: [0 F O
V3A: |3.3000 VAV3A: | 00000
Analog Inputs

AING: [0.0000 AINT:[0.0000 AIN2:[0.0000 AIN3: [0.0000

135

Cristinel.Ababei
Highlight

136 Chapter 9. Example Programs

Using VTREG Symbols

In addition to the peripheral dialogs, you may Mg¢ual Target Registers
(VTREG) to change input signals. On themmand Window, you can assign
values to VTREG symbols. For example:

PORTO=0xAA55 /* Set digital input PORT to OxA A55 */
AIN1=3.3 /* Set analog input AIN1 to 3.3 volts */

Using User and Signal Functions

The pVision Debugger supports a C-like script laagguthat enables you to use
VTREG symbols in a more programmatic way. A debiggal function is
included in the “Measure” program. It can be inedkising the buttons in the
Toolbox. Inspect th&€ommand Window and press1 to invoke the on-line
help for further information.

Using the Toolbox

#+ Use theToolbox command from th®ebug Toolbar or View Menu to

display theToolbox dialog

TheToolbox contains user-defined buttons that are link6€@.oibox s
to debugger commands or to user-defined functions. [Update Windows_]
Several buttons are predefined for the “Measurefyy@am. 1 Btton Key2

. : Bution Key3
TheAnalog0..3V button starts a user-defined signal : WS;:US o
function that provides input to Analog Input 1 tret : Aralog] 0.3V
simulated microcontroller. N -

5 Stop Analogl

Getting Started: Creating Applications with pVision 137

Using the Logic Analyzer

The pVision Debugger includes a configurabbgic Analyzer you can use to
trace simulated signals and variables during pragegecution.

™ Open theLogic Analyzer Window
from theDebug Toolbar or View Menu

Add a number of signals to th®giC [setup togic Analyzer =5
Analyzer, including the simulated T — —
A/D mput S|gna| LI gic Analyzer Signals: 3}
Click the Setupbutton in the_ogic
Analyzer Window to open theSetup
dialog. Press thies key, enter — .
ADC1_IN1%, which is the name of the || . .
)) ignal Display isplay Range
input signal for A/D Channel 1, and TULE reewem P I
close theSetupdialog. You may Color Hi: R
prefer to just drag and drop the objedf | ™ Hexadecmal Disslay
from theSymbolsWindow into the i
Logic Analyzer Window. FHEe v | SeRE D

Export / Import
For Comp|ex anaIySIS, mu|t|p|e S|gna|5 Export Signal Definitions... ‘ Import Signal Definitions... |
can be selected and recorded. Save kA [cose | [Heb |

and load the signal definitions using
the Export Signal Definitions...

B Logic Analyzer x
andIimport Signal WnTwo MaTwe Fwgs G |zam ot |5 it
. 3060918 (9626555 [0500000s [0025000 |][o] [][5 [row | [t J o]
Definitions... button. =
Eu /ﬁ“"“—-_\ (,J/ﬂ““"-.. //“‘-
] e b T
El Pl e

Run the program, and use the

Analogl 0..3button of the

Toolbox to start changing the [\ J\ {/\

signal on Analog Input 1.

Changes applied to the analog Bt e ST B

inputs are reflected in tHeogic et N N S I e e e
Analyzer. . —0

! The additional signals used in this screenshotrareintegrated into the Measure example.

Cristinel.Ababei
Highlight

138

Chapter 9. Example Programs

“Traffic” Example Program

The “Traffic” progrant is an example that shows how a real-time operating
system can be used in an embedded applicatiors ekaimple simulates the
control of a traffic light and walk signal. Durimgsh hours, the stop signal
controls the traffic flow at an intersection antbais pedestrians to cross the
street periodically or by pressing theush for Walk” button. After rush hours,

the traffic light flashes yellow.

You interface the “Traffic” program via the:

= SerialUART Window, where you can change the current time and theshou

of operation

= Toolbox, where you can click thePush for Walk” button to cross the street

= Watch Window and I/O Port dialog, where you
traffic light and the start/stop pedestrian lights

can watch the siaithe

The following table specifies the location of thigéffic” project files for the
various architectures.

Architecture Example Folder
ARM \KEIL\ARM\RL\RTX\EXAMPLES\TRAFFIC\
C16x/XC16x \KEIL\C166\EXAMPLES\TRAFFIC\
8051 \KEIL\C51\RTXTiny2\EXAMPLES\TRAFFIC\
Project ®
Opening the “Traffic” Project =54 Simulator

To start working with the “Traffic” project, open
the TRAFFIC.UVPROJ project file from the
appropriate example folder.

Most Keil example projects include a text file
namedABSTRACT.TXT that explains the aspects

and the intention of the program and is included in
theProject Window.

E{ﬁ Source Files
Traffic.c
Serial.c
Getline.c
onfiguration
#] RTX_Config.c
Startup.s
=5 Documentation
Abstract.bd

4 [F

]Epro... |@Bo... |{}Fu... |[]¢Te... |

! Since pVision simulates the hardware requiredties program,
hardware, an evaluation board, or a traffic light.

you do not need any target

Cristinel.Ababei
Highlight

Getting Started: Creating Applications with pVision 139

Using the Configuration Wizard

pVision incorporates a (oo | X
Configuration Wizard that assists | == ‘ek=al

Value

you in choosing the settings for the
startup file and other configuration
files.

0x0000 0000
0x0000 0020
0x0000 0000
0x0000 0000
00000 0040
0x0000 0050

guration

Traditionally, these files are b
assembler or other source files, b omnyComoer GG
which include macros or definitions
you may change depending on yout
hardware configuration or (NSTEEEIEP) conkraon o
preferences.

TheConfiguration Wizard simplifies the process of making these selections.

TR

Of course, you may always edit these files in tbaginal source form by
clicking on theText Editor tab.

Building and Testing the “Traffic” Project

¥ Use theRebuild command to compile and link all files of the prdjec

The “Traffic” program is designed to accept commsafrdm the on-chip serial
port, which is completely simulated within puVisiamd to display output on a
traffic light, which is connected to I/O port pins.

Using the Toolbox

#: Use theToolbox command from th®ebug Toolbar or View Menu to
display the toolbox dialog

ThePush for Walk button is available on thBoolbox. | Toolbox ==
Click this button to simulate a pedestrian who \sdnt
cross the road and watch as the “stop” and “wagitits
change in th&Vvatch Window.

| Update Windows
1 Push for Walk

140

Chapter 9. Example Programs

Using the Watch Window

s Use thewatch Window command on thBebug Toolbar or View
Menu. Open th€all Stack Window as well.

The status of the traffic pedestrian
lights displays in th&Vatch 1 page
of theOutput Windows using
predefined watch expressions.

Watch 1

Name

Value

(I0TPIN=>16)&1
(0TPIN=17)&1
(I0TPIN==18)&1
(0TPINz=20041
(0TPIN==21)&1
<double-click or

/i red

£ yellow

/7 green

/f stop

Ff walk
F2to add:

== =]

Using 1/0O Ports

You may also view the traffic light
signal lines on the 1/O Port dialog
available from théeripherals Menu.

General Purpose Input/Output 1 (GPIO 1) _

==}

GPIO1
I01DIR: |2x00FFO000
IO1SET: | 200210000

3
T

Bits 24 23 Bits. 16 15 Bits 8 7 Bits 0
ITTTTT MMMYWMMY TTTTTTTT FITTTTTTT

MTTT T ITMTTTWITTTTTTT ITTTTTTT

I01CLR: [200000000 | [T

I01PIN: |0xFF210000
Pins: |&xFF210000

T
v

MR TTRITT TR ITT T T T FTTTTTTT
WiV T MITTT W

Using the Serial Window

The Serial Window displays
information and allows you to
change the time and operating hour
of the traffic light. Set the current
time outside of the rush hours to
view the flashing yellow light.
Check thenNatch Window to

monitor the changed behavior.

~~~~~ TRAFFIC LIGHT

| This program is a

| start time and end
with pedestrian se
the vellow caution

'+ command —+ syntax

| Display | D

| Time

| Start

| End

| T hh:mm
| S hamm
| E ha:mm

CONTROLLER using MDK and RTX kernel =#**%
simple Traffic Light Controller. Between |
time the system controls a traffic light |
1f-service. Outside of this time range |
lamp is blinking. 1
fffff + function
| display times 1

:ss | set clock time 1
I

I

n

123 | set start time
135 | set end time

ICommand: d
iStart Time: 07:30:00
Clock Thme: 12:04:05

End Time: 18:30:00
type ESC to abort

Use the serial commands listed in the followindgalfhese commands are plain
ASCII text. Each command must be terminated withrmiage return.

Action Command  Description
Display D

Set Current T hh:mm:ss

Time

Set Start Time S hh:mm:ss

Set End Time E hh:mm:ss

Displays the current time and the Start Time and End Time of
operating hours. Press Esc to exit display mode.

Sets the current time for the traffic light. If the current time is
within the operating hours specified by the Start and End times,
the traffic light operates as normal. If the current time is outside
the operating hours, the traffic light flashes the yellow light.

Sets the Start Time for normal operation
Sets the End Time for normal operation




Getting Started: Creating Applications with pVision

141

Displaying Kernel-Aware Debug Information

The pVision Simulator allows you to run and test ey m——
applications created with a real-time operatingesys s ...,
Real-time applications load exactly like other peogs. |5 .. s
No special commands or options are required for ? o N
debugging.
Ctri+F11
Kernel-aware debugging is available in the fornaof o
dialog that displays the aspects of the real-tievaél cul-
and the tasks in your program. This dialog candwes Tk
W|th target hardWare ¢ Disable All Breakpoints
a Kill All Breakpoints Ctrl+Shift+F9
0S Support »
Instruction Trace »
Execution Profiling b
Memary Map...
Inline Assembly...
Function Editor (Open Ini File)...
Debug Settings...
To open the kernel-aware | & tem =)
debug window, use the fcive Tasks | Syzem | Evert Viewsr |
Debug - OS Support e e R L
Menu 2 clock 1 :NAIT_\TV 7 32
' e | OWATAD an 0000 oo o
5  keyread 1 WAIT_DLY 3 32
55  os_idle_demon ] RUNNING 0%




142 Chapter 9. Example Programs

“Blinky” Example Program

The “Blinky” program is an example application théihks LEDs on an
evaluation board. The blinking LEDs make it easydrify that the program
loads and executes properly on target hardware.

The “Blinky” program is a board-specific applicatiaand thus, since the boards

are different, the program may show other boaraifipdeatures. Refer to the
board manual for detailed information.

Opening the “Blinky” Project

Select thé’roject — Open ProjectMenuand choose the respective
BLINKY.UVPROJ project from the following subfolders:

Architecture Example Folder

ARM \KEIL\ARM\BOARDS\ vendor\board name\BLINKY\

C166/XE166/XC2000 \KEIL\C166\BOARDS\ board name\BLINKY\

8051 \KEIL\C51\EXAMPLES\BLINKY\

Each project contains an  (Fasas e
ABSTRACT.TXT file that & i
explains how to use the e e BLINKY F
=1H ” [ & ARM Development Tock |

Blinky” program for that ||, gueeserhen e || | st |
SpeCIfIC board . b4 mﬁwﬁmDEuSm faido Ef::pphngeliﬂirﬂse’égrfha LCD panel indicating the position of

@ RealView Compiler User Guide
@ RealView Compiler Reference Guide

The BLINKY example project demonstrates assembling,

g RealView Libraries and Fioating Point Suppe = compiling, hnkmgh, dnwnlnadmbg, a!d dhehuggt\’ng using the
H H = @ RealView Assembler User Guid vision IDE on the MCB1700 . The on- LED
YOU Wi ” a|SO fl nd a % A;EM ;::mf:nms:u::;s SL.:e Ena‘if:t eamfzn \Ifiuallv verify t%aart the irflgr;na\rnads asnd
. .. RiealView Linker User Guide executes properly.
d I d d f h @ RealView Linker Referencs Guide
etal € escri ptlon 0 t e g RealView Utilties Guide L4 Loading BLINKY
fT=1H ” H RL-ARM Real- Tme Library Users Guide
Blinky” program in the & U W00 e e 1o 1034 the BLINKY orojec, sslect Open project from the
’ i o 3 e R AR\ BOARB S KEIL\MEB17 00\ BLINKY\
= [ Setup KEIL
User’s Guide manual of T e

th b d (3 Wrting Programs
e pDoard. E1 23 Bample Programs Select Project File
SR 1 BLINKY]
Bu\ldmg BLINKY Laok ir: | (2 Blinky b [=hy
o i
— [E Nehunnina AINKY_ 2 |@F\ash <
<[ n ] » L

<| . ] b




Getting Started: Creating Applications with pVision 143

Building the “Blinky” Project
The project may contain several targets, for exampl

= Simulator: is a configuration to debug code without reag¢ahardware

= Board specific target: is a configuration to download and test the paogon
real target hardware

For testing on hardware [ @sin - wion =
ensure thaBOard $a:lflc File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
. =1~ Ga @& r == [ adel_n1
target is selected. e S
EEr - %

TM32
MCBSTM32 + OFT tings: 115200 baud, 2 data bits, ,—uz'
- AD is used with DMA
BD settings: 12 bit resolution

=823 MCBSTM32

45 Startup Code

..... STM32F10xs
3450 Flash Options |~

----- D STM32F10xC
[=-£5 Retarget

[+ [#] Retarget.c
523 Library

LCD_tbite

lrme -,

The Blinky program is available in different ta:

Simulator: configured for software Simuls

MCBSTMS2: runs from Internal Flash locat
(used for production or target

MCBSIM32 + OPT: MCBSIM32 with Flash Cptions
(used for programming)

I

« L3
.. @6 | {3 F. 0,7

Select the target to use

l

]  Use theRebuild command of th&uild Toolbar to compile and link all
project files, or use theroject — Rebuild all target filesMenu

The executable files are  puidoutput X

. Build targe "MCBSTHM32" -
placed in an output folder |aisewsing snmzezon.e. ..

compiling Retarget.c...

and are ready for compiling LOD 4bit.c...
1 compiling Serial.c...
downloadlng compiling 5TM32 Init.c...
compiling Blinky.c...
linking...

Program Size: Code=3148 RO-data=39%6 RW-data=24 ZI-data=512
FromELF: creating hex file...
".\Obj\Blinky.axf" - 0 Error(s), 0 Warning(s).

Pl [}




Chapter 9. Example Programs

Downloading the “Blinky” Program

Before using the Download command for the firstetjmerify the Flash options
in theProject — Options for Target — Utilities dialog. Alternatively, you can
use therlash — Configure Flash Tools..Menu to reach the identical dialog.
Connect the board to your PC.

After you have configured the pVision IDE, thlash — DownloadMenu uses

the specified adapter for Flash programming.

%1 Click theDownload to Flast Toolbar button, or use tHdash-
Download Menuto flash the application program to the target tvaire

The program has been Build Output .

. Load "C:\\Keil\\ARM\\Boards\\Keil\\MCBSTM32\\Blinkyv\\0bj\\Blinky.RXF" =
downloaded, and it runs  jzzace poze.
successfully on your target |ve=1v oz
hardware as soon as the

LEDs are blinking.

Debugging the “Blinky” Program

To verify the configuration settings for the Debaggpen thé®ptions for
Target — Debugdialog.

u Click the Useradio Options for Blinky - Target 'MCBSTM32' =
button and select the Device | Target | Output | Listing | User | C/Ce+ | Asm | Linker Debug | Uiites |
. " Use Simulator ings || & Use: ortex Debugger - ings
appropriate debug I Lo Syt P T St | e UKot D] e |
d rlver fro m th e d ro p !7. Load Application at Startup ¥ Run to main{) |7 Luac! Application at Startup [¥ Run to main{)
down list Intialzation Fie: J inmahzatlnn File: J
Restors Debug Session Settings Restore Debug Session Settings
= Check Load ¥ Breakpoints ¥ Toolbax ¥ Brealpoirts ¥ Toobox
Application at Startup " vyl EEmSr
and Run to main()
CPUDLL: Parameter Diver DLL:  Parameter:
- CIle the Settl ngS [SARMCM3DLL | [sARmMCM3BLL |
bl’!tton and_ Ver|f¥ the Dialog DLL:  Parameter Dialog DLL:  Parameter:
dr|Ver Conﬁguratlon [DARMSTM DLL [STM32F103VB [TARMSTMDLL [pSTMI2FIOZVE

0K | Cancd | Defaus | Help




Getting Started: Creating Applications with pVision 145

@

i

v e |

Click Start/Stop Debug Sessio from theDebug Toolbal, or open the
Debug — Start/Stop Debug Sessiodenu, to start debugging your
application

Step One Line — use the step commands to debug the application o
target hardware

Rese — Reset the microcontroller while debugging
Run — the program to flash the LEDs on your evaluakioard
Stop — program execution

Show Current Statemen — Show next statement to be executed in the
code



146

Glossary

Glossary

ASCII

American Standard Code for Information Interchange

This is a set of codes used by computers to reprelggits, characters,
punctuation, and other special symbols. The fi2& characters are
standardized. The remaining 128 are defined bynipéementation.

Assembler

A computer program to create object code by tréinglassembly
instruction — mnemonics into opcodes, and by résglsymbolic names for
memory locations and other entities. Programgevriin assembly
language and translated by an assembler can beddait memory and
executed.

Controller Area Network

Is a bus standard, designed specifically for autor@pplications,
meanwhile also used in other industries. It allowsrocontrollers and
devices to communicate with each other withoutst hbomputer.

CMSIS

Cortex Microcontroller Software Interface Standard

A vendor-independent hardware abstraction layethierCortex-Mx
processors. It enables consistent, scalable,iamdessoftware interfaces to
the processor for interfacing peripherals, reaktimperating systems, and
middleware, simplifying software re-use, and redgdhe time to market
for new devices.

Compiler

A program that translates source code from a regktprogramming
language, such as C/C++, to a lower level languagexample, assembly
language or machine code. A compiler is likelpé&sform many or all of
the following operations: lexical analysis, pregssging, parsing, semantic
analysis, code generation, and code optimizatiovision implements
CI/C++ compilers.



Getting Started: Creating Applications with pVision 147

CRC

Cyclic Redundancy Check
Is a type of function to detect accidental alteranf data during
transmission or storage.

Debugger

A computer program to test software. Debuggersradphisticated
functions such as running a program step-by-steglésstepping),
stopping, pausing the program to examine the custate at some kind of
event through breakpoints, and tracking the vatiesriables.

FPGA

Field-Programmable Gate Array
A semiconductor device that can be configured lpyctistomer after
manufacturing.

GPIO

ICE

General Purpose Input/Output

An interface available on microcontroller devicesriteract digitally with
the outside world. GPIOs are often arranged intaigs, typically of 8, 16,
or 32 pins. The GPIO port pins can be configunelividually as input or
output.

In-Circuit-Emulator

A hardware device used to debug software of an dddzbsystem. It
provides hardware-level run-control and breakpfaatures. Some ICEs
offer a trace buffer that stores the most recentoupntroller events.

Include file

A text file that is incorporated into a source filging thettinclude
preprocessor directive.

Instruction set

An instruction set, or instruction set architect(&A), is the part of the
microcontroller architecture related to programmingluding the native
data types, instructions, registers, addressingesyademory architecture,
interrupt and exception handling, and external 1&h. ISA includes a
specification of the set of opcodes — the nativaroands implemented by
a particular microcontroller.



148

Glossary

JTAG
Joint Test Action Group
The common name used for the IEEE 1149.1 standdleticStandard Test
Access Port and Boundary-Scan Architecture. JTAGften used as a
microcontroller debug or probing port and allowsadaansfer out of and
into device memory.

Library
Is a file, which stores a number of possibly relatbject modules. The
linker can extract modules from libraries to usenthin building an object
file.

LIN
Local Interconnect Network
Is a vehicle bus standard or computer networkirggdystem used within
current automotive network architectures. The bl is a small and slow
network system that is used as a cheap sub-netf@kCAN bus.

Linker
Is a program that combines libraries and objemsgerated by a compiler,
into a single executable program.

Lint
A tool to check C/C++ code for bugs, glitchesomsistency, portability,
and whether the code is MISRA compliant.

Macro
Defines a rule or pattern that specifies how aateitput sequence should
be mapped to an output sequence.

MDI
An application that allows the user to open moentbne document from
the same application without having to purposelyéh another instance of
the application.

Memory model
Is a definition that specifies which memory are@swsed for function
arguments and local variables.



Getting Started: Creating Applications with pVision 149

MISRA
Motor Industry Software Reliability Association
A forum that provides software development stansléodthe C/C++
programming language, focusing on code safetyapiitly , and reliability
in the context of embedded systems.

Monitor
Is a program for 8051 and C166 devices. It calvdged into your target
microcontroller to aid in debugging and rapid pradidevelopment through
rapid software downloading.

Object
A memory area that can be examined. Usually usezhweferring to the
memory area associated with a variable or function.

Object file
Created by the compiler, this file contains an oiged collection of
objects, which are sequences of instructions irmehime code format, but
might also contain data for use at runtime: reliocainformation, stack
unwinding information, comments, names of variakled functions for
linking, and debugging information.

OCDS
On Chip Debug Support
A debug port that provides hardware emulation fegtfior the Infineon
166 devices.

Opcode
An operation code is that portion of a machine leagg instruction that
specifies the operation to be performed. Theici$jgation and format are
laid out in the instruction set architecture of finecessor.

Simulation
Is the imitation of a real thing or process. Inigidh, simulation is used to
create embedded applications without using ‘reaftifvare. You can
represent key characteristics and behaviors cdelected system, perform
optimization, safety engineering, testing, and dging.

Stack
An area of memory, indirectly accessed by a stawhter, that shrinks and
expands dynamically, and holds local function ddtems in the stack are
removed on a LIFO (last-in, first-out) basis.



150 Glossary

Token
Is a fundamental symbol that represents a nametity & a programming
language.

Thumb, Thumb?2
An instruction set for ARM and Cortex deviceSeeinstruction set

UART
Universal Asynchronous Receiver/Transmitter
Is an individual IC, or part of an IC, used forisecommunications.



Getting Started: Creating Applications with pVision 151

Index
CortexX-MX ....covveeviiieiiieiiiieee, 15
H ARM7/ARM9
Visi Advantages.........ccccveeeennnnnnnnnnn. 16
H (I:Sol(rzge ts 55 Coding Hints ..., 31
Seb PIS- oo e HIGhHIGHS cvvoveveee e 22
EDUGGET ..o Microcontrollers............ccc........ 21
Deb.ugger MOdeS.....coovvvvvcrrnneen 36 Tool Support .........cooeeeeeeeeeennn. 23
fl?az\tlbcrisDatabase """"""""""" 2451 Assembler............ccccc, 37
DE. 34 AssIStanCe........cccooeeveiiieieeieeeeee, 13
Operating Modes........cccccoee..... 59
B
8 BatCh-BUild ........oorvveeeeeeeeeeeeeeen 88
Bookmarks .........ccccoeeeiiiiii, 98
8051 Breakpoints .........ccccccvvveiiieiienneen. 98
Advar_wtages ............................... 15 Commands ... " 100
Cla§S|c...: .................................. 17 MANAGING wvvvvvvvrreoooooooeoeerroen 99
Coding HINtS ....oovviiiiiiiiiiiiiiiees 29 Types 99
5?‘5%3% """""""""""""""""" (e Buld ToObar ..o 65
MEMOTY TYPES ..o 17,19 Building a project.........cccccvvvvnnnns 84
Tool Support .......cceeevveeeveeennnee. 18
C
A C/C++ Compiler.........ccccuvveeeennnn. 38
: C166, XE166, XC2000
Adding books...........cccevviviiiinnn, 78 Advantages 16
Adding source files ..o, 79 Codin Hinté """""""""""""""" 30
Adding targets, groups, files......... 78 Hi hlights """""""""""""" 20
Additional 1CONS ........veorveeeen.n) 67 Mo Ogry Tpea 20
Adg/gg{ages 15 Tool Support .........coeeeeeeeeeeennn. 21
ARM7/ARMO..........oroveveeer, 16 Colf'g ooanson o6
C166, XE166, XC2000............ 16 Pointer Acc.é.éé """""""""""""" 27
A Cr?{te>t<-Mx """"""""""""""""" 1164 Code coverage..........cccceveuenn.... 104
r<i6| l(ae(t: UMES .iiieeeeeeeieiiiieeeeaaeeens I Code, generating optimal ............ 28
= I ........................................ COdIng HIntS
32-Dit i, 14 8051 29



152

all architectures..........ccccccoevennes 28
ARM7/ARMYO ..., 31
C166, XE166, XC2000............ 30
CorteX-MX......uvveeeriiniiiiiiiiinninnns 32
Compare memory areas ............... 97
Compiler ....coooeviiiii 38
Copying the startup code ............. 77
CorteX-MX......uuveemiiiiiiiiiiiiiiiiiiiinns 23
Advantages.........ccccccviiiniennnnnn. 16
Coding HINtS .....cevvvviiiiiiiiiiiienees 32
Highlights........covvvviiiiiiiieiiieeee, 24
Tool Support .........ceveeeveeeeeennnns 25
Creating a HEX file .........cccccue..... 85
Creating a project file................... 75
Creating source files ................... 78
D
Debug features .........ccoeevveeeeeeennne. 93
Debug Mode .......ccccoevvvvvvvveeeenne, 93
Debug Toolbar...............ccoeeeee. 66
Debugger
Configuring .........eeeeeeeeenennnnnnnnns 90
controls........ccccvveveeeeinnnns 90, 113
Starting .......eeeeeeeeveeeeeeiniiiniiiinnes 91
Windows ... 92
Debugger, Simulator .................... 89
Debugging.......ccccceeeeeeiieeiiieeeeeeenn, 89
Development cycle....................... 33
Development tools ............ccceeeee... 33
Directory structure ....................... 12
Document Conventions.................. 5
E
Embedded applications................ 75
Examining memory............ccccuvee. 96
Example programs...................... 122
Examples

Hello program ..........cceeeeennn. 123
Measure program ................... 127
Traffic program ...................... 138
Executing code............ceeeeeeeeeen. 95
Execution Profiler ...........c.......... 103
F
File optionS......cccooeeiiiiiiiiiiieee, 82
File Toolbar..........cocccvvvvieeiinennnne 63
Files ..o 9
finding object dependencies....... 109
Flash
Auxiliary content.................... 121
BUS configuration ................. 121
Download.........ccovvvvvvieeiinnnnen. 119
External TOOIS .........ccveveeennnne 115
Initfile.....oooo 121
Programming Algorithm ........ 120
Programming Devices............ 114
Folder structure ........ccccccveeeeninnnns 12
G
Getting Help ..., 13
Group OptionS.........ccccvvvvveeeeeeeenn. 82
(€] (0]0] o1 T 9.7
H
Hardware requirements................. 11
Help, SUpport .......cccccvvviiivvinennnen. 13
HEX converter .........cccccvvvvevennnnnes 38
HEX fil€ ..ovveeiiieeeiiiiieeee 85
Highlights
8051 . 18
ARM7/ARMO ......vvvviiiiiiiiins 22
C166, XE166, XC2000............ 20
CortexX-MX .....uceiiiiiiiiiiiiieee 24



Getting Started: Creating Applications with pVision

153

I
I/O access comparison ................. 26
Infineon C166, XE166, XC2000 . 20
Installation ..............ooooeei 11
K
Keil TOOIS ..ovvvveieiiiiiiiiiiieieeie e 9
Kernel information.................... 141
L
Last Minute Changes.................... 11
Library manager.............ccceeeeenn. 39
[ITo=T oIS ] oo TR 11
Linker......cooooeeiee 39
Locator.......ccoeeeiiiiiiiiii, 9.3
Loogic Analyzer ........................ 106
M
Memory commands ..................... 97
MENU ....ooiiiiiiiii e 9.5
Debug......ccovvvvvvieiiieiiiiiiiiiiiiiiins 61
Edite.eeeeeees 59
FIle o 59
Flash......occooiiiiee, 60
[ 1= o 61
Peripherals ...............ccccc 62
Project......ccccceeeiiiii 60
SVCS . 61
TOOIS .o 61
VIEW . 60
WINAOW.....cooviiiiiiiiiiiiiiieee e 62
Microcontroller Architectures...... 14
Modifying memory ..........cc.oc...... 96
Multiple Projects
Activating........ccccccvvvevvveenieenne, 87

Batch-Building............ccooeeee. 88

Creating........ooccvvvveeeieeee s 86

\V/E=Tat=To |1 o Te [N 86
@)
Object-HEX converter ................. 38
On-line Help..........ooooeeeee 74
OPLIONS ... 1.8
=)
Performance Analyzer................ 105
Peripheral .................ccccc 74
Peripheral Registers ........... 107, 108
Pointer access comparison ........... 27
Preface......ccccccoiiiiiiiiieis 3.
Product folder structure................ 12
Programming algorithm .....119, 120
Project filename ..o, 76
Project folder.......ccccccvvvvvvvevnnnnnne. 76
Project Window................ccccoee.. 77
Project, Multi-project.................... 86
R
Registers.......ooooviiiiiiiieeis 6..9
Release NOtes..........ccccvvvveveeeeennnnns 11
Resetting the CPU .......ccooeevveeeeee. 95

Restore Views, Screen layouts... 111
RTOS

(D150 | o [ 41
Endless loop design.................. 40
RTX variants.........cccccvvvvveieennnn, 42
Software concepts ..........c......... 40
RTX

EventFlags........cccccvvvvveviiennnnn. 45
Function Overview................... 53
Function Overview, Tiny ......... 54

Interrupt Service Routine.......... 49
Introduction...........cceveeeeeeeennne 43



154

Mailbox communication.......... a7
Memory & Memory Pools....... 51
Preemptive Task Switching ..... 46
Round-Robin...........ccccooeivvieeee. 43
Semaphores.....cccoeeeeeeeeeieeeeeeenn, 48
Binary.......cocoeeiiiiiiiiieieee 48
(70101 0] 1] o [ 49
Single Task ........covvvvvevvvvvvvinnnnns 43
Technical Data ..............ceuveeeeee 53
Technical Data, Tiny................ 54
Time Delay ......ccceeeeveeieiieennnn. 44
Wait function ..................c..o.. 44
S
Sample programs ..........ccccceeeeenn. 122
Selecting a microcontroller.......... 76
Selecting an Architecture............. 15
Serial /O 102
Setting default folders................... 78
Simulator........coooviiiieiiiee s 91
Simulator, Debugger.................... 89
Single-stepping ....cveeeeviiiiiininennn. 96
Software requirements ................. 11
Sourcefiles ... 78
Starting a program................cc...... 95
Starting the debugger ................... 91
Startup code
Configuring .....c.ccoovvviiivieenenenn. 83
(67e] o) Y/ 0T T 77
Stopping a program...................... 95
SUPPOIT ..o 3.1
T
Target Hardware ..........cccccccceeee. 112
Target options ..........eevvvvvvviinnninnns 81
Targets ..., 9.7
TESHNG wevveeeeeeeeeeiiieeeeeee e 9.8
Tool options ........ccoeeeeeeeeeenee. 81

Tool Support

8051 . 18
ARM7/ARMO .....cccvvveeeeeiiiinns 23
C166, XE166, XC2000............ 21
Cortex-MX.....ccoocvvvviiniiiiniiinnnnn. 25
Toolbar
Build.....ccveiiee 65
Debug.......ccccviiiiiiiiiiee 66
File oo 63
ICONS ..o 67
TOOIDOX ..., 110
TOOIS ..o 33.
Debuggers, Adapters................ 10
Middelware ..........ccccceeeeeeninnnns 10
Software Development............. 10
U
ULINK e 116
Configuration ............ccccvvvnne. 117
Configure Flash Download .... 119
Features .......ccccovviiiiiiiiiiiiinnn, 117
Flash Algorithms................... 120
using
Simulator.............cc 91
Vv
viewing instruction history......... 111
Viewing Registers............ccoeee..... 96
VTREG ....oooiiiiiiiiiiie, 108
w
Watchpoints.......cccoooeeiieiiiienennnnn. 101
Commands ........cccceeeeeieeennnns 101
Who should Read this Book........... 3
Window
Breakpoints .........cccceevvveeeennnnne. 99

BrowWSe ....oovvviveiiieiiiieiieei, 109



Getting Started: Creating Applications with pVision 155

Code Coverage........ccccuvvvvvnnnes 104 moving and positioning............ 58
Command........cccoeeeiiiieiiineenn. 94 Performance Analyzer............ 105
Debug Layouts...............eeeeeeee 111 Peripheral .................... 74
Disassembly ..........ccccvvvvvvvinnnnns 94 Project ......ccocvvveeveenins 69
Editor ...covvveeiiees 71 summary of ..., 73
Help .. 74 Symbols..........ccooii 108
Instruction Trace.........ccccvvvnee 111 System Viewer ....................... 107
Logic Analyzer ........cccccoo....... 106 UART, Serial ........cccccvvvvvvnnnns 102



156




